Belle II Software development
eclee5x5CollectorModule Class Reference

Calibration collector module that uses e+e- --> e+e- to do ECL single crystal energy calibration. More...

#include <eclee5x5CollectorModule.h>

Inheritance diagram for eclee5x5CollectorModule:
CalibrationCollectorModule HistoModule Module PathElement

Public Types

enum  EModulePropFlags {
  c_Input = 1 ,
  c_Output = 2 ,
  c_ParallelProcessingCertified = 4 ,
  c_HistogramManager = 8 ,
  c_InternalSerializer = 16 ,
  c_TerminateInAllProcesses = 32 ,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

 eclee5x5CollectorModule ()
 Constructor: Sets the description, the properties and the parameters of the module.
 
void prepare () override
 Define histograms and read payloads from DB.
 
void collect () override
 Select events and crystals and accumulate histograms.
 
void initialize () final
 Set up a default RunRange object in datastore and call prepare()
 
void event () final
 Check current experiment and run and update if needed, fill into RunRange and collect()
 
void beginRun () final
 Reset the m_runCollectOnRun flag, if necessary, to begin collection again.
 
void endRun () final
 Write the current collector objects to a file and clear their memory.
 
void terminate () final
 Write the final objects to the file.
 
void defineHisto () final
 Runs due to HistoManager, allows us to discover the correct file.
 
template<class T >
void registerObject (std::string name, T *obj)
 Register object with a name, takes ownership, do not access the pointer beyond prepare()
 
template<class T >
T * getObjectPtr (std::string name)
 Calls the CalibObjManager to get the requested stored collector data.
 
virtual std::vector< std::string > getFileNames (bool outputFiles)
 Return a list of output filenames for this modules.
 
const std::string & getName () const
 Returns the name of the module.
 
const std::string & getType () const
 Returns the type of the module (i.e.
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module.
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties.
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level.
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module.
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module.
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module.
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true.
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished.
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module.
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter.
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module.
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module.
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters.
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Protected Member Functions

virtual void startRun ()
 Replacement for beginRun(). Do anything you would normally do in beginRun here.
 
virtual void closeRun ()
 Replacement for endRun(). Do anything you would normally do in endRun here.
 
virtual void finish ()
 Replacement for terminate(). Do anything you would normally do in terminate here.
 
virtual void inDefineHisto ()
 Replacement for defineHisto(). Do anything you would normally do in defineHisto here.
 
virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python.
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side.
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module.
 
void setType (const std::string &type)
 Set the module type.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module.
 
void setReturnValue (int value)
 Sets the return value for this module as integer.
 
void setReturnValue (bool value)
 Sets the return value for this module as bool.
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Protected Attributes

TDirectory * m_dir
 The top TDirectory that collector objects for this collector will be stored beneath.
 
CalibObjManager m_manager
 Controls the creation, collection and access to calibration objects.
 
RunRangem_runRange
 Overall list of runs processed.
 
Calibration::ExpRun m_expRun
 Current ExpRun for object retrieval (becomes -1,-1 for granularity=all)
 
StoreObjPtr< EventMetaDatam_emd
 Current EventMetaData.
 

Private Member Functions

bool getPreScaleChoice ()
 I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values.
 
std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects.
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary.
 

Private Attributes

double m_thetaLabMinDeg
 Parameters to control the job.
 
double m_thetaLabMaxDeg
 maximum ecl cluster theta in lab (150 degrees)
 
double m_minE0
 minimum energy of cluster 0: E*0/sqrts (0.45)
 
double m_minE1
 minimum energy of cluster 1: E*1/sqrts (0.40)
 
double m_maxdThetaSum
 abs(theta0* + theta1* - 180 deg) must be less than less (2 deg)
 
double m_dPhiScale
 scale dPhi* cut by this factor (1)
 
double m_maxTime
 maximum cluster time diff abs(t1-t0)/dt99 (10)
 
bool m_useCalDigits
 use eclCalDigit to determine MC deposited energy (false)
 
bool m_requireL1
 require events to satisfy a level 1 trigger (false)
 
StoreArray< ECLClusterm_eclClusterArray
 Required arrays.
 
StoreArray< ECLCalDigitm_eclCalDigitArray
 Required input array of ECLCalDigits.
 
StoreArray< ECLDigitm_eclDigitArray
 Required input array of ECLDigits.
 
StoreObjPtr< EventMetaDatam_evtMetaData
 dataStore EventMetaData
 
StoreObjPtr< TRGSummarym_TRGResults
 dataStore TRGSummary
 
double m_thetaLabMin = 0.
 Some other useful quantities.
 
double m_thetaLabMax = 0.
 m_thetaLabMaxDeg converted to radians
 
std::vector< float > m_dPhiMin
 minimum dPhi* as a function of thetaID
 
std::vector< float > m_dPhiMax
 maximum dPhi* as a function of thetaID
 
bool storeCalib = true
 force the input calibration constants to be saved first event
 
std::vector< float > EperCrys
 Energy for each crystal from ECLDigit or ECLCalDigit (GeV)
 
ECL::ECLNeighboursm_eclNeighbours5x5 {nullptr}
 Neighbour map of 25 crystals.
 
PCmsLabTransform m_boostrotate
 boost from COM to lab and visa versa
 
double m_sqrts = 10.58
 sqrt s from m_boostrotate
 
std::vector< int > m_thetaID
 thetaID of each crystal
 
DBObjPtr< ECLCrystalCalibm_ECLExpee5x5E
 Expected energies from database.
 
std::vector< float > Expee5x5E
 vector of energies obtained from DB object
 
std::vector< float > Expee5x5Sigma
 vector of sigmaE obtained from DB object
 
DBObjPtr< ECLCrystalCalibm_ElectronicsCalib
 Electronics calibration from database.
 
std::vector< float > ElectronicsCalib
 vector obtained from DB object
 
DBObjPtr< ECLCrystalCalibm_ee5x5Calib
 Existing single crystal calibration from DB; will be updated by CAF.
 
std::vector< float > ee5x5Calib
 vector obtained from DB object
 
DBObjPtr< ECLCrystalCalibm_selectdPhiData
 dPhi cut
 
DBObjPtr< ECLCrystalCalibm_selectdPhiMC
 DB object for MC.
 
std::vector< float > meandPhi
 mean requirement on dPhi from DB object
 
std::vector< float > widthdPhi
 width of requirement on dPhi from DB object
 
std::string m_granularity
 Granularity of data collection = run|all(= no granularity, exp,run=-1,-1)
 
int m_maxEventsPerRun
 Maximum number of events to be collected at the start of each run (-1 = no maximum)
 
float m_preScale
 Prescale module parameter, this fraction of events will have collect() run on them [0.0 -> 1.0].
 
bool m_runCollectOnRun = true
 Whether or not we will run the collect() at all this run, basically skips the event() function if false.
 
std::map< Calibration::ExpRun, int > m_expRunEvents
 How many events processed for each ExpRun so far, stops counting up once max is hit Only used/incremented if m_maxEventsPerRun > -1.
 
int * m_eventsCollectedInRun
 Will point at correct value in m_expRunEvents.
 
std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 

Detailed Description

Calibration collector module that uses e+e- --> e+e- to do ECL single crystal energy calibration.

Definition at line 34 of file eclee5x5CollectorModule.h.

Member Typedef Documentation

◆ EAfterConditionPath

Forward the EAfterConditionPath definition from the ModuleCondition.

Definition at line 88 of file Module.h.

Member Enumeration Documentation

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 77 of file Module.h.

77 {
78 c_Input = 1,
79 c_Output = 2,
85 };
@ c_HistogramManager
This module is used to manage histograms accumulated by other modules.
Definition: Module.h:81
@ c_Input
This module is an input module (reads data).
Definition: Module.h:78
@ c_DontCollectStatistics
No statistics is collected for this module.
Definition: Module.h:84
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
Definition: Module.h:80
@ c_InternalSerializer
This module is an internal serializer/deserializer for parallel processing.
Definition: Module.h:82
@ c_Output
This module is an output module (writes data).
Definition: Module.h:79
@ c_TerminateInAllProcesses
When using parallel processing, call this module's terminate() function in all processes().
Definition: Module.h:83

Constructor & Destructor Documentation

◆ eclee5x5CollectorModule()

Constructor: Sets the description, the properties and the parameters of the module.

Definition at line 46 of file eclee5x5CollectorModule.cc.

