Belle II Software development
FullSimModule Class Reference

The full Geant4 simulation module. More...

#include <FullSimModule.h>

Inheritance diagram for FullSimModule:
Module PathElement

Public Types

enum  EModulePropFlags {
  c_Input = 1 ,
  c_Output = 2 ,
  c_ParallelProcessingCertified = 4 ,
  c_HistogramManager = 8 ,
  c_InternalSerializer = 16 ,
  c_TerminateInAllProcesses = 32 ,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

 FullSimModule ()
 Constructor of the module.
 
virtual ~FullSimModule ()
 Destructor of the module.
 
virtual void initialize () override
 Initialize the Module.
 
virtual void beginRun () override
 Called when a new run is started.
 
virtual void event () override
 Performs the full Geant4 simulation.
 
virtual void endRun () override
 Called when run has ended.
 
virtual void terminate () override
 Terminates the module.
 
virtual std::vector< std::string > getFileNames (bool outputFiles)
 Return a list of output filenames for this modules.
 
const std::string & getName () const
 Returns the name of the module.
 
const std::string & getType () const
 Returns the type of the module (i.e.
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module.
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties.
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level.
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module.
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module.
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module.
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true.
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished.
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module.
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter.
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module.
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module.
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters.
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Protected Member Functions

virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python.
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side.
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module.
 
void setType (const std::string &type)
 Set the module type.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module.
 
void setReturnValue (int value)
 Sets the return value for this module as integer.
 
void setReturnValue (bool value)
 Sets the return value for this module as bool.
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Protected Attributes

std::string m_mcParticleInputColName
 The parameter variable for the name of the input MCParticle collection.
 
double m_thresholdImportantEnergy
 A particle which got 'stuck' and has less than this energy will be killed after m_thresholdTrials trials.
 
int m_thresholdTrials
 Geant4 will try m_thresholdTrials times to move a particle which got 'stuck' and has an energy less than m_thresholdImportantEnergy.
 
int m_runEventVerbosity
 Geant4 run/event verbosity: 0=Silent; 1=info level; 2=debug level, default=0.
 
int m_trackingVerbosity
 Tracking verbosity: 0=Silent; 1=Min info per step; 2=sec particles; 3=pre/post step info; 4=like 3 but more info; 5=proposed step length info.
 
int m_hadronProcessVerbosity
 Hadron Process verbosity: 0=Silent; 1=info level; 2=debug level, default=0.
 
int m_emProcessVerbosity
 Loss Table verbosity: 0=Silent; 1=info level; 2=debug level, default=0.
 
std::string m_physicsList
 The name of the physics list which is used for the simulation.
 
bool m_standardEM
 If set to true, replaces fast EM physics with standard EM physics.
 
bool m_optics
 If set to true, registers the optical physics list.
 
bool m_HPneutrons
 If true, high precision neutron models used below 20 MeV.
 
bool m_monopoles
 If set to true, G4MonopolePhysics is registered in Geant4 PhysicsList.
 
double m_monopoleMagneticCharge
 The value of monopole magnetic charge in units of e+.
 
double m_productionCut
 Apply continuous energy loss to primary particle which has no longer enough energy to produce secondaries which travel at least the specified productionCut distance.
 
double m_pxdProductionCut
 Secondary production threshold in PXD envelope.
 
double m_svdProductionCut
 Secondary production threshold in SVD envelope.
 
double m_cdcProductionCut
 Secondary production threshold in CDC envelope.
 
double m_arichtopProductionCut
 Secondary production threshold in ARICH and TOP envelopes.
 
double m_eclProductionCut
 Secondary production threshold in ECL envelopes.
 
double m_klmProductionCut
 Secondary production threshold in BKLM and EKLM envelopes.
 
int m_maxNumberSteps
 The maximum number of steps before the track transportation is stopped and the track is killed.
 
double m_photonFraction
 The fraction of Cerenkov photons which will be kept and propagated.
 
bool m_useNativeGeant4
 If set to true, uses the Geant4 navigator and native detector construction class.
 
std::vector< std::string > m_uiCommandsAtPreInit
 A list of Geant4 UI commands that should be applied at PreInit state, before the Geant4 initialization and before the simulation starts.
 
std::vector< std::string > m_uiCommandsAtIdle
 A list of Geant4 UI commands that should be applied at Idle state, after the Geant4 initialization and before the simulation starts.
 
bool m_EnableVisualization
 If set to true the Geant4 visualization support is enabled.
 
bool m_storeOpticalPhotons
 controls storing of optical photons in MCParticles
 
bool m_storeSecondaries
 controls storing of Geant secondaries in MCParticles
 
double m_secondariesEnergyCut
 kinetic energy cut for the stored Geant secondaries
 
bool m_storeBremsstrahlungPhotons
 controls storing of bremsstrahlung photons in MCParticles
 
double m_bremsstrahlungPhotonsEnergyCut
 kinetic energy cut for the stored bremsstrahlung photons
 
bool m_storePairConversions
 controls storing of e+ or e- from pair conversions in MCParticles
 
double m_pairConversionsEnergyCut
 kinetic energy cut for the stored e+ or e- from pair conversions
 
std::string m_magneticFieldName
 magnetic field stepper to use
 
double m_magneticCacheDistance
 minimal distance for magnetic field lookup.
 
double m_deltaChordInMagneticField
 The maximum miss-distance between the trajectory curve and its linear chord(s) approximation.
 
int m_trajectoryStore
 If true, store the trajectories of all primary particles.
 
double m_trajectoryDistanceTolerance
 Maximum distance to actuall trajectory when merging points.
 
std::vector< float > m_absorbers
 The absorbers defined at given radii where tracks across them will be destroyed.
 

Private Member Functions

std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects.
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary.
 

Private Attributes

MCParticleGraph m_mcParticleGraph
 The MCParticle Graph used to manage the MCParticles before and after the simulation.
 
G4MagneticField * m_uncachedField
 Pointer to the uncached magnetic field (might be superseded by its cached version)
 
G4MagneticField * m_magneticField
 Pointer to the (un)cached magnetic field.
 
G4Mag_UsualEqRhs * m_magFldEquation
 Pointer to the equation of motion in the magnetic field (if not the default)
 
G4MagIntegratorStepper * m_stepper
 Pointer to the equation-of-motion stepper (if not the default)
 
G4ChordFinder * m_chordFinder
 Pointer to the equation-of-motion chord finder (if not the default)
 
G4VisManager * m_visManager
 Pointer to the visualization manager (if used)
 
G4StepLimiter * m_stepLimiter
 Pointer to the step limiter.
 
std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 

Detailed Description

The full Geant4 simulation module.

This module provides the full Geant4 simulation for the framework. It initializes Geant4, calls the converter to translate the ROOT TGeo volumes/materials to native Geant4 volumes/materials, initializes the physics processes and user actions.