47 m_ECLExpee5x5E("ECLExpee5x5E"), m_ElectronicsCalib("ECLCrystalElectronics"), m_ee5x5Calib("ECLCrystalEnergyee5x5"),
48 m_selectdPhiData("ECLeedPhiData"), m_selectdPhiMC("ECLeedPhiMC")
49{
50 // Set module properties
51 setDescription("Calibration Collector Module for ECL single crystal energy calibration using Bhabha events");
53 addParam("thetaLabMinDeg", m_thetaLabMinDeg, "miniumum ecl cluster theta in lab (degrees)", 17.);
54 addParam("thetaLabMaxDeg", m_thetaLabMaxDeg, "maximum ecl cluster theta in lab (degrees)", 150.);
55 addParam("minE0", m_minE0, "minimum energy of cluster 0: E*0/sqrts", 0.45);
56 addParam("minE1", m_minE1, "minimum energy of cluster 1: E*1/sqrts", 0.40);
57 addParam("maxdThetaSum", m_maxdThetaSum, "maximum diff between 180 deg and sum of cluster theta* (deg)", 2.);
58 addParam("dPhiScale", m_dPhiScale, "scale dPhi* cut by this factor", 1.);
59 addParam("maxTime", m_maxTime, "maximum cluster time diff abs(t1-t0)/dt99", 10.);
60 addParam("useCalDigits", m_useCalDigits, "use MC events to obtain expected energies", false);
61 addParam("requireL1", m_requireL1, "only use events that have a level 1 trigger", false);
62}
CalibrationCollectorModule()
Constructor. Sets the default prefix for calibration dataobjects.
void setDescription(const std::string &description)
Sets the description of the module.
Definition: Module.cc:214
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
Definition: Module.cc:208
DBObjPtr< ECLCrystalCalib > m_selectdPhiData
dPhi cut
bool m_requireL1
require events to satisfy a level 1 trigger (false)
DBObjPtr< ECLCrystalCalib > m_ECLExpee5x5E
Expected energies from database.
double m_maxTime
maximum cluster time diff abs(t1-t0)/dt99 (10)
double m_maxdThetaSum
abs(theta0* + theta1* - 180 deg) must be less than less (2 deg)
double m_minE0
minimum energy of cluster 0: E*0/sqrts (0.45)
bool m_useCalDigits
use eclCalDigit to determine MC deposited energy (false)
DBObjPtr< ECLCrystalCalib > m_selectdPhiMC
DB object for MC.
double m_thetaLabMaxDeg
maximum ecl cluster theta in lab (150 degrees)
DBObjPtr< ECLCrystalCalib > m_ee5x5Calib
Existing single crystal calibration from DB; will be updated by CAF.
double m_thetaLabMinDeg
Parameters to control the job.
double m_dPhiScale
scale dPhi* cut by this factor (1)
double m_minE1
minimum energy of cluster 1: E*1/sqrts (0.40)
DBObjPtr< ECLCrystalCalib > m_ElectronicsCalib
Electronics calibration from database.
void addParam(const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
Definition: Module.h:560

Member Function Documentation

◆ beginRun()

void beginRun ( void  )
finalvirtualinherited

Reset the m_runCollectOnRun flag, if necessary, to begin collection again.

It seems that the beginRun() function is called in each basf2 subprocess when the run changes in each process. This is nice because it allows us to write the new (exp,run) object creation in the beginRun function as though the other processes don't exist.

Reimplemented from HistoModule.

Definition at line 77 of file CalibrationCollectorModule.cc.

78{
83 // Current (Exp,Run)
84 ExpRun expRun = make_pair(m_emd->getExperiment(), m_emd->getRun());
85 m_runRange->add(expRun.first, expRun.second);
86
87 // Do we care about the number of events collected in each (input data) ExpRun?
88 // If so, we want to create values for the events collected map
89 if (m_maxEventsPerRun > -1) {
90 // Do we have a count for this ExpRun yet? If not create one
91 auto i_eventsInExpRun = m_expRunEvents.find(expRun);
92 if (i_eventsInExpRun == m_expRunEvents.end()) {
93 m_expRunEvents[expRun] = 0;
94 }
95
96 // Set our pointer to the correct location for this ExpRun
98 // Want to reset our flag to start collection if necessary
100 B2INFO("New run has had less events than the maximum collected so far ("
102 << " < "
104 << "). Turning on collection.");
105 m_runCollectOnRun = true;
106 } else {
107 B2INFO("New run has had more events than the maximum collected so far ("
109 << " >= "
111 << "). Turning off collection.");
112 m_runCollectOnRun = false;
113 }
114 }
115 // Granularity=all removes data spliting by runs by setting
116 // always the same exp, run for calibration data objects
117 if (m_granularity == "all") {
118 m_expRun = { -1, -1};
119 } else {
120 m_expRun = expRun;
121 }
123 // Run the user's startRun() implementation if there is one
124 startRun();
125}
bool m_runCollectOnRun
Whether or not we will run the collect() at all this run, basically skips the event() function if fal...
virtual void startRun()
Replacement for beginRun(). Do anything you would normally do in beginRun here.
Calibration::ExpRun m_expRun
Current ExpRun for object retrieval (becomes -1,-1 for granularity=all)
CalibObjManager m_manager
Controls the creation, collection and access to calibration objects.
std::string m_granularity
Granularity of data collection = run|all(= no granularity, exp,run=-1,-1)
RunRange * m_runRange
Overall list of runs processed.
int * m_eventsCollectedInRun
Will point at correct value in m_expRunEvents.
StoreObjPtr< EventMetaData > m_emd
Current EventMetaData.
int m_maxEventsPerRun
Maximum number of events to be collected at the start of each run (-1 = no maximum)
std::map< Calibration::ExpRun, int > m_expRunEvents
How many events processed for each ExpRun so far, stops counting up once max is hit Only used/increme...
void add(int exp, int run)
Add an experiment and run number to the set.
Definition: RunRange.h:58
void createExpRunDirectories(Calibration::ExpRun &expRun) const
For each templated object, we create a new TDirectory for this exprun.
Struct containing exp number and run number.
Definition: Splitter.h:51

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 179 of file Module.cc.

180{
182 newModule->m_moduleParamList.setParameters(getParamList());
183 newModule->setName(getName());
184 newModule->m_package = m_package;
185 newModule->m_propertyFlags = m_propertyFlags;
186 newModule->m_logConfig = m_logConfig;
187 newModule->m_conditions = m_conditions;
188
189 return newModule;
190}
std::shared_ptr< Module > registerModule(const std::string &moduleName, std::string sharedLibPath="") noexcept(false)
Creates an instance of a module and registers it to the ModuleManager.
static ModuleManager & Instance()
Exception is thrown if the requested module could not be created by the ModuleManager.
const ModuleParamList & getParamList() const
Return module param list.
Definition: Module.h:363
const std::string & getName() const
Returns the name of the module.
Definition: Module.h:187
const std::string & getType() const
Returns the type of the module (i.e.
Definition: Module.cc:41
unsigned int m_propertyFlags
The properties of the module as bitwise or (with |) of EModulePropFlags.
Definition: Module.h:512
LogConfig m_logConfig
The log system configuration of the module.
Definition: Module.h:514
std::vector< ModuleCondition > m_conditions
Module condition, only non-null if set.
Definition: Module.h:521
std::string m_package
Package this module is found in (may be empty).
Definition: Module.h:510
std::shared_ptr< Module > ModulePtr
Defines a pointer to a module object as a boost shared pointer.
Definition: Module.h:43

◆ closeRun()

◆ collect()

void collect ( )
overridevirtual

Select events and crystals and accumulate histograms.



Record the input database constants for the first call


Check if DB objects have changed

Verify that we have valid values for the starting calibrations


If requested, require a level 1 trigger

Find the two maximum energy clusters. Use photon hypothesis

Selection criteria using the two clusters

Require that the two are in the specified angular region

And both have reasonably good times

Find COM 4-vectors

Check how back-to-back in theta*

Apply energy cut on both clusters

Find the maximum energy crystal in each of the two clusters for dPhi cut

Record dPhi*, then apply cut

Record ECL energy as a function of CrysID, derived from ECLDigits if data, ECLCalDigit if MC

ee5x5Calib is negative if the previous iteration of the algorithm was unable to calculate a value. In this case, the input value has been stored with a minus sign

Reimplemented from CalibrationCollectorModule.

Definition at line 199 of file eclee5x5CollectorModule.cc.

200{
201
203 if (storeCalib) {
204 for (int crysID = 0; crysID < ECLElementNumbers::c_NCrystals; crysID++) {
205 getObjectPtr<TH1F>("ExpEvsCrys")->Fill(crysID + 0.001, Expee5x5E[crysID]);
206 getObjectPtr<TH1F>("ElecCalibvsCrys")->Fill(crysID + 0.001, ElectronicsCalib[crysID]);
207 getObjectPtr<TH1F>("InitialCalibvsCrys")->Fill(crysID + 0.001, ee5x5Calib[crysID]);
208 getObjectPtr<TH1F>("CalibEntriesvsCrys")->Fill(crysID + 0.001);
209 }
210 storeCalib = false;
211 }
212
215 bool newConst = false;
216 if (m_ECLExpee5x5E.hasChanged()) {
217 newConst = true;
218 B2INFO("ECLExpee5x5E has changed, exp = " << m_evtMetaData->getExperiment() << " run = " << m_evtMetaData->getRun());
219 Expee5x5E = m_ECLExpee5x5E->getCalibVector();
220 Expee5x5Sigma = m_ECLExpee5x5E->getCalibUncVector();
221 }
222 if (m_ElectronicsCalib.hasChanged()) {
223 newConst = true;
224 B2INFO("ECLCrystalElectronics has changed, exp = " << m_evtMetaData->getExperiment() << " run = " << m_evtMetaData->getRun());
225 ElectronicsCalib = m_ElectronicsCalib->getCalibVector();
226 }
227 if (m_ee5x5Calib.hasChanged()) {
228 newConst = true;
229 B2INFO("ECLCrystalEnergyee5x5 has changed, exp = " << m_evtMetaData->getExperiment() << " run = " << m_evtMetaData->getRun());
230 ee5x5Calib = m_ee5x5Calib->getCalibVector();
231 }
232
233 if (newConst) {
234 for (int ic = 1; ic < 9000; ic += 1000) {
235 B2INFO("DB constants for cellID=" << ic << ": ee5x5Calib = " << ee5x5Calib[ic - 1] << " Expee5x5E = " << Expee5x5E[ic - 1] <<
236 " ElectronicsCalib = " <<
237 ElectronicsCalib[ic - 1]);
238 }
239
241 for (int crysID = 0; crysID < ECLElementNumbers::c_NCrystals; crysID++) {
242 if (ElectronicsCalib[crysID] <= 0) {B2FATAL("eclee5x5Collector: ElectronicsCalib = " << ElectronicsCalib[crysID] << " for crysID = " << crysID);}
243 if (Expee5x5E[crysID] == 0) {B2FATAL("eclee5x5Collector: Expee5x5E = 0 for crysID = " << crysID);}
244 if (ee5x5Calib[crysID] == 0) {B2FATAL("eclee5x5Collector: ee5x5Calib = 0 for crysID = " << crysID);}
245 }
246 }
247
250 if (m_requireL1) {
251 unsigned int L1TriggerResults = m_TRGResults->getTRGSummary(0);
252 if (L1TriggerResults == 0) {return;}
253 }
254
255 //------------------------------------------------------------------------
257 int icMax[2] = { -1, -1};
258 double maxClustE[2] = { -1., -1.};
259 int nclust = m_eclClusterArray.getEntries();
260 for (int ic = 0; ic < nclust; ic++) {
263 if (eClust > maxClustE[0]) {
264 maxClustE[1] = maxClustE[0];
265 icMax[1] = icMax[0];
266 maxClustE[0] = eClust;
267 icMax[0] = ic;
268 } else if (eClust > maxClustE[1]) {
269 maxClustE[1] = eClust;
270 icMax[1] = ic;
271 }
272 }
273 }
274
275 //------------------------------------------------------------------------
278 if (icMax[1] == -1) {return;}
279 double theta0 = m_eclClusterArray[icMax[0]]->getTheta();
280 double theta1 = m_eclClusterArray[icMax[1]]->getTheta();
281 if (theta0 < m_thetaLabMin || theta0 > m_thetaLabMax || theta1 < m_thetaLabMin || theta1 > m_thetaLabMax) {return;}
282
284 double t0 = m_eclClusterArray[icMax[0]]->getTime();
285 double dt990 = m_eclClusterArray[icMax[0]]->getDeltaTime99();
286 double t1 = m_eclClusterArray[icMax[1]]->getTime();
287 double dt991 = m_eclClusterArray[icMax[1]]->getDeltaTime99();
288 double dt99min = dt990;
289 if (dt991 < dt990) {dt99min = dt991;}
290 if (dt99min <= 0) {dt99min = 0.0001;}
291 if (abs(t1 - t0) > dt99min * m_maxTime) {return;}
292
293 //------------------------------------------------------------------------
295 ClusterUtils cUtil;
296 const ROOT::Math::XYZVector clustervertex = cUtil.GetIPPosition();
297
298 double phi0 = m_eclClusterArray[icMax[0]]->getPhi();
299 ROOT::Math::XYZVector p30;
300 VectorUtil::setMagThetaPhi(p30, maxClustE[0], theta0, phi0);
301 const ROOT::Math::PxPyPzEVector p40 = cUtil.Get4MomentumFromCluster(m_eclClusterArray[icMax[0]], clustervertex,
303
304 double phi1 = m_eclClusterArray[icMax[1]]->getPhi();
305 ROOT::Math::XYZVector p31;
306 VectorUtil::setMagThetaPhi(p31, maxClustE[1], theta1, phi1);
307 const ROOT::Math::PxPyPzEVector p41 = cUtil.Get4MomentumFromCluster(m_eclClusterArray[icMax[1]], clustervertex,
309
311 ROOT::Math::PxPyPzEVector p40COM = m_boostrotate.rotateLabToCms() * p40;
312 ROOT::Math::PxPyPzEVector p41COM = m_boostrotate.rotateLabToCms() * p41;
313 double theta01COM = (p41COM.Theta() + p40COM.Theta()) * TMath::RadToDeg();
314 if (abs(theta01COM - 180.) > m_maxdThetaSum) {return;}
315
317 if (p40COM.E() < m_minE0 * m_sqrts and p41COM.E() < m_minE0 * m_sqrts) {return;}
318 if (p40COM.E() < m_minE1 * m_sqrts or p41COM.E() < m_minE1 * m_sqrts) {return;}
319
320
321 //------------------------------------------------------------------------
323 int crysIDMax[2] = { -1, -1};
324 double crysEMax[2] = { -1., -1.};
325 for (int imax = 0; imax < 2; imax++) {
326 auto eclClusterRelations = m_eclClusterArray[icMax[imax]]->getRelationsTo<ECLCalDigit>("ECLCalDigits");
327 for (unsigned int ir = 0; ir < eclClusterRelations.size(); ir++) {
328 const auto calDigit = eclClusterRelations.object(ir);
329 int tempCrysID = calDigit->getCellId() - 1;
330 float tempE = calDigit->getEnergy();
331 if (tempE > crysEMax[imax]) {
332 crysEMax[imax] = tempE;
333 crysIDMax[imax] = tempCrysID;
334 }
335 }
336 }
337
339 double dphiCOM = abs(p41COM.Phi() - p40COM.Phi()) * TMath::RadToDeg();
340 if (dphiCOM > 180.) {dphiCOM = 360. - dphiCOM;}
341
342 int thetaIDmin = m_thetaID[crysIDMax[0]];
343 if (m_thetaID[crysIDMax[1]] < m_thetaID[crysIDMax[0]]) {thetaIDmin = m_thetaID[crysIDMax[1]];}
344 getObjectPtr<TH2F>("dPhivsThetaID")->Fill(thetaIDmin + 0.001, dphiCOM);
345 if (dphiCOM<m_dPhiMin.at(thetaIDmin) or dphiCOM>m_dPhiMax.at(thetaIDmin)) {return;}
346
347
348 //------------------------------------------------------------------------
350 memset(&EperCrys[0], 0, EperCrys.size()*sizeof EperCrys[0]);
351
352 if (m_useCalDigits) {
353 for (auto& eclCalDigit : m_eclCalDigitArray) {
354 int tempCrysID = eclCalDigit.getCellId() - 1;
355 EperCrys[tempCrysID] = eclCalDigit.getEnergy();
356 }
357 } else {
358 for (auto& eclDigit : m_eclDigitArray) {
359 int tempCrysID = eclDigit.getCellId() - 1;
361 EperCrys[tempCrysID] = eclDigit.getAmp() * abs(ee5x5Calib[tempCrysID]) * ElectronicsCalib[tempCrysID];
362 }
363 }
364
365 //------------------------------------------------------------------------
366 //** Quantities needed for the 5x5 calibration */
367 for (int ic = 0; ic < 2; ic++) {
368 int crysMax = crysIDMax[ic];
369 float expE = abs(Expee5x5E[crysMax]);
370 float sigmaExp = Expee5x5Sigma[crysMax];
371 std::vector<short int> neighbours = m_eclNeighbours5x5->getNeighbours(crysMax + 1);
372
373 //** Energy in 5x5, and expected energy corrected for crystals that will not be calibrated */
374 double reducedExpE = expE;
375 double E25 = 0.;
376 for (auto& cellID : neighbours) {
377 E25 += EperCrys[cellID - 1];
378 if (ee5x5Calib[cellID - 1] < 0.) {
379 reducedExpE -= EperCrys[cellID - 1];
380 }
381 }
382
383 //** now the vector and matrix used in the calibration */
384 double rexpE = reducedExpE / sigmaExp;
385 for (auto& celli : neighbours) {
386 if (ee5x5Calib[celli - 1] > 0.) {
387 float rEi = EperCrys[celli - 1] / sigmaExp;
388 getObjectPtr<TH1F>("RvsCrysID")->Fill(celli - 0.999, rexpE * rEi);
389 getObjectPtr<TH1F>("NRvsCrysID")->Fill(celli - 0.999);
390 for (auto& cellj : neighbours) {
391 if (ee5x5Calib[cellj - 1] > 0.) {
392 float rEj = EperCrys[cellj - 1] / sigmaExp;
393 getObjectPtr<TH2F>("Qmatrix")->Fill(celli - 0.999, cellj - 0.999, rEi * rEj);
394 }
395 }
396 }
397 }
398
399 //** Record normalized energy and corresponding calib values. Expee5x5E is negative if the algorithm was unable to calculate a value. In this case, the nominal input value has been stored with a minus sign */
400 getObjectPtr<TH2F>("EnVsCrysID")->Fill(crysMax + 0.001, E25 / expE);
401 getObjectPtr<TH1F>("EntriesvsCrys")->Fill(crysMax + 0.001);
402 getObjectPtr<TH1F>("ExpEvsCrys")->Fill(crysMax + 0.001, Expee5x5E[crysMax]);
403 getObjectPtr<TH1F>("ElecCalibvsCrys")->Fill(crysMax + 0.001, ElectronicsCalib[crysMax]);
404 getObjectPtr<TH1F>("InitialCalibvsCrys")->Fill(crysMax + 0.001, ee5x5Calib[crysMax]);
405 getObjectPtr<TH1F>("CalibEntriesvsCrys")->Fill(crysMax + 0.001);
406 }
407}
Class to provide momentum-related information from ECLClusters.
Definition: ClusterUtils.h:36
const ROOT::Math::PxPyPzEVector Get4MomentumFromCluster(const ECLCluster *cluster, ECLCluster::EHypothesisBit hypo)
Returns four momentum vector.
Definition: ClusterUtils.cc:25
const ROOT::Math::XYZVector GetIPPosition()
Returns default IP position from beam parameters.
Class to store calibrated ECLDigits: ECLCalDigits.
Definition: ECLCalDigit.h:23
int getCellId() const
Get Cell ID.
Definition: ECLCalDigit.h:118
@ c_nPhotons
CR is split into n photons (N1)
const std::vector< short int > & getNeighbours(short int cid) const
Return the neighbours for a given cell ID.
const ROOT::Math::LorentzRotation rotateLabToCms() const
Returns Lorentz transformation from Lab to CMS.
StoreArray< ECLDigit > m_eclDigitArray
Required input array of ECLDigits.
std::vector< float > Expee5x5E
vector of energies obtained from DB object
StoreArray< ECLCluster > m_eclClusterArray
Required arrays.
StoreObjPtr< TRGSummary > m_TRGResults
dataStore TRGSummary
bool storeCalib
force the input calibration constants to be saved first event
std::vector< float > EperCrys
Energy for each crystal from ECLDigit or ECLCalDigit (GeV)
std::vector< int > m_thetaID
thetaID of each crystal
ECL::ECLNeighbours * m_eclNeighbours5x5
Neighbour map of 25 crystals.
std::vector< float > Expee5x5Sigma
vector of sigmaE obtained from DB object
std::vector< float > m_dPhiMin
minimum dPhi* as a function of thetaID
std::vector< float > m_dPhiMax
maximum dPhi* as a function of thetaID
StoreObjPtr< EventMetaData > m_evtMetaData
dataStore EventMetaData
std::vector< float > ElectronicsCalib
vector obtained from DB object
StoreArray< ECLCalDigit > m_eclCalDigitArray
Required input array of ECLCalDigits.
double m_thetaLabMax
m_thetaLabMaxDeg converted to radians
double m_sqrts
sqrt s from m_boostrotate
std::vector< float > ee5x5Calib
vector obtained from DB object
PCmsLabTransform m_boostrotate
boost from COM to lab and visa versa
const int c_NCrystals
Number of crystals.