This module requires a valid geometry in memory (gGeoManager). Therefore, a geometry building module should have been executed before this module is called.

Definition at line 42 of file FullSimModule.h.

Member Typedef Documentation

◆ EAfterConditionPath

Forward the EAfterConditionPath definition from the ModuleCondition.

Definition at line 88 of file Module.h.

Member Enumeration Documentation

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 77 of file Module.h.

77 {
78 c_Input = 1,
79 c_Output = 2,
85 };
@ c_HistogramManager
This module is used to manage histograms accumulated by other modules.
Definition: Module.h:81
@ c_Input
This module is an input module (reads data).
Definition: Module.h:78
@ c_DontCollectStatistics
No statistics is collected for this module.
Definition: Module.h:84
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
Definition: Module.h:80
@ c_InternalSerializer
This module is an internal serializer/deserializer for parallel processing.
Definition: Module.h:82
@ c_Output
This module is an output module (writes data).
Definition: Module.h:79
@ c_TerminateInAllProcesses
When using parallel processing, call this module's terminate() function in all processes().
Definition: Module.h:83

Constructor & Destructor Documentation

◆ FullSimModule()

Constructor of the module.

Sets the description of the module.

Definition at line 72 of file FullSimModule.cc.

72 : Module(), m_useNativeGeant4(true)
73{
74 //Set module properties and the description
75 setDescription("Performs the full Geant4 detector simulation. Requires a valid geometry in memory.");
77
78 //Parameter definition
79 addParam("InputMCParticleCollection", m_mcParticleInputColName, "The name of the input MCParticle collection.", string(""));
80 addParam("ThresholdImportantEnergy", m_thresholdImportantEnergy,
81 "[GeV] A particle which got 'stuck' and has less than this energy will be killed after 'ThresholdTrials' trials.", 0.250);
82 addParam("ThresholdTrials", m_thresholdTrials,
83 "Geant4 will try 'ThresholdTrials' times to move a particle which got 'stuck' and has an energy less than 'ThresholdImportantEnergy'.",
84 10);
85 addParam("RunEventVerbosity", m_runEventVerbosity, "Geant4 run/event verbosity: 0=silent; 1=info level; 2=debug level", 0);
86 addParam("TrackingVerbosity", m_trackingVerbosity,
87 "Tracking verbosity: 0=Silent; 1=Min info per step; 2=sec particles; 3=pre/post step info; 4=like 3 but more info; 5=proposed step length info.",
88 0);
89 addParam("HadronProcessVerbosity", m_hadronProcessVerbosity, "Hadron Process verbosity: 0=Silent; 1=info level; 2=debug level", 0);
90 addParam("EmProcessVerbosity", m_emProcessVerbosity, "Em Process verbosity: 0=Silent; 1=info level; 2=debug level", 0);
91 addParam("PhysicsList", m_physicsList, "The name of the physics list which is used for the simulation.", string("Belle2"));
92 addParam("StandardEM", m_standardEM, "If true, replaces fast EM physics with standard EM physics.", false);
93 addParam("RegisterOptics", m_optics, "If true, G4OpticalPhysics is registered in Geant4 PhysicsList.", true);
94 addParam("UseHighPrecisionNeutrons", m_HPneutrons, "If true, high precision neutron models used below 20 MeV.", false);
95 addParam("RegisterMonopoles", m_monopoles, "If set to true, G4MonopolePhysics is registered in Geant4 PhysicsList.", false);
96 addParam("MonopoleMagCharge", m_monopoleMagneticCharge, "The value of monopole magnetic charge in units of e+.", 1.0);
97 addParam("ProductionCut", m_productionCut,
98 "[cm] Apply continuous energy loss to primary particle which has no longer enough energy to produce secondaries which travel at least the specified productionCut distance.",
99 0.07);
100 addParam("PXDProductionCut", m_pxdProductionCut, "[cm] Secondary production threshold in PXD envelope.", 0.0);
101 addParam("SVDProductionCut", m_svdProductionCut, "[cm] Secondary production threshold in SVD envelope.", 0.0);
102 addParam("CDCProductionCut", m_cdcProductionCut, "[cm] Secondary production threshold in CDC envelope.", 0.0);
103 addParam("ARICHTOPProductionCut", m_arichtopProductionCut, "[cm] Secondary production threshold in ARICH and TOP envelopes.", 0.02);
104 addParam("ECLProductionCut", m_eclProductionCut, "[cm] Secondary production threshold in ECL envelope.", 0.0);
105 addParam("KLMProductionCut", m_klmProductionCut, "[cm] Secondary production threshold in BKLM and EKLM envelopes.", 0.0);
106 addParam("MaxNumberSteps", m_maxNumberSteps,
107 "The maximum number of steps before the track transportation is stopped and the track is killed.", 100000);
108 addParam("PhotonFraction", m_photonFraction, "The fraction of Cerenkov photons which will be kept and propagated.", 0.5);
109 addParam("EnableVisualization", m_EnableVisualization, "If set to True, the Geant4 visualization support is enabled.", false);
110
111 addParam("StoreOpticalPhotons", m_storeOpticalPhotons, "If set to True, optical photons are stored in MCParticles.", false);
112 addParam("StoreAllSecondaries", m_storeSecondaries,
113 "If set to True, all secondaries produced by Geant4 over a kinetic energy cut are stored in MCParticles. Otherwise do not store them.",
114 false);
115 addParam("SecondariesEnergyCut", m_secondariesEnergyCut, "[MeV] Kinetic energy cut for storing secondaries", 1.0);
116 addParam("StoreBremsstrahlungPhotons", m_storeBremsstrahlungPhotons,
117 "If set to True, store BremsstrahlungPhotons over a kinetic energy cut in MCParticles. Otherwise do not store them.", false);
118 addParam("BremsstrahlungPhotonsEnergyCut", m_bremsstrahlungPhotonsEnergyCut,
119 "[MeV] Kinetic energy cut for storing bremsstrahlung photons", 10.0);
120 addParam("StorePairConversions", m_storePairConversions,
121 "If set to True, store e+ or e- from pair conversions over a kinetic energy cut in MCParticles. Otherwise do not store them.",
122 false);
123 addParam("PairConversionsEnergyCut", m_pairConversionsEnergyCut,
124 "[MeV] Kinetic energy cut for storing e+ or e- from pair conversions", 10.0);
125
126 addParam("magneticField", m_magneticFieldName,
127 "Chooses the magnetic field stepper used by Geant4. Possible values are: default, nystrom, expliciteuler, simplerunge",
128 string("default"));
129 addParam("magneticCacheDistance", m_magneticCacheDistance,
130 "Minimum distance for BField lookup in cm. If the next requested point is closer than this distance than return the flast BField value. 0 means no caching",
131 0.0);
132 addParam("deltaChordInMagneticField", m_deltaChordInMagneticField,
133 "[mm] The maximum miss-distance between the trajectory curve and its linear cord(s) approximation", 0.25);