◆ def_beginRun()

virtual void def_beginRun ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 426 of file Module.h.

426{ beginRun(); }
virtual void beginRun()
Called when entering a new run.
Definition: Module.h:147

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 439 of file Module.h.

439{ endRun(); }
virtual void endRun()
This method is called if the current run ends.
Definition: Module.h:166

◆ def_event()

virtual void def_event ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 432 of file Module.h.

432{ event(); }
virtual void event()
This method is the core of the module.
Definition: Module.h:157

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 420 of file Module.h.

420{ initialize(); }
virtual void initialize()
Initialize the Module.
Definition: Module.h:109

◆ def_terminate()

virtual void def_terminate ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 445 of file Module.h.

445{ terminate(); }
virtual void terminate()
This method is called at the end of the event processing.
Definition: Module.h:176

◆ defineHisto()

void defineHisto ( )
finalvirtualinherited

Runs due to HistoManager, allows us to discover the correct file.

Reimplemented from HistoModule.

Definition at line 127 of file CalibrationCollectorModule.cc.

128{
130 m_dir = gDirectory->mkdir(getName().c_str(), "", true);
132 B2INFO("Saving output to TDirectory " << m_dir->GetPath());
133 B2DEBUG(100, "Creating directories for individual collector objects.");
135 m_runRange = new RunRange();
137 m_runRange->SetName(Calibration::RUN_RANGE_OBJ_NAME.c_str());
138 m_dir->Add(m_runRange);
139 }
141}
void setDirectory(TDirectory *dir)
Change the directory that we will be using to find/store all our objects, we don't own it.
TDirectory * m_dir
The top TDirectory that collector objects for this collector will be stored beneath.
virtual void inDefineHisto()
Replacement for defineHisto(). Do anything you would normally do in defineHisto here.
static bool isWorkerProcess()
Return true if the process is a worker process.
Definition: ProcHandler.cc:230
static bool parallelProcessingUsed()
Returns true if multiple processes have been spawned, false in single-core mode.
Definition: ProcHandler.cc:226
Mergeable object holding (unique) set of (exp,run) pairs.
Definition: RunRange.h:25
void setGranularity(const std::string &granularity)
Set the m_granularity to an allowed value.
Definition: RunRange.h:100
void createDirectories()
Each object gets its own TDirectory under the main manager directory to store its objects.

◆ endRun()

void endRun ( void  )
finalvirtualinherited

Write the current collector objects to a file and clear their memory.

Reimplemented from HistoModule.

Definition at line 143 of file CalibrationCollectorModule.cc.

144{
145 closeRun();
146 // Moving between runs possibly creates new objects if getObjectPtr is called and granularity is run
147 // So we should write and clear the current memory objects.
148 if (m_granularity == "run") {
149 ExpRun expRun = make_pair(m_emd->getExperiment(), m_emd->getRun());
152 }
153}
virtual void closeRun()
Replacement for endRun(). Do anything you would normally do in endRun here.
void clearCurrentObjects(const Calibration::ExpRun &expRun)
Deletes all in-memory objects in the exprun directories for all the collector objects we know about.
void writeCurrentObjects(const Calibration::ExpRun &expRun)
For each templated object we know about, we find an in memory object for this exprun and write to the...

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 96 of file Module.cc.

97{
98 if (m_conditions.empty()) return false;
99
100 //okay, a condition was set for this Module...
101 if (!m_hasReturnValue) {
102 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
103 }
104
105 for (const auto& condition : m_conditions) {
106 if (condition.evaluate(m_returnValue)) {
107 return true;
108 }
109 }
110 return false;
111}
int m_returnValue
The return value.
Definition: Module.h:519
bool m_hasReturnValue
True, if the return value is set.
Definition: Module.h:518

◆ event()

void event ( void  )
finalvirtualinherited

Check current experiment and run and update if needed, fill into RunRange and collect()

Reimplemented from HistoModule.

Definition at line 52 of file CalibrationCollectorModule.cc.

53{
54 // Should we collect data this event based on the number collected in the run?
56 // If yes, does our preScale return true?
57 if (getPreScaleChoice()) {
58 collect();
59 // Since we collected, do we care about incrementing the number of events collected?
60 if (m_maxEventsPerRun > -1) {
61 (*m_eventsCollectedInRun) += 1;
62 // Now that we incremented, have we exceeded our maximum collected events in this run?
64 // If we have, we should skip collection until further notice
65 B2INFO("Reached maximum number of events processed by collector for this run ("
67 << " >= "
69 << "). Turning off collection.");
70 m_runCollectOnRun = false;
71 }
72 }
73 }
74 }
75}
virtual void collect()
Replacement for event(). Fill you calibration data objects here.
bool getPreScaleChoice()
I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values.

◆ exposePythonAPI()

void exposePythonAPI ( )
staticinherited

Exposes methods of the Module class to Python.

Definition at line 325 of file Module.cc.

326{
327 // to avoid confusion between std::arg and boost::python::arg we want a shorthand namespace as well
328 namespace bp = boost::python;
329
330 docstring_options options(true, true, false); //userdef, py sigs, c++ sigs
331
332 void (Module::*setReturnValueInt)(int) = &Module::setReturnValue;
333
334 enum_<Module::EAfterConditionPath>("AfterConditionPath",
335 R"(Determines execution behaviour after a conditional path has been executed:
336
337.. attribute:: END
338
339 End processing of this path after the conditional path. (this is the default for if_value() etc.)
340
341.. attribute:: CONTINUE
342
343 After the conditional path, resume execution after this module.)")
344 .value("END", Module::EAfterConditionPath::c_End)
345 .value("CONTINUE", Module::EAfterConditionPath::c_Continue)
346 ;
347
348 /* Do not change the names of >, <, ... we use them to serialize conditional pathes */
349 enum_<Belle2::ModuleCondition::EConditionOperators>("ConditionOperator")
356 ;
357
358 enum_<Module::EModulePropFlags>("ModulePropFlags",
359 R"(Flags to indicate certain low-level features of modules, see :func:`Module.set_property_flags()`, :func:`Module.has_properties()`. Most useful flags are:
360
361.. attribute:: PARALLELPROCESSINGCERTIFIED
362
363 This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)
364
365.. attribute:: HISTOGRAMMANAGER
366
367 This module is used to manage histograms accumulated by other modules
368
369.. attribute:: TERMINATEINALLPROCESSES
370
371 When using parallel processing, call this module's terminate() function in all processes. This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.
372)")
373 .value("INPUT", Module::EModulePropFlags::c_Input)
374 .value("OUTPUT", Module::EModulePropFlags::c_Output)
375 .value("PARALLELPROCESSINGCERTIFIED", Module::EModulePropFlags::c_ParallelProcessingCertified)
376 .value("HISTOGRAMMANAGER", Module::EModulePropFlags::c_HistogramManager)
377 .value("INTERNALSERIALIZER", Module::EModulePropFlags::c_InternalSerializer)
378 .value("TERMINATEINALLPROCESSES", Module::EModulePropFlags::c_TerminateInAllProcesses)
379 ;
380
381 //Python class definition
382 class_<Module, PyModule> module("Module", R"(
383Base class for Modules.
384
385A module is the smallest building block of the framework.
386A typical event processing chain consists of a Path containing
387modules. By inheriting from this base class, various types of
388modules can be created. To use a module, please refer to
389:func:`Path.add_module()`. A list of modules is available by running
390``basf2 -m`` or ``basf2 -m package``, detailed information on parameters is
391given by e.g. ``basf2 -m RootInput``.
392
393The 'Module Development' section in the manual provides detailed information
394on how to create modules, setting parameters, or using return values/conditions:
395https://confluence.desy.de/display/BI/Software+Basf2manual#Module_Development
396
397)");
398 module
399 .def("__str__", &Module::getPathString)
400 .def("name", &Module::getName, return_value_policy<copy_const_reference>(),
401 "Returns the name of the module. Can be changed via :func:`set_name() <Module.set_name()>`, use :func:`type() <Module.type()>` for identifying a particular module class.")
402 .def("type", &Module::getType, return_value_policy<copy_const_reference>(),
403 "Returns the type of the module (i.e. class name minus 'Module')")
404 .def("set_name", &Module::setName, args("name"), R"(
405Set custom name, e.g. to distinguish multiple modules of the same type.
406
407>>> path.add_module('EventInfoSetter')
408>>> ro = path.add_module('RootOutput', branchNames=['EventMetaData'])
409>>> ro.set_name('RootOutput_metadata_only')
410>>> print(path)
411[EventInfoSetter -> RootOutput_metadata_only]
412
413)")
414 .def("description", &Module::getDescription, return_value_policy<copy_const_reference>(),
415 "Returns the description of this module.")
416 .def("package", &Module::getPackage, return_value_policy<copy_const_reference>(),
417 "Returns the package this module belongs to.")
418 .def("available_params", &_getParamInfoListPython,
419 "Return list of all module parameters as `ModuleParamInfo` instances")
420 .def("has_properties", &Module::hasProperties, (bp::arg("properties")),
421 R"DOCSTRING(Allows to check if the module has the given properties out of `ModulePropFlags` set.
422
423>>> if module.has_properties(ModulePropFlags.PARALLELPROCESSINGCERTIFIED):
424>>> ...
425
426Parameters:
427 properties (int): bitmask of `ModulePropFlags` to check for.
428)DOCSTRING")
429 .def("set_property_flags", &Module::setPropertyFlags, args("property_mask"),
430 "Set module properties in the form of an OR combination of `ModulePropFlags`.");
431 {
432 // python signature is too crowded, make ourselves
433 docstring_options subOptions(true, false, false); //userdef, py sigs, c++ sigs
434 module
435 .def("if_value", &Module::if_value,
436 (bp::arg("expression"), bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
437 R"DOCSTRING(if_value(expression, condition_path, after_condition_path=AfterConditionPath.END)
438
439Sets a conditional sub path which will be executed after this
440module if the return value set in the module passes the given ``expression``.
441
442Modules can define a return value (int or bool) using ``setReturnValue()``,
443which can be used in the steering file to split the Path based on this value, for example
444
445>>> module_with_condition.if_value("<1", another_path)
446
447In case the return value of the ``module_with_condition`` for a given event is
448less than 1, the execution will be diverted into ``another_path`` for this event.
449
450You could for example set a special return value if an error occurs, and divert
451the execution into a path containing :b2:mod:`RootOutput` if it is found;
452saving only the data producing/produced by the error.
453
454After a conditional path has executed, basf2 will by default stop processing
455the path for this event. This behaviour can be changed by setting the
456``after_condition_path`` argument.
457
458Parameters:
459 expression (str): Expression to determine if the conditional path should be executed.
460 This should be one of the comparison operators ``<``, ``>``, ``<=``,
461 ``>=``, ``==``, or ``!=`` followed by a numerical value for the return value
462 condition_path (Path): path to execute in case the expression is fulfilled
463 after_condition_path (AfterConditionPath): What to do once the ``condition_path`` has been executed.
464)DOCSTRING")
465 .def("if_false", &Module::if_false,
466 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
467 R"DOC(if_false(condition_path, after_condition_path=AfterConditionPath.END)
468
469Sets a conditional sub path which will be executed after this module if
470the return value of the module evaluates to False. This is equivalent to
471calling `if_value` with ``expression=\"<1\"``)DOC")
472 .def("if_true", &Module::if_true,
473 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
474 R"DOC(if_true(condition_path, after_condition_path=AfterConditionPath.END)
475
476Sets a conditional sub path which will be executed after this module if
477the return value of the module evaluates to True. It is equivalent to
478calling `if_value` with ``expression=\">=1\"``)DOC");
479 }
480 module
481 .def("has_condition", &Module::hasCondition,
482 "Return true if a conditional path has been set for this module "
483 "using `if_value`, `if_true` or `if_false`")
484 .def("get_all_condition_paths", &_getAllConditionPathsPython,
485 "Return a list of all conditional paths set for this module using "
486 "`if_value`, `if_true` or `if_false`")
487 .def("get_all_conditions", &_getAllConditionsPython,
488 "Return a list of all conditional path expressions set for this module using "
489 "`if_value`, `if_true` or `if_false`")
490 .add_property("logging", make_function(&Module::getLogConfig, return_value_policy<reference_existing_object>()),
@ c_GE
Greater or equal than: ">=".
@ c_SE
Smaller or equal than: "<=".
@ c_GT
Greater than: ">"
@ c_NE
Not equal: "!=".
@ c_EQ
Equal: "=" or "=="
@ c_ST
Smaller than: "<"
Base class for Modules.
Definition: Module.h:72
LogConfig & getLogConfig()
Returns the log system configuration.
Definition: Module.h:225
void if_value(const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
Add a condition to the module.
Definition: Module.cc:79
void if_true(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to set the condition of the module.
Definition: Module.cc:90
void setReturnValue(int value)
Sets the return value for this module as integer.
Definition: Module.cc:220
void setLogConfig(const LogConfig &logConfig)
Set the log system configuration.
Definition: Module.h:230
const std::string & getDescription() const
Returns the description of the module.
Definition: Module.h:202
void if_false(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to add a condition to the module.
Definition: Module.cc:85
bool hasCondition() const
Returns true if at least one condition was set for the module.
Definition: Module.h:311
const std::string & getPackage() const
Returns the package this module is in.
Definition: Module.h:197
void setName(const std::string &name)
Set the name of the module.
Definition: Module.h:214
bool hasProperties(unsigned int propertyFlags) const
Returns true if all specified property flags are available in this module.
Definition: Module.cc:160
std::string getPathString() const override
return the module name.
Definition: Module.cc:192

◆ finish()

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 133 of file Module.cc.

134{
135 if (m_conditions.empty()) return EAfterConditionPath::c_End;
136
137 //okay, a condition was set for this Module...
138 if (!m_hasReturnValue) {
139 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
140 }
141
142 for (const auto& condition : m_conditions) {
143 if (condition.evaluate(m_returnValue)) {
144 return condition.getAfterConditionPath();
145 }
146 }
147
148 return EAfterConditionPath::c_End;
149}

◆ getAllConditionPaths()

std::vector< std::shared_ptr< Path > > getAllConditionPaths ( ) const
inherited

Return all condition paths currently set (no matter if the condition is true or not).

Definition at line 150 of file Module.cc.

151{
152 std::vector<std::shared_ptr<Path>> allConditionPaths;
153 for (const auto& condition : m_conditions) {
154 allConditionPaths.push_back(condition.getPath());
155 }
156
157 return allConditionPaths;
158}

◆ getAllConditions()

const std::vector< ModuleCondition > & getAllConditions ( ) const
inlineinherited

Return all set conditions for this module.

Definition at line 324 of file Module.h.

325 {
326 return m_conditions;
327 }

◆ getCondition()

const ModuleCondition * getCondition ( ) const
inlineinherited

Return a pointer to the first condition (or nullptr, if none was set)

Definition at line 314 of file Module.h.

315 {
316 if (m_conditions.empty()) {
317 return nullptr;
318 } else {
319 return &m_conditions.front();
320 }
321 }

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 113 of file Module.cc.

114{
115 PathPtr p;
116 if (m_conditions.empty()) return p;
117
118 //okay, a condition was set for this Module...
119 if (!m_hasReturnValue) {
120 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
121 }
122
123 for (const auto& condition : m_conditions) {
124 if (condition.evaluate(m_returnValue)) {
125 return condition.getPath();
126 }
127 }
128
129 // if none of the conditions were true, return a null pointer.
130 return p;
131}
std::shared_ptr< Path > PathPtr
Defines a pointer to a path object as a boost shared pointer.
Definition: Path.h:35

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Returns the description of the module.

Definition at line 202 of file Module.h.

202{return m_description;}
std::string m_description
The description of the module.
Definition: Module.h:511

◆ getFileNames()

virtual std::vector< std::string > getFileNames ( bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Reimplemented in RootInputModule, StorageRootOutputModule, and RootOutputModule.

Definition at line 134 of file Module.h.

135 {
136 return std::vector<std::string>();
137 }

◆ getLogConfig()

LogConfig & getLogConfig ( )
inlineinherited

Returns the log system configuration.

Definition at line 225 of file Module.h.

225{return m_logConfig;}

◆ getModules()

std::list< ModulePtr > getModules ( ) const
inlineoverrideprivatevirtualinherited

no submodules, return empty list

Implements PathElement.