134 vector<string> defaultCommandsAtPreInit;
135 addParam("UICommandsAtPreInit", m_uiCommandsAtPreInit,
136 "A list of Geant4 UI commands that should be applied at PreInit state, before the simulation starts.",
137 defaultCommandsAtPreInit);
138 vector<string> defaultCommandsAtIdle;
139 addParam("UICommandsAtIdle", m_uiCommandsAtIdle,
140 "A list of Geant4 UI commands that should be applied at Idle state, before the simulation starts.",
141 defaultCommandsAtIdle);
142 addParam("trajectoryStore", m_trajectoryStore,
143 "If non-zero save the full trajectory of 1=primary, 2=non-optical or 3=all particles", 0);
144 addParam("trajectoryDistanceTolerance", m_trajectoryDistanceTolerance,
145 "Maximum deviation from the real trajectory points when merging "
146 "segments (in cm)", 5e-4);
147 vector<float> defaultAbsorbers;
148 addParam("AbsorbersRadii", m_absorbers,
149 "Radii (in cm) of absorbers across which tracks will be destroyed.", defaultAbsorbers);
150
151 //Make sure the instance of the run manager is created now to initialize some stuff we need for geometry
153 m_magneticField = NULL;
154 m_uncachedField = NULL;
155 m_magFldEquation = NULL;
156 m_stepper = NULL;
157 m_chordFinder = NULL;
158 m_visManager = NULL;
159 m_stepLimiter = NULL;
160}
std::vector< float > m_absorbers
The absorbers defined at given radii where tracks across them will be destroyed.
int m_emProcessVerbosity
Loss Table verbosity: 0=Silent; 1=info level; 2=debug level, default=0.
Definition: FullSimModule.h:95
double m_trajectoryDistanceTolerance
Maximum distance to actuall trajectory when merging points.
G4VisManager * m_visManager
Pointer to the visualization manager (if used)
std::vector< std::string > m_uiCommandsAtIdle
A list of Geant4 UI commands that should be applied at Idle state, after the Geant4 initialization an...
double m_monopoleMagneticCharge
The value of monopole magnetic charge in units of e+.
double m_cdcProductionCut
Secondary production threshold in CDC envelope.
double m_photonFraction
The fraction of Cerenkov photons which will be kept and propagated.
bool m_HPneutrons
If true, high precision neutron models used below 20 MeV.
Definition: FullSimModule.h:99
int m_hadronProcessVerbosity
Hadron Process verbosity: 0=Silent; 1=info level; 2=debug level, default=0.
Definition: FullSimModule.h:94
G4Mag_UsualEqRhs * m_magFldEquation
Pointer to the equation of motion in the magnetic field (if not the default)
double m_klmProductionCut
Secondary production threshold in BKLM and EKLM envelopes.
int m_thresholdTrials
Geant4 will try m_thresholdTrials times to move a particle which got 'stuck' and has an energy less t...
Definition: FullSimModule.h:91
bool m_storePairConversions
controls storing of e+ or e- from pair conversions in MCParticles
double m_pxdProductionCut
Secondary production threshold in PXD envelope.
int m_trackingVerbosity
Tracking verbosity: 0=Silent; 1=Min info per step; 2=sec particles; 3=pre/post step info; 4=like 3 bu...
Definition: FullSimModule.h:93
double m_productionCut
Apply continuous energy loss to primary particle which has no longer enough energy to produce seconda...
bool m_storeOpticalPhotons
controls storing of optical photons in MCParticles
bool m_standardEM
If set to true, replaces fast EM physics with standard EM physics.
Definition: FullSimModule.h:97
G4MagIntegratorStepper * m_stepper
Pointer to the equation-of-motion stepper (if not the default)
bool m_useNativeGeant4
If set to true, uses the Geant4 navigator and native detector construction class.
double m_svdProductionCut
Secondary production threshold in SVD envelope.
double m_arichtopProductionCut
Secondary production threshold in ARICH and TOP envelopes.
bool m_optics
If set to true, registers the optical physics list.
Definition: FullSimModule.h:98
double m_pairConversionsEnergyCut
kinetic energy cut for the stored e+ or e- from pair conversions
std::vector< std::string > m_uiCommandsAtPreInit
A list of Geant4 UI commands that should be applied at PreInit state, before the Geant4 initializatio...
bool m_storeBremsstrahlungPhotons
controls storing of bremsstrahlung photons in MCParticles
std::string m_mcParticleInputColName
The parameter variable for the name of the input MCParticle collection.
Definition: FullSimModule.h:89
double m_thresholdImportantEnergy
A particle which got 'stuck' and has less than this energy will be killed after m_thresholdTrials tri...
Definition: FullSimModule.h:90
std::string m_physicsList
The name of the physics list which is used for the simulation.
Definition: FullSimModule.h:96
int m_runEventVerbosity
Geant4 run/event verbosity: 0=Silent; 1=info level; 2=debug level, default=0.
Definition: FullSimModule.h:92
double m_magneticCacheDistance
minimal distance for magnetic field lookup.
double m_eclProductionCut
Secondary production threshold in ECL envelopes.
bool m_EnableVisualization
If set to true the Geant4 visualization support is enabled.
double m_secondariesEnergyCut
kinetic energy cut for the stored Geant secondaries
std::string m_magneticFieldName
magnetic field stepper to use
G4MagneticField * m_magneticField
Pointer to the (un)cached magnetic field.
G4MagneticField * m_uncachedField
Pointer to the uncached magnetic field (might be superseded by its cached version)
int m_maxNumberSteps
The maximum number of steps before the track transportation is stopped and the track is killed.
double m_deltaChordInMagneticField
The maximum miss-distance between the trajectory curve and its linear chord(s) approximation.
G4ChordFinder * m_chordFinder
Pointer to the equation-of-motion chord finder (if not the default)
bool m_monopoles
If set to true, G4MonopolePhysics is registered in Geant4 PhysicsList.
double m_bremsstrahlungPhotonsEnergyCut
kinetic energy cut for the stored bremsstrahlung photons
int m_trajectoryStore
If true, store the trajectories of all primary particles.
bool m_storeSecondaries
controls storing of Geant secondaries in MCParticles
G4StepLimiter * m_stepLimiter
Pointer to the step limiter.
void setDescription(const std::string &description)
Sets the description of the module.
Definition: Module.cc:214
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
Definition: Module.cc:208
Module()
Constructor.
Definition: Module.cc:30
static RunManager & Instance()
Static method to get a reference to the RunManager instance.
Definition: RunManager.cc:29
void addParam(const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
Definition: Module.h:560

◆ ~FullSimModule()

~FullSimModule ( )
virtual

Destructor of the module.