Definition at line 506 of file Module.h.

506{ return std::list<ModulePtr>(); }

◆ getName()

const std::string & getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 187 of file Module.h.

187{return m_name;}
std::string m_name
The name of the module, saved as a string (user-modifiable)
Definition: Module.h:508

◆ getObjectPtr()

T * getObjectPtr ( std::string  name)
inlineinherited

Calls the CalibObjManager to get the requested stored collector data.

Definition at line 64 of file CalibrationCollectorModule.h.

65 {
66 return m_manager.getObject<T>(name, m_expRun);
67 }
T * getObject(const std::string &name, const Belle2::Calibration::ExpRun expRun)
Gets the collector object of this name for the given exprun.

◆ getPackage()

const std::string & getPackage ( ) const
inlineinherited

Returns the package this module is in.

Definition at line 197 of file Module.h.

197{return m_package;}

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 279 of file Module.cc.

280{
282}
std::shared_ptr< boost::python::list > getParamInfoListPython() const
Returns a python list of all parameters.
ModuleParamList m_moduleParamList
List storing and managing all parameter of the module.
Definition: Module.h:516

◆ getParamList()

const ModuleParamList & getParamList ( ) const
inlineinherited

Return module param list.

Definition at line 363 of file Module.h.

363{ return m_moduleParamList; }

◆ getPathString()

std::string getPathString ( ) const
overrideprivatevirtualinherited

return the module name.

Implements PathElement.

Definition at line 192 of file Module.cc.

193{
194
195 std::string output = getName();
196
197 for (const auto& condition : m_conditions) {
198 output += condition.getString();
199 }
200
201 return output;
202}

◆ getPreScaleChoice()

bool getPreScaleChoice ( )
inlineprivateinherited

I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values.

But since a user will have set them (or left them as default) as exactly equal to 0.0 or 1.0 rather than calculating them in almost every case, I think we can assume that the equalities hold.

Definition at line 122 of file CalibrationCollectorModule.h.

123 {
124 if (m_preScale == 1.) {
125 return true;
126 } else if (m_preScale == 0.) {
127 return false;
128 } else {
129 const double randomNumber = gRandom->Uniform();
130 return randomNumber < m_preScale;
131 }
132 }
float m_preScale
Prescale module parameter, this fraction of events will have collect() run on them [0....

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 381 of file Module.h.

381{ return m_returnValue; }

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 41 of file Module.cc.

42{
43 if (m_type.empty())
44 B2FATAL("Module type not set for " << getName());
45 return m_type;
46}
std::string m_type
The type of the module, saved as a string.
Definition: Module.h:509

◆ hasCondition()

bool hasCondition ( ) const
inlineinherited

Returns true if at least one condition was set for the module.

Definition at line 311 of file Module.h.

311{ return not m_conditions.empty(); };

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 160 of file Module.cc.

161{
162 return (propertyFlags & m_propertyFlags) == propertyFlags;
163}

◆ hasReturnValue()

bool hasReturnValue ( ) const
inlineinherited

Return true if this module has a valid return value set.

Definition at line 378 of file Module.h.

378{ return m_hasReturnValue; }

◆ hasUnsetForcedParams()

bool hasUnsetForcedParams ( ) const
inherited

Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.

Definition at line 166 of file Module.cc.

167{
169 std::string allMissing = "";
170 for (const auto& s : missing)
171 allMissing += s + " ";
172 if (!missing.empty())
173 B2ERROR("The following required parameters of Module '" << getName() << "' were not specified: " << allMissing <<
174 "\nPlease add them to your steering file.");
175 return !missing.empty();
176}
std::vector< std::string > getUnsetForcedParams() const
Returns list of unset parameters (if they are required to have a value.

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 85 of file Module.cc.

86{
87 if_value("<1", path, afterConditionPath);
88}

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 90 of file Module.cc.

91{
92 if_value(">=1", path, afterConditionPath);
93}

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://confluence.desy.de/display/BI/Software+ModCondTut or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 79 of file Module.cc.

80{
81 m_conditions.emplace_back(expression, path, afterConditionPath);
82}

◆ inDefineHisto()

virtual void inDefineHisto ( )
inlineprotectedvirtualinherited

◆ initialize()

void initialize ( void  )
finalvirtualinherited

Set up a default RunRange object in datastore and call prepare()

Reimplemented from HistoModule.

Definition at line 44 of file CalibrationCollectorModule.cc.

45{
46 m_evtMetaData.isRequired();
47 REG_HISTOGRAM
48 prepare();
49}
virtual void prepare()
Replacement for initialize(). Register calibration dataobjects here as well.
StoreObjPtr< EventMetaData > m_evtMetaData
Required input for EventMetaData.

◆ prepare()

void prepare ( )
overridevirtual

Define histograms and read payloads from DB.





Create the histograms and register them in the data store

Parameters

Resize vectors

ECL geometry


Get expected energies and calibration constants from DB. Need to call hasChanged() for later comparison

Write out a few for quality control

Verify that we have valid values for the payloads


Required data objects


Reimplemented from CalibrationCollectorModule.

Definition at line 68 of file eclee5x5CollectorModule.cc.

69{
70
73 B2INFO("eclee5x5Collector: Experiment = " << m_evtMetaData->getExperiment() << " run = " << m_evtMetaData->getRun() << " sqrts = "
74 << m_sqrts);
75
76
79 auto EnVsCrysID = new TH2F("EnVsCrysID", "Normalized 5x5 energy for each crystal;crystal ID;E25/Expected",
81 1.2);
82 registerObject<TH2F>("EnVsCrysID", EnVsCrysID);
83
84 auto RvsCrysID = new TH1F("RvsCrysID", "E_exp x E_crysID / sigma^2;crysID;sum of E_exp x E_crysID/sigma^2",
86 registerObject("RvsCrysID", RvsCrysID);
87
88 auto NRvsCrysID = new TH1F("NRvsCrysID", "Entries in RvsCrysID vs crysID;crysID;Entries in RvsCrysID",
90 registerObject("NRvsCrysID", NRvsCrysID);
91
92 auto Qmatrix = new TH2F("Qmatrix", "E_i x E_j/sigma^2;crysID i;crysID j", ECLElementNumbers::c_NCrystals, 0,
94 registerObject("Qmatrix", Qmatrix);
95
96
97 auto ElecCalibvsCrys = new TH1F("ElecCalibvsCrys", "Sum electronics calib const vs crystal ID;crystal ID;calibration constant",
99 registerObject<TH1F>("ElecCalibvsCrys", ElecCalibvsCrys);
100 auto ExpEvsCrys = new TH1F("ExpEvsCrys", "Sum expected energy calib const vs crystalID;crystal ID;calibration constant",
103 registerObject<TH1F>("ExpEvsCrys", ExpEvsCrys);
104 auto InitialCalibvsCrys = new TH1F("InitialCalibvsCrys", "Sum initial calib const vs crystal ID;crystal ID;calibration constant",
106 registerObject<TH1F>("InitialCalibvsCrys", InitialCalibvsCrys);
107
108 auto CalibEntriesvsCrys = new TH1F("CalibEntriesvsCrys", "Entries in calib vs crys histograms;crystal ID;Entries per crystal",
111 registerObject<TH1F>("CalibEntriesvsCrys", CalibEntriesvsCrys);
112
113 auto EntriesvsCrys = new TH1F("EntriesvsCrys", "Selected Bhabha clusters vs crystal ID;crystal ID;Entries",
115 registerObject<TH1F>("EntriesvsCrys", EntriesvsCrys);
116
117 auto dPhivsThetaID = new TH2F("dPhivsThetaID",
118 "Phi* vs thetaID forward, pass thetaSum,E0,E1;thetaID of forward cluster;dPhi COM (deg)", 69, 0, 69, 150, 165, 180);
119 registerObject<TH2F>("dPhivsThetaID", dPhivsThetaID);
120
121 //------------------------------------------------------------------------
123 B2INFO("Input parameters to eclee5x5Collector:");
124 B2INFO("thetaLabMinDeg: " << m_thetaLabMinDeg);
125 B2INFO("thetaLabMaxDeg: " << m_thetaLabMaxDeg);
126 m_thetaLabMin = m_thetaLabMinDeg / TMath::RadToDeg();
127 m_thetaLabMax = m_thetaLabMaxDeg / TMath::RadToDeg();
128 B2INFO("minE0: " << m_minE0);
129 B2INFO("minE1: " << m_minE1);
130 B2INFO("maxdThetaSum: " << m_maxdThetaSum);
131 B2INFO("dPhiScale: " << m_dPhiScale);
132 B2INFO("maxTime: " << m_maxTime);
133 B2INFO("useCalDigits: " << m_useCalDigits);
134 B2INFO("requireL1: " << m_requireL1);
135
139
142
145 if (m_ECLExpee5x5E.hasChanged()) {
146 Expee5x5E = m_ECLExpee5x5E->getCalibVector();
147 Expee5x5Sigma = m_ECLExpee5x5E->getCalibUncVector();
148 }
149 if (m_ElectronicsCalib.hasChanged()) {ElectronicsCalib = m_ElectronicsCalib->getCalibVector();}
150 if (m_ee5x5Calib.hasChanged()) {ee5x5Calib = m_ee5x5Calib->getCalibVector();}
151 if (m_selectdPhiMC.hasChanged() and m_useCalDigits) {
152 meandPhi = m_selectdPhiMC->getCalibVector();
153 widthdPhi = m_selectdPhiMC->getCalibUncVector();
154 } else if (m_selectdPhiData.hasChanged()) {
155 meandPhi = m_selectdPhiData->getCalibVector();
156 widthdPhi = m_selectdPhiData->getCalibUncVector();
157 }
158
160 for (int ic = 1; ic < 9000; ic += 1000) {
161 B2INFO("DB constants for cellID=" << ic << ": ee5x5Calib = " << ee5x5Calib[ic - 1] << " Expee5x5E = " << Expee5x5E[ic - 1] <<
162 " ElectronicsCalib = " <<
163 ElectronicsCalib[ic - 1]);
164 }
165
167 for (int crysID = 0; crysID < ECLElementNumbers::c_NCrystals; crysID++) {
168 if (ElectronicsCalib[crysID] <= 0) {B2FATAL("eclee5x5Collector: ElectronicsCalib = " << ElectronicsCalib[crysID] << " for crysID = " << crysID);}
169 if (Expee5x5E[crysID] == 0) {B2FATAL("eclee5x5Collector: Expee5x5E = 0 for crysID = " << crysID);}
170 if (ee5x5Calib[crysID] == 0) {B2FATAL("eclee5x5Collector: ee5x5Calib = 0 for crysID = " << crysID);}
171 }
172
175 m_eclClusterArray.isRequired();
176 m_eclCalDigitArray.isRequired();
177 if (!m_useCalDigits) {m_eclDigitArray.isRequired();}
178 m_evtMetaData.isRequired();
179
181 //..Derive ThetaID of each crystal, and cut on dPhi* as a function of thetaID
182 int crysID = 0;
183 for (int it = 0; it < 69; it++) {
184
185 //..dPhi* cuts are actually a function of thetaID, not crysID
186 m_dPhiMin.push_back(meandPhi[crysID] - m_dPhiScale * widthdPhi[crysID]);
187 m_dPhiMax.push_back(meandPhi[crysID] + m_dPhiScale * widthdPhi[crysID]);
188 for (int ic = 0; ic < m_eclNeighbours5x5->getCrystalsPerRing(it); ic++) {
189 m_thetaID.at(crysID) = it;
190 crysID++;
191 }
192 }
193
194}
void registerObject(std::string name, T *obj)
Register object with a name, takes ownership, do not access the pointer beyond prepare()
Class to get the neighbours for a given cell id.
Definition: ECLNeighbours.h:25
short int getCrystalsPerRing(const short int thetaid) const
return number of crystals in a given theta ring
Definition: ECLNeighbours.h:39
double getCMSEnergy() const
Returns CMS energy of e+e- (aka.
std::vector< float > widthdPhi
width of requirement on dPhi from DB object
std::vector< float > meandPhi
mean requirement on dPhi from DB object
double m_thetaLabMin
Some other useful quantities.

◆ registerObject()

void registerObject ( std::string  name,
T *  obj 
)
inlineinherited

Register object with a name, takes ownership, do not access the pointer beyond prepare()

Definition at line 55 of file CalibrationCollectorModule.h.

56 {
57 std::shared_ptr<T> calObj(obj);
58 calObj->SetName(name.c_str());
59 m_manager.addObject(name, calObj);
60 }
void addObject(const std::string &name, std::shared_ptr< TNamed > object)
Add a new object to manage, this is used as a template for creating future/missing objects.

◆ setAbortLevel()

void setAbortLevel ( int  abortLevel)
inherited

Configure the abort log level.

Definition at line 67 of file Module.cc.

68{
69 m_logConfig.setAbortLevel(static_cast<LogConfig::ELogLevel>(abortLevel));
70}
ELogLevel
Definition of the supported log levels.
Definition: LogConfig.h:26
void setAbortLevel(ELogLevel abortLevel)
Configure the abort level.
Definition: LogConfig.h:112

◆ setDebugLevel()

void setDebugLevel ( int  debugLevel)
inherited

Configure the debug messaging level.

Definition at line 61 of file Module.cc.

62{
63 m_logConfig.setDebugLevel(debugLevel);
64}
void setDebugLevel(int debugLevel)
Configure the debug messaging level.
Definition: LogConfig.h:98

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 214 of file Module.cc.

215{
216 m_description = description;
217}

◆ setLogConfig()

void setLogConfig ( const LogConfig logConfig)
inlineinherited

Set the log system configuration.

Definition at line 230 of file Module.h.

230{m_logConfig = logConfig;}

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 73 of file Module.cc.

74{
75 m_logConfig.setLogInfo(static_cast<LogConfig::ELogLevel>(logLevel), logInfo);
76}
void setLogInfo(ELogLevel logLevel, unsigned int logInfo)
Configure the printed log information for the given level.
Definition: LogConfig.h:127

◆ setLogLevel()

void setLogLevel ( int  logLevel)
inherited

Configure the log level.

Definition at line 55 of file Module.cc.

56{
57 m_logConfig.setLogLevel(static_cast<LogConfig::ELogLevel>(logLevel));
58}
void setLogLevel(ELogLevel logLevel)
Configure the log level.
Definition: LogConfig.cc:25

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 214 of file Module.h.

214{ m_name = name; };

◆ setParamList()

void setParamList ( const ModuleParamList params)
inlineprotectedinherited

Replace existing parameter list.

Definition at line 501 of file Module.h.

501{ m_moduleParamList = params; }

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 234 of file Module.cc.

235{
236 LogSystem& logSystem = LogSystem::Instance();
237 logSystem.updateModule(&(getLogConfig()), getName());
238 try {
240 } catch (std::runtime_error& e) {
241 throw std::runtime_error("Cannot set parameter '" + name + "' for module '"
242 + m_name + "': " + e.what());
243 }
244
245 logSystem.updateModule(nullptr);
246}
Class for logging debug, info and error messages.
Definition: LogSystem.h:46
void updateModule(const LogConfig *moduleLogConfig=nullptr, const std::string &moduleName="")
Sets the log configuration to the given module log configuration and sets the module name This method...
Definition: LogSystem.h:191
static LogSystem & Instance()
Static method to get a reference to the LogSystem instance.
Definition: LogSystem.cc:31
void setParamPython(const std::string &name, const PythonObject &pyObj)
Implements a method for setting boost::python objects.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 249 of file Module.cc.

250{
251
252 LogSystem& logSystem = LogSystem::Instance();
253 logSystem.updateModule(&(getLogConfig()), getName());
254
255 boost::python::list dictKeys = dictionary.keys();
256 int nKey = boost::python::len(dictKeys);
257
258 //Loop over all keys in the dictionary
259 for (int iKey = 0; iKey < nKey; ++iKey) {
260 boost::python::object currKey = dictKeys[iKey];
261 boost::python::extract<std::string> keyProxy(currKey);
262
263 if (keyProxy.check()) {
264 const boost::python::object& currValue = dictionary[currKey];
265 setParamPython(keyProxy, currValue);
266 } else {
267 B2ERROR("Setting the module parameters from a python dictionary: invalid key in dictionary!");
268 }
269 }
270
271 logSystem.updateModule(nullptr);
272}
void setParamPython(const std::string &name, const boost::python::object &pyObj)
Implements a method for setting boost::python objects.
Definition: Module.cc:234

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 208 of file Module.cc.

209{
210 m_propertyFlags = propertyFlags;
211}

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 227 of file Module.cc.

228{
229 m_hasReturnValue = true;
230 m_returnValue = value;
231}

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 220 of file Module.cc.

221{
222 m_hasReturnValue = true;
223 m_returnValue = value;
224}

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 48 of file Module.cc.

49{
50 if (!m_type.empty())
51 B2FATAL("Trying to change module type from " << m_type << " is not allowed, the value is assumed to be fixed.");
52 m_type = type;
53}

◆ startRun()

◆ terminate()

void terminate ( void  )
finalvirtualinherited

Write the final objects to the file.

Reimplemented from HistoModule.

Definition at line 155 of file CalibrationCollectorModule.cc.

156{
157 finish();
158 // actually this should be done by the write() called by HistoManager....
159
160 // Haven't written objects yet if collecting with granularity == all
161 // Write them now that everything is done.
162// if (m_granularity == "all") {
163// m_manager.writeCurrentObjects(m_expRun);
164// m_manager.clearCurrentObjects(m_expRun);
165// }
167}
virtual void finish()
Replacement for terminate(). Do anything you would normally do in terminate here.
void deleteHeldObjects()
Clears the map of templated objects -> causing their destruction.

Member Data Documentation

◆ ee5x5Calib

std::vector<float> ee5x5Calib
private

vector obtained from DB object

Definition at line 89 of file eclee5x5CollectorModule.h.

◆ ElectronicsCalib

std::vector<float> ElectronicsCalib
private

vector obtained from DB object

Definition at line 85 of file eclee5x5CollectorModule.h.

◆ EperCrys

std::vector<float> EperCrys
private

Energy for each crystal from ECLDigit or ECLCalDigit (GeV)

Definition at line 72 of file eclee5x5CollectorModule.h.

◆ Expee5x5E

std::vector<float> Expee5x5E
private

vector of energies obtained from DB object

Definition at line 80 of file eclee5x5CollectorModule.h.

◆ Expee5x5Sigma

std::vector<float> Expee5x5Sigma
private

vector of sigmaE obtained from DB object

Definition at line 81 of file eclee5x5CollectorModule.h.