Definition at line 163 of file FullSimModule.cc.

164{
165
166}

Member Function Documentation

◆ beginRun()

void beginRun ( void  )
overridevirtual

Called when a new run is started.

Initializes the Geant4 run manager and sets the run number in Geant4.

Reimplemented from Module.

Definition at line 443 of file FullSimModule.cc.

444{
445 //Nothing to do: geometry and physics are run independent
446}

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 179 of file Module.cc.

180{
182 newModule->m_moduleParamList.setParameters(getParamList());
183 newModule->setName(getName());
184 newModule->m_package = m_package;
185 newModule->m_propertyFlags = m_propertyFlags;
186 newModule->m_logConfig = m_logConfig;
187 newModule->m_conditions = m_conditions;
188
189 return newModule;
190}
std::shared_ptr< Module > registerModule(const std::string &moduleName, std::string sharedLibPath="") noexcept(false)
Creates an instance of a module and registers it to the ModuleManager.
static ModuleManager & Instance()
Exception is thrown if the requested module could not be created by the ModuleManager.
const ModuleParamList & getParamList() const
Return module param list.
Definition: Module.h:363
const std::string & getName() const
Returns the name of the module.
Definition: Module.h:187
const std::string & getType() const
Returns the type of the module (i.e.
Definition: Module.cc:41
unsigned int m_propertyFlags
The properties of the module as bitwise or (with |) of EModulePropFlags.
Definition: Module.h:512
LogConfig m_logConfig
The log system configuration of the module.
Definition: Module.h:514
std::vector< ModuleCondition > m_conditions
Module condition, only non-null if set.
Definition: Module.h:521
std::string m_package
Package this module is found in (may be empty).
Definition: Module.h:510
std::shared_ptr< Module > ModulePtr
Defines a pointer to a module object as a boost shared pointer.
Definition: Module.h:43

◆ def_beginRun()

virtual void def_beginRun ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 426 of file Module.h.

426{ beginRun(); }
virtual void beginRun()
Called when entering a new run.
Definition: Module.h:147

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 439 of file Module.h.

439{ endRun(); }
virtual void endRun()
This method is called if the current run ends.
Definition: Module.h:166

◆ def_event()

virtual void def_event ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 432 of file Module.h.

432{ event(); }
virtual void event()
This method is the core of the module.
Definition: Module.h:157

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 420 of file Module.h.

420{ initialize(); }
virtual void initialize()
Initialize the Module.
Definition: Module.h:109

◆ def_terminate()

virtual void def_terminate ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 445 of file Module.h.

445{ terminate(); }
virtual void terminate()
This method is called at the end of the event processing.
Definition: Module.h:176

◆ endRun()

void endRun ( void  )
overridevirtual

Called when run has ended.

Reimplemented from Module.

Definition at line 459 of file FullSimModule.cc.

460{
461 //Nothing to do: geometry and physics are run independent
462}

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 96 of file Module.cc.

97{
98 if (m_conditions.empty()) return false;
99
100 //okay, a condition was set for this Module...
101 if (!m_hasReturnValue) {
102 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
103 }
104
105 for (const auto& condition : m_conditions) {
106 if (condition.evaluate(m_returnValue)) {
107 return true;
108 }
109 }
110 return false;
111}
int m_returnValue
The return value.
Definition: Module.h:519
bool m_hasReturnValue
True, if the return value is set.
Definition: Module.h:518

◆ event()

void event ( void  )
overridevirtual

Performs the full Geant4 simulation.

Reimplemented from Module.

Definition at line 449 of file FullSimModule.cc.

450{
451 //Get the event meta data
452 StoreObjPtr<EventMetaData> eventMetaDataPtr;
453
454 //Process the event
455 RunManager::Instance().processEvent(eventMetaDataPtr->getEvent());
456}
void processEvent(int evtNumber)
Process a single event in Geant4.
Definition: RunManager.cc:67
Type-safe access to single objects in the data store.
Definition: StoreObjPtr.h:96

◆ exposePythonAPI()

void exposePythonAPI ( )
staticinherited

Exposes methods of the Module class to Python.

Definition at line 325 of file Module.cc.

326{
327 // to avoid confusion between std::arg and boost::python::arg we want a shorthand namespace as well
328 namespace bp = boost::python;
329
330 docstring_options options(true, true, false); //userdef, py sigs, c++ sigs
331
332 void (Module::*setReturnValueInt)(int) = &Module::setReturnValue;
333
334 enum_<Module::EAfterConditionPath>("AfterConditionPath",
335 R"(Determines execution behaviour after a conditional path has been executed:
336
337.. attribute:: END
338
339 End processing of this path after the conditional path. (this is the default for if_value() etc.)
340
341.. attribute:: CONTINUE
342
343 After the conditional path, resume execution after this module.)")
344 .value("END", Module::EAfterConditionPath::c_End)
345 .value("CONTINUE", Module::EAfterConditionPath::c_Continue)
346 ;
347
348 /* Do not change the names of >, <, ... we use them to serialize conditional pathes */
349 enum_<Belle2::ModuleCondition::EConditionOperators>("ConditionOperator")
356 ;
357
358 enum_<Module::EModulePropFlags>("ModulePropFlags",
359 R"(Flags to indicate certain low-level features of modules, see :func:`Module.set_property_flags()`, :func:`Module.has_properties()`. Most useful flags are:
360
361.. attribute:: PARALLELPROCESSINGCERTIFIED
362
363 This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)
364
365.. attribute:: HISTOGRAMMANAGER
366
367 This module is used to manage histograms accumulated by other modules
368
369.. attribute:: TERMINATEINALLPROCESSES
370
371 When using parallel processing, call this module's terminate() function in all processes. This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.
372)")
373 .value("INPUT", Module::EModulePropFlags::c_Input)
374 .value("OUTPUT", Module::EModulePropFlags::c_Output)
375 .value("PARALLELPROCESSINGCERTIFIED", Module::EModulePropFlags::c_ParallelProcessingCertified)
376 .value("HISTOGRAMMANAGER", Module::EModulePropFlags::c_HistogramManager)
377 .value("INTERNALSERIALIZER", Module::EModulePropFlags::c_InternalSerializer)
378 .value("TERMINATEINALLPROCESSES", Module::EModulePropFlags::c_TerminateInAllProcesses)
379 ;
380
381 //Python class definition
382 class_<Module, PyModule> module("Module", R"(
383Base class for Modules.
384
385A module is the smallest building block of the framework.
386A typical event processing chain consists of a Path containing
387modules. By inheriting from this base class, various types of
388modules can be created. To use a module, please refer to
389:func:`Path.add_module()`. A list of modules is available by running
390``basf2 -m`` or ``basf2 -m package``, detailed information on parameters is
391given by e.g. ``basf2 -m RootInput``.
392
393The 'Module Development' section in the manual provides detailed information
394on how to create modules, setting parameters, or using return values/conditions:
395https://xwiki.desy.de/xwiki/rest/p/f4fa4/#HModuleDevelopment
396
397)");
398 module
399 .def("__str__", &Module::getPathString)
400 .def("name", &Module::getName, return_value_policy<copy_const_reference>(),
401 "Returns the name of the module. Can be changed via :func:`set_name() <Module.set_name()>`, use :func:`type() <Module.type()>` for identifying a particular module class.")
402 .def("type", &Module::getType, return_value_policy<copy_const_reference>(),
403 "Returns the type of the module (i.e. class name minus 'Module')")
404 .def("set_name", &Module::setName, args("name"), R"(
405Set custom name, e.g. to distinguish multiple modules of the same type.
406
407>>> path.add_module('EventInfoSetter')
408>>> ro = path.add_module('RootOutput', branchNames=['EventMetaData'])
409>>> ro.set_name('RootOutput_metadata_only')
410>>> print(path)
411[EventInfoSetter -> RootOutput_metadata_only]
412
413)")
414 .def("description", &Module::getDescription, return_value_policy<copy_const_reference>(),
415 "Returns the description of this module.")
416 .def("package", &Module::getPackage, return_value_policy<copy_const_reference>(),
417 "Returns the package this module belongs to.")
418 .def("available_params", &_getParamInfoListPython,
419 "Return list of all module parameters as `ModuleParamInfo` instances")
420 .def("has_properties", &Module::hasProperties, (bp::arg("properties")),
421 R"DOCSTRING(Allows to check if the module has the given properties out of `ModulePropFlags` set.
422
423>>> if module.has_properties(ModulePropFlags.PARALLELPROCESSINGCERTIFIED):
424>>> ...
425
426Parameters:
427 properties (int): bitmask of `ModulePropFlags` to check for.
428)DOCSTRING")
429 .def("set_property_flags", &Module::setPropertyFlags, args("property_mask"),
430 "Set module properties in the form of an OR combination of `ModulePropFlags`.");
431 {
432 // python signature is too crowded, make ourselves
433 docstring_options subOptions(true, false, false); //userdef, py sigs, c++ sigs
434 module
435 .def("if_value", &Module::if_value,
436 (bp::arg("expression"), bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
437 R"DOCSTRING(if_value(expression, condition_path, after_condition_path=AfterConditionPath.END)
438
439Sets a conditional sub path which will be executed after this
440module if the return value set in the module passes the given ``expression``.
441
442Modules can define a return value (int or bool) using ``setReturnValue()``,
443which can be used in the steering file to split the Path based on this value, for example
444
445>>> module_with_condition.if_value("<1", another_path)
446
447In case the return value of the ``module_with_condition`` for a given event is
448less than 1, the execution will be diverted into ``another_path`` for this event.
449
450You could for example set a special return value if an error occurs, and divert
451the execution into a path containing :b2:mod:`RootOutput` if it is found;
452saving only the data producing/produced by the error.
453
454After a conditional path has executed, basf2 will by default stop processing
455the path for this event. This behaviour can be changed by setting the
456``after_condition_path`` argument.
457
458Parameters:
459 expression (str): Expression to determine if the conditional path should be executed.
460 This should be one of the comparison operators ``<``, ``>``, ``<=``,
461 ``>=``, ``==``, or ``!=`` followed by a numerical value for the return value
462 condition_path (Path): path to execute in case the expression is fulfilled
463 after_condition_path (AfterConditionPath): What to do once the ``condition_path`` has been executed.
464)DOCSTRING")
465 .def("if_false", &Module::if_false,
466 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
467 R"DOC(if_false(condition_path, after_condition_path=AfterConditionPath.END)
468
469Sets a conditional sub path which will be executed after this module if
470the return value of the module evaluates to False. This is equivalent to
471calling `if_value` with ``expression=\"<1\"``)DOC")
472 .def("if_true", &Module::if_true,
473 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
474 R"DOC(if_true(condition_path, after_condition_path=AfterConditionPath.END)
475
476Sets a conditional sub path which will be executed after this module if
477the return value of the module evaluates to True. It is equivalent to
478calling `if_value` with ``expression=\">=1\"``)DOC");
479 }
480 module
481 .def("has_condition", &Module::hasCondition,
482 "Return true if a conditional path has been set for this module "
483 "using `if_value`, `if_true` or `if_false`")
484 .def("get_all_condition_paths", &_getAllConditionPathsPython,
485 "Return a list of all conditional paths set for this module using "
486 "`if_value`, `if_true` or `if_false`")
487 .def("get_all_conditions", &_getAllConditionsPython,
488 "Return a list of all conditional path expressions set for this module using "
489 "`if_value`, `if_true` or `if_false`")
490 .add_property("logging", make_function(&Module::getLogConfig, return_value_policy<reference_existing_object>()),
@ c_GE
Greater or equal than: ">=".
@ c_SE
Smaller or equal than: "<=".
@ c_GT
Greater than: ">"
@ c_NE
Not equal: "!=".
@ c_EQ
Equal: "=" or "=="
@ c_ST
Smaller than: "<"
Base class for Modules.
Definition: Module.h:72
LogConfig & getLogConfig()
Returns the log system configuration.
Definition: Module.h:225
void if_value(const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
Add a condition to the module.
Definition: Module.cc:79
void if_true(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to set the condition of the module.
Definition: Module.cc:90
void setReturnValue(int value)
Sets the return value for this module as integer.
Definition: Module.cc:220
void setLogConfig(const LogConfig &logConfig)
Set the log system configuration.
Definition: Module.h:230
const std::string & getDescription() const
Returns the description of the module.
Definition: Module.h:202
void if_false(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to add a condition to the module.
Definition: Module.cc:85
bool hasCondition() const
Returns true if at least one condition was set for the module.
Definition: Module.h:311
const std::string & getPackage() const
Returns the package this module is in.
Definition: Module.h:197
void setName(const std::string &name)
Set the name of the module.
Definition: Module.h:214
bool hasProperties(unsigned int propertyFlags) const
Returns true if all specified property flags are available in this module.
Definition: Module.cc:160
std::string getPathString() const override
return the module name.
Definition: Module.cc:192

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 133 of file Module.cc.

134{
135 if (m_conditions.empty()) return EAfterConditionPath::c_End;
136
137 //okay, a condition was set for this Module...
138 if (!m_hasReturnValue) {
139 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
140 }
141
142 for (const auto& condition : m_conditions) {
143 if (condition.evaluate(m_returnValue)) {
144 return condition.getAfterConditionPath();
145 }
146 }
147
148 return EAfterConditionPath::c_End;
149}

◆ getAllConditionPaths()

std::vector< std::shared_ptr< Path > > getAllConditionPaths ( ) const
inherited

Return all condition paths currently set (no matter if the condition is true or not).

Definition at line 150 of file Module.cc.

151{
152 std::vector<std::shared_ptr<Path>> allConditionPaths;
153 for (const auto& condition : m_conditions) {
154 allConditionPaths.push_back(condition.getPath());
155 }
156
157 return allConditionPaths;
158}

◆ getAllConditions()

const std::vector< ModuleCondition > & getAllConditions ( ) const
inlineinherited

Return all set conditions for this module.

Definition at line 324 of file Module.h.

325 {
326 return m_conditions;
327 }

◆ getCondition()

const ModuleCondition * getCondition ( ) const
inlineinherited

Return a pointer to the first condition (or nullptr, if none was set)

Definition at line 314 of file Module.h.

315 {
316 if (m_conditions.empty()) {
317 return nullptr;
318 } else {
319 return &m_conditions.front();
320 }
321 }

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 113 of file Module.cc.

114{
115 PathPtr p;
116 if (m_conditions.empty()) return p;
117
118 //okay, a condition was set for this Module...
119 if (!m_hasReturnValue) {
120 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
121 }
122
123 for (const auto& condition : m_conditions) {
124 if (condition.evaluate(m_returnValue)) {
125 return condition.getPath();
126 }
127 }
128
129 // if none of the conditions were true, return a null pointer.
130 return p;
131}
std::shared_ptr< Path > PathPtr
Defines a pointer to a path object as a boost shared pointer.
Definition: Path.h:35

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Returns the description of the module.

Definition at line 202 of file Module.h.

202{return m_description;}
std::string m_description
The description of the module.
Definition: Module.h:511

◆ getFileNames()

virtual std::vector< std::string > getFileNames ( bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Reimplemented in RootInputModule, StorageRootOutputModule, and RootOutputModule.

Definition at line 134 of file Module.h.

135 {
136 return std::vector<std::string>();
137 }

◆ getLogConfig()

LogConfig & getLogConfig ( )
inlineinherited

Returns the log system configuration.

Definition at line 225 of file Module.h.

225{return m_logConfig;}

◆ getModules()

std::list< ModulePtr > getModules ( ) const
inlineoverrideprivatevirtualinherited

no submodules, return empty list

Implements PathElement.

Definition at line 506 of file Module.h.

506{ return std::list<ModulePtr>(); }

◆ getName()

const std::string & getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 187 of file Module.h.

187{return m_name;}
std::string m_name
The name of the module, saved as a string (user-modifiable)
Definition: Module.h:508

◆ getPackage()

const std::string & getPackage ( ) const
inlineinherited

Returns the package this module is in.

Definition at line 197 of file Module.h.

197{return m_package;}

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 279 of file Module.cc.

280{
282}
std::shared_ptr< boost::python::list > getParamInfoListPython() const
Returns a python list of all parameters.
ModuleParamList m_moduleParamList
List storing and managing all parameter of the module.
Definition: Module.h:516

◆ getParamList()

const ModuleParamList & getParamList ( ) const
inlineinherited

Return module param list.

Definition at line 363 of file Module.h.

363{ return m_moduleParamList; }

◆ getPathString()

std::string getPathString ( ) const
overrideprivatevirtualinherited

return the module name.

Implements PathElement.

Definition at line 192 of file Module.cc.

193{
194
195 std::string output = getName();
196
197 for (const auto& condition : m_conditions) {
198 output += condition.getString();
199 }
200
201 return output;
202}

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 381 of file Module.h.

381{ return m_returnValue; }

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 41 of file Module.cc.

42{
43 if (m_type.empty())
44 B2FATAL("Module type not set for " << getName());
45 return m_type;
46}
std::string m_type
The type of the module, saved as a string.
Definition: Module.h:509

◆ hasCondition()

bool hasCondition ( ) const
inlineinherited

Returns true if at least one condition was set for the module.

Definition at line 311 of file Module.h.

311{ return not m_conditions.empty(); };

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 160 of file Module.cc.

161{
162 return (propertyFlags & m_propertyFlags) == propertyFlags;
163}

◆ hasReturnValue()

bool hasReturnValue ( ) const
inlineinherited

Return true if this module has a valid return value set.

Definition at line 378 of file Module.h.

378{ return m_hasReturnValue; }

◆ hasUnsetForcedParams()

bool hasUnsetForcedParams ( ) const
inherited

Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.

Definition at line 166 of file Module.cc.

167{
169 std::string allMissing = "";
170 for (const auto& s : missing)
171 allMissing += s + " ";
172 if (!missing.empty())
173 B2ERROR("The following required parameters of Module '" << getName() << "' were not specified: " << allMissing <<
174 "\nPlease add them to your steering file.");
175 return !missing.empty();
176}
std::vector< std::string > getUnsetForcedParams() const
Returns list of unset parameters (if they are required to have a value.

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 85 of file Module.cc.

86{
87 if_value("<1", path, afterConditionPath);
88}

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 90 of file Module.cc.

91{
92 if_value(">=1", path, afterConditionPath);
93}

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://xwiki.desy.de/xwiki/rest/p/a94f2 or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 79 of file Module.cc.

80{
81 m_conditions.emplace_back(expression, path, afterConditionPath);
82}

◆ initialize()

void initialize ( void  )
overridevirtual

Initialize the Module.

Initializes Geant4, calls the geometry converter, creates the physics processes and create the user actions.

Reimplemented from Module.

Definition at line 169 of file FullSimModule.cc.

170{
171 // MCParticles input and output collections can be different.
172 // Output collection is always the default one.
173 // In case we simulate only beam background events using BG mixing or BG overlay
174 // there is no input collection.
175
176 if (m_mcParticleInputColName.empty()) {
177 // input and output collections are the same
178 // register in datastore because the input collection may not exist (case: only BG)
180 } else {
181 // input and output collections are different
183 StoreArray<MCParticle>().registerInDataStore(); // output collection
184 }
185
186 //Make sure the EventMetaData already exists.
188
189 //Get the instance of the run manager.
190 RunManager& runManager = RunManager::Instance();
191
192 //Add Geometry
193 runManager.SetUserInitialization(new DetectorConstruction());
194
195 //Create the Physics list
196 //- PhysicsList* physicsList = new PhysicsList(m_physicsList);
197 //- physicsList->setProductionCutValue(m_productionCut);
198 //- if (m_optics) physicsList->registerOpticalPhysicsList();
199 //- runManager.SetUserInitialization(physicsList);
200
201 if (m_physicsList == "Belle2") {
202 // Use Belle2PhysicsList
204 physicsList->SetVerbosity(m_runEventVerbosity);
206 physicsList->UseOpticalPhysics(m_optics);
215 physicsList->UseLongLivedNeutralParticles();
216
217 //Apply the Geant4 UI commands in PreInit State - before initialization
218 if (m_uiCommandsAtPreInit.size() > 0) {
219 G4UImanager* uiManager = G4UImanager::GetUIpointer();
220 for (vector<string>::iterator iter = m_uiCommandsAtPreInit.begin(); iter != m_uiCommandsAtPreInit.end(); ++iter) {
221 uiManager->ApplyCommand(*iter);
222 }
223 }
224
225 runManager.SetUserInitialization(physicsList);
226
227 } else {
228 G4PhysListFactory physListFactory;
229 physListFactory.SetVerbose(m_runEventVerbosity);
230 G4VModularPhysicsList* physicsList = NULL;
231 if (physListFactory.IsReferencePhysList(m_physicsList)) physicsList = physListFactory.GetReferencePhysList(m_physicsList);
232 if (physicsList == NULL) B2FATAL("Could not load the physics list " << m_physicsList);
233 physicsList->RegisterPhysics(new ExtPhysicsConstructor);
234 if (m_optics) physicsList->RegisterPhysics(new G4OpticalPhysics);
235 if (m_monopoles) {
236 physicsList->RegisterPhysics(new G4MonopolePhysics(m_monopoleMagneticCharge));
237 }
238
239 physicsList->RegisterPhysics(new G4LongLivedNeutralPhysics());
240
241 physicsList->SetDefaultCutValue((m_productionCut / Unit::mm) * CLHEP::mm); // default is 0.7 mm
242
243 //Apply the Geant4 UI commands in PreInit State - before initialization
244 if (m_uiCommandsAtPreInit.size() > 0) {
245 G4UImanager* uiManager = G4UImanager::GetUIpointer();
246 for (vector<string>::iterator iter = m_uiCommandsAtPreInit.begin(); iter != m_uiCommandsAtPreInit.end(); ++iter) {
247 uiManager->ApplyCommand(*iter);
248 }
249 }
250
251 // // LEP: For geant4e-specific particles, set a big step so that AlongStep computes
252 // // all the energy (as is done in G4ErrorPhysicsList)
253 // G4ParticleTable::G4PTblDicIterator* myParticleIterator = G4ParticleTable::GetParticleTable()->GetIterator();
254 // myParticleIterator->reset();
255 // while ((*myParticleIterator)()) {
256 // G4ParticleDefinition* particle = myParticleIterator->value();
257 // if (particle->GetParticleName().compare(0, 4, "g4e_") == 0) {
258 // physicsList->SetParticleCuts(1.0E+9 * CLHEP::cm, particle);
259 // }
260 // }
261 runManager.SetUserInitialization(physicsList);
262 }
263
264 //Create the magnetic field for the Geant4 simulation
265 if (m_magneticFieldName != "none") {
267 if (m_magneticCacheDistance > 0) {
269 m_magneticField = new G4CachedMagneticField(m_uncachedField, m_magneticCacheDistance);
270 }
271 G4FieldManager* fieldManager = G4TransportationManager::GetTransportationManager()->GetFieldManager();
272 fieldManager->SetDetectorField(m_magneticField);
273 if (m_magneticFieldName != "default") {
274
275 //We only use Magnetic field so let's try the specialized steppers
276 m_magFldEquation = new G4Mag_UsualEqRhs(m_magneticField);
277 if (m_magneticFieldName == "nystrom") {
278 m_stepper = new G4NystromRK4(m_magFldEquation);
279 } else if (m_magneticFieldName == "expliciteuler") {
280 m_stepper = new G4HelixExplicitEuler(m_magFldEquation);
281 } else if (m_magneticFieldName == "simplerunge") {
282 m_stepper = new G4HelixSimpleRunge(m_magFldEquation);
283 } else {
284 B2FATAL("Unknown magnetic field option: " << m_magneticFieldName);
285 }
286
287 //Set a minimum stepsize (stepMinimum): The chordfinder should not attempt to limit
288 //the stepsize to something less than 10µm (which is the default value of Geant4).
289 m_chordFinder = new G4ChordFinder(m_magneticField, 1e-2 * CLHEP::mm, m_stepper);
290 fieldManager->SetChordFinder(m_chordFinder);
291 } else {
292 fieldManager->CreateChordFinder(m_magneticField);
293 }
294
295 //Change DeltaCord (the max. miss-distance between the trajectory curve and its linear chord(s) approximation, if asked.
296 G4ChordFinder* chordFinder = fieldManager->GetChordFinder();
297 B2DEBUG(1, "Geant4 default deltaChord = " << chordFinder->GetDeltaChord());
298 chordFinder->SetDeltaChord(m_deltaChordInMagneticField * CLHEP::mm);
299 B2DEBUG(1, "DeltaChord after reset = " << chordFinder->GetDeltaChord());
300
301 //This might be a good place to optimize the Integration parameters (DeltaOneStep, DeltaIntersection, MinEpsilon, MaxEpsilon)
302 }
303
304 //Create the generator action which takes the MCParticle list and converts it to Geant4 primary vertices.
305 G4VUserPrimaryGeneratorAction* generatorAction = new PrimaryGeneratorAction(m_mcParticleInputColName, m_mcParticleGraph);
306 runManager.SetUserAction(generatorAction);
307
308 //Add the event action which creates the final MCParticle list and the Relation list.
309 //The output collection name will be always "MCParticles".
310 EventAction* eventAction = new EventAction("", m_mcParticleGraph);
311 runManager.SetUserAction(eventAction);
312
313 //Add the tracking action which handles the secondary particles created by Geant4.
314 TrackingAction* trackingAction = new TrackingAction(m_mcParticleGraph);
322
323 runManager.SetUserAction(trackingAction);
324
325 //Add the stepping action which provides additional security checks
326 SteppingAction* steppingAction = new SteppingAction();
327 steppingAction->setMaxNumberSteps(m_maxNumberSteps);
328 steppingAction->setAbsorbersR(m_absorbers);
329 for (auto& rAbsorber : m_absorbers) {
330 B2INFO("An absorber found at R = " << rAbsorber << " cm");
331 }
332 runManager.SetUserAction(steppingAction);
333
334 //Add the stacking action which provides performance speed ups for the handling of optical photons
335 StackingAction* stackingAction = new StackingAction();
337 runManager.SetUserAction(stackingAction);
338
339 //Initialize G4 kernel
340 runManager.Initialize();
341
342 //Set the parameters for the G4Transportation system.
343 //To make sure we really change all G4Transportation classes, we loop over all particles
344 //even if the pointer to the G4Transportation object seems to be the same for all particles.
345 //Only one instance of G4StepLimiter is needed: see G4StepLimiterBuilder(), for example.
346 m_stepLimiter = new G4StepLimiter();
347 G4ParticleTable::G4PTblDicIterator* partIter = G4ParticleTable::GetParticleTable()->GetIterator();
348 partIter->reset();
349 while ((*partIter)()) {
350 G4ParticleDefinition* currParticle = partIter->value();
351 G4ProcessVector& currProcList = *currParticle->GetProcessManager()->GetProcessList();
352 assert(currProcList.size() < INT_MAX);
353 for (int iProcess = 0; iProcess < static_cast<int>(currProcList.size()); ++iProcess) {
354 G4Transportation* transport = dynamic_cast<G4Transportation*>(currProcList[iProcess]);
355 if (transport != nullptr) {
356 //Geant4 energy unit is MeV
357 transport->SetThresholdImportantEnergy(m_thresholdImportantEnergy / Unit::MeV * CLHEP::MeV);
358 transport->SetThresholdTrials(m_thresholdTrials);
359 break;
360 }
361 }
362 // Add StepLimiter process for charged tracks.
363 double zeroChargeTol = 0.01 * Unit::e;
364 if (fabs(currParticle->GetPDGCharge()) > zeroChargeTol) {
365 currParticle->GetProcessManager()->AddDiscreteProcess(m_stepLimiter);
366 B2DEBUG(100, "Added StepLimiter process for " << currParticle->GetParticleName());
367 }
368 }
369
370 // Inactivate all secondary-generating processes for g4e particles. This comprises
371 // Cerenkov and Scintillation that were inserted by G4OpticalPhysics and the
372 // CaptureAtRest process for g4e anti-deuteron.
373 partIter->reset();
374 while ((*partIter)()) {
375 G4ParticleDefinition* currParticle = partIter->value();
376 if (currParticle->GetParticleName().compare(0, 4, "g4e_") == 0) {
377 G4ProcessManager* processManager = currParticle->GetProcessManager();
378 if (processManager) {
379 G4ProcessVector* processList = processManager->GetProcessList();
380 assert(processList->size() < INT_MAX);
381 for (int i = 0; i < static_cast<int>(processList->size()); ++i) {
382 if (((*processList)[i]->GetProcessName() == "Cerenkov") ||
383 ((*processList)[i]->GetProcessName() == "Scintillation") ||
384 ((*processList)[i]->GetProcessName() == "hFritiofCaptureAtRest")) {
385 processManager->SetProcessActivation(i, false);
386 }
387 }
388 }
389 }
390 }
391
392 //Set the verbosity level of Geant4 according to the logging settings of the module
393 //int g4VerboseLevel = 0;
394 //switch (LogSystem::Instance().getCurrentLogLevel()) {
395 // case LogConfig::c_Debug : g4VerboseLevel = 2;
396 // break;
397 // case LogConfig::c_Info : g4VerboseLevel = 1;
398 // break;
399 // default: g4VerboseLevel = 0;
400 //}
401 //G4EventManager::GetEventManager()->SetVerboseLevel(g4VerboseLevel);
402 //G4RunManager::GetRunManager()->SetVerboseLevel(g4VerboseLevel);
403 G4EventManager::GetEventManager()->SetVerboseLevel(m_runEventVerbosity);
404 G4RunManager::GetRunManager()->SetVerboseLevel(m_runEventVerbosity);
405 G4EventManager::GetEventManager()->GetTrackingManager()->SetVerboseLevel(
406 m_trackingVerbosity); //turned out to be more useful as a parameter.
407 G4HadronicProcessStore::Instance()->SetVerbose(m_hadronProcessVerbosity);
408 G4EmParameters::Instance()->SetVerbose(m_emProcessVerbosity);
409
410
412 m_visManager = new G4VisExecutive;
413 m_visManager->Initialize();
414 }
415
416 //Apply the Geant4 UI commands at Idle state - after initilization
417 if (m_uiCommandsAtIdle.size() > 0) {
418 G4UImanager* uiManager = G4UImanager::GetUIpointer();
419 for (vector<string>::iterator iter = m_uiCommandsAtIdle.begin(); iter != m_uiCommandsAtIdle.end(); ++iter) {
420 uiManager->ApplyCommand(*iter);
421 }
422 }
423
424 //Store Trajectories?
425 if (m_trajectoryStore) {
427 steppingAction->setStoreTrajectories(true);
428 }
429
430 //Physics tables are build in run initialization. We have run independent
431 //geometry at the moment so there is no need to do this in begin run. Instead
432 //we use one Geant4 run for all Belle2 runs we might encounter. So let's do
433 //run initialization now to save memory when doing parallel processing
434 B2INFO("Perform Geant4 final initialization: Geometry optimization, PhysicsList calculations...");
436 B2INFO("done, Geant4 ready");
437 //Otherwise we could use a fake run to do this and move RunManager::beginRun
438 //back to beginRun()
439 //runManager.BeamOn(0);
440}
Class responsible to connect to geometry to simulation.
MCParticleGraph m_mcParticleGraph
The MCParticle Graph used to manage the MCParticles before and after the simulation.
LongLivedNeutral physics Class – to be registered in the physics list.
Monopole physics class to register on the physics list.
Custom Geant4 physics list for Belle II with options to add optical physics, standard EM physics and ...
void SetSVDProductionCutValue(G4double)
Set cut value for SVD envelope.
void SetProductionCutValue(G4double)
Use parameter to set global cut value.
void SetARICHTOPProductionCutValue(G4double)
Set cut value for ARICH and TOP envelopes.
void SetECLProductionCutValue(G4double)
Set cut value for ECL barrel, forward and backward envelopes.
void UseHighPrecisionNeutrons(G4bool)
Use high precision neutron models below 20 MeV.
void SetPXDProductionCutValue(G4double)
Set cut value for PXD envelope.
void UseLongLivedNeutralParticles()
Simulate neutral long-lived particles with given pdg and mass value.
void UseOpticalPhysics(G4bool)
Add optical photon physics.
void SetVerbosity(G4int verb)
Run/event verbosity level.
void SetCDCProductionCutValue(G4double)
Set cut value for CDC envelope.
void SetKLMProductionCutValue(G4double)
Set cut value for BKLM and EKLM envelopes.
void UseStandardEMPhysics(G4bool)
Use standard EM physics instead of EM option1.
The Event Action class.
Definition: EventAction.h:36
The Class for the Belle2 magnetic field implementation for Geant4.
Definition: MagneticField.h:28
The PrimaryGeneratorAction class inherits from G4VuserPrimaryGeneratorAction and specifies how a prim...
The run manager controls the flow of the Geant4 program and manages the event loop(s) within a run.
Definition: RunManager.h:32