◆ m_boostrotate

PCmsLabTransform m_boostrotate
private

boost from COM to lab and visa versa

Definition at line 74 of file eclee5x5CollectorModule.h.

◆ m_conditions

std::vector<ModuleCondition> m_conditions
privateinherited

Module condition, only non-null if set.

Definition at line 521 of file Module.h.

◆ m_description

std::string m_description
privateinherited

The description of the module.

Definition at line 511 of file Module.h.

◆ m_dir

TDirectory* m_dir
protectedinherited

The top TDirectory that collector objects for this collector will be stored beneath.

Definition at line 84 of file CalibrationCollectorModule.h.

◆ m_dPhiMax

std::vector<float> m_dPhiMax
private

maximum dPhi* as a function of thetaID

Definition at line 70 of file eclee5x5CollectorModule.h.

◆ m_dPhiMin

std::vector<float> m_dPhiMin
private

minimum dPhi* as a function of thetaID

Definition at line 69 of file eclee5x5CollectorModule.h.

◆ m_dPhiScale

double m_dPhiScale
private

scale dPhi* cut by this factor (1)

Definition at line 54 of file eclee5x5CollectorModule.h.

◆ m_eclCalDigitArray

StoreArray<ECLCalDigit> m_eclCalDigitArray
private

Required input array of ECLCalDigits.

Definition at line 61 of file eclee5x5CollectorModule.h.

◆ m_eclClusterArray

StoreArray<ECLCluster> m_eclClusterArray
private

Required arrays.

Required input array of ECLClusters

Definition at line 60 of file eclee5x5CollectorModule.h.

◆ m_eclDigitArray

StoreArray<ECLDigit> m_eclDigitArray
private

Required input array of ECLDigits.

Definition at line 62 of file eclee5x5CollectorModule.h.

◆ m_ECLExpee5x5E

DBObjPtr<ECLCrystalCalib> m_ECLExpee5x5E
private

Expected energies from database.

Definition at line 79 of file eclee5x5CollectorModule.h.

◆ m_eclNeighbours5x5

ECL::ECLNeighbours* m_eclNeighbours5x5 {nullptr}
private

Neighbour map of 25 crystals.

Definition at line 73 of file eclee5x5CollectorModule.h.

◆ m_ee5x5Calib

DBObjPtr<ECLCrystalCalib> m_ee5x5Calib
private

Existing single crystal calibration from DB; will be updated by CAF.

Definition at line 88 of file eclee5x5CollectorModule.h.

◆ m_ElectronicsCalib

DBObjPtr<ECLCrystalCalib> m_ElectronicsCalib
private

Electronics calibration from database.

Definition at line 84 of file eclee5x5CollectorModule.h.

◆ m_emd

StoreObjPtr<EventMetaData> m_emd
protectedinherited

Current EventMetaData.

Definition at line 96 of file CalibrationCollectorModule.h.

◆ m_eventsCollectedInRun

int* m_eventsCollectedInRun
privateinherited

Will point at correct value in m_expRunEvents.

Definition at line 117 of file CalibrationCollectorModule.h.

◆ m_evtMetaData

StoreObjPtr<EventMetaData> m_evtMetaData
private

dataStore EventMetaData

Definition at line 63 of file eclee5x5CollectorModule.h.

◆ m_expRun

Calibration::ExpRun m_expRun
protectedinherited

Current ExpRun for object retrieval (becomes -1,-1 for granularity=all)

Definition at line 93 of file CalibrationCollectorModule.h.

◆ m_expRunEvents

std::map<Calibration::ExpRun, int> m_expRunEvents
privateinherited

How many events processed for each ExpRun so far, stops counting up once max is hit Only used/incremented if m_maxEventsPerRun > -1.

Definition at line 115 of file CalibrationCollectorModule.h.

◆ m_granularity

std::string m_granularity
privateinherited

Granularity of data collection = run|all(= no granularity, exp,run=-1,-1)

Definition at line 101 of file CalibrationCollectorModule.h.

◆ m_hasReturnValue

bool m_hasReturnValue
privateinherited

True, if the return value is set.

Definition at line 518 of file Module.h.

◆ m_logConfig

LogConfig m_logConfig
privateinherited

The log system configuration of the module.

Definition at line 514 of file Module.h.

◆ m_manager

CalibObjManager m_manager
protectedinherited

Controls the creation, collection and access to calibration objects.

Definition at line 87 of file CalibrationCollectorModule.h.

◆ m_maxdThetaSum

double m_maxdThetaSum
private

abs(theta0* + theta1* - 180 deg) must be less than less (2 deg)

Definition at line 53 of file eclee5x5CollectorModule.h.

◆ m_maxEventsPerRun

int m_maxEventsPerRun
privateinherited

Maximum number of events to be collected at the start of each run (-1 = no maximum)

Definition at line 103 of file CalibrationCollectorModule.h.

◆ m_maxTime

double m_maxTime
private

maximum cluster time diff abs(t1-t0)/dt99 (10)

Definition at line 55 of file eclee5x5CollectorModule.h.

◆ m_minE0

double m_minE0
private

minimum energy of cluster 0: E*0/sqrts (0.45)

Definition at line 51 of file eclee5x5CollectorModule.h.

◆ m_minE1

double m_minE1
private

minimum energy of cluster 1: E*1/sqrts (0.40)

Definition at line 52 of file eclee5x5CollectorModule.h.

◆ m_moduleParamList

ModuleParamList m_moduleParamList
privateinherited

List storing and managing all parameter of the module.

Definition at line 516 of file Module.h.

◆ m_name

std::string m_name
privateinherited

The name of the module, saved as a string (user-modifiable)

Definition at line 508 of file Module.h.

◆ m_package

std::string m_package
privateinherited

Package this module is found in (may be empty).

Definition at line 510 of file Module.h.

◆ m_preScale

float m_preScale
privateinherited

Prescale module parameter, this fraction of events will have collect() run on them [0.0 -> 1.0].

Definition at line 105 of file CalibrationCollectorModule.h.

◆ m_propertyFlags

unsigned int m_propertyFlags
privateinherited

The properties of the module as bitwise or (with |) of EModulePropFlags.

Definition at line 512 of file Module.h.

◆ m_requireL1

bool m_requireL1
private

require events to satisfy a level 1 trigger (false)

Definition at line 57 of file eclee5x5CollectorModule.h.

◆ m_returnValue

int m_returnValue
privateinherited

The return value.

Definition at line 519 of file Module.h.

◆ m_runCollectOnRun

bool m_runCollectOnRun = true
privateinherited

Whether or not we will run the collect() at all this run, basically skips the event() function if false.

Definition at line 111 of file CalibrationCollectorModule.h.

◆ m_runRange

RunRange* m_runRange
protectedinherited

Overall list of runs processed.

Definition at line 90 of file CalibrationCollectorModule.h.

◆ m_selectdPhiData

DBObjPtr<ECLCrystalCalib> m_selectdPhiData
private

dPhi cut

DB object for data

Definition at line 92 of file eclee5x5CollectorModule.h.

◆ m_selectdPhiMC

DBObjPtr<ECLCrystalCalib> m_selectdPhiMC
private

DB object for MC.

Definition at line 93 of file eclee5x5CollectorModule.h.

◆ m_sqrts

double m_sqrts = 10.58
private

sqrt s from m_boostrotate

Definition at line 75 of file eclee5x5CollectorModule.h.

◆ m_thetaID

std::vector<int> m_thetaID
private

thetaID of each crystal

Definition at line 76 of file eclee5x5CollectorModule.h.

◆ m_thetaLabMax

double m_thetaLabMax = 0.
private

m_thetaLabMaxDeg converted to radians

Definition at line 68 of file eclee5x5CollectorModule.h.

◆ m_thetaLabMaxDeg

double m_thetaLabMaxDeg
private

maximum ecl cluster theta in lab (150 degrees)

Definition at line 50 of file eclee5x5CollectorModule.h.

◆ m_thetaLabMin

double m_thetaLabMin = 0.
private

Some other useful quantities.

m_thetaLabMinDeg converted to radians

Definition at line 67 of file eclee5x5CollectorModule.h.

◆ m_thetaLabMinDeg

double m_thetaLabMinDeg
private

Parameters to control the job.

miniumum ecl cluster theta in lab (17 degrees)

Definition at line 49 of file eclee5x5CollectorModule.h.

◆ m_TRGResults

StoreObjPtr<TRGSummary> m_TRGResults
private

dataStore TRGSummary

Definition at line 64 of file eclee5x5CollectorModule.h.

◆ m_type

std::string m_type
privateinherited

The type of the module, saved as a string.

Definition at line 509 of file Module.h.

◆ m_useCalDigits

bool m_useCalDigits
private

use eclCalDigit to determine MC deposited energy (false)

Definition at line 56 of file eclee5x5CollectorModule.h.

◆ meandPhi

std::vector<float> meandPhi
private

mean requirement on dPhi from DB object

Definition at line 94 of file eclee5x5CollectorModule.h.

◆ storeCalib

bool storeCalib = true
private

force the input calibration constants to be saved first event

Definition at line 71 of file eclee5x5CollectorModule.h.

◆ widthdPhi

std::vector<float> widthdPhi
private

width of requirement on dPhi from DB object

Definition at line 95 of file eclee5x5CollectorModule.h.


The documentation for this class was generated from the following files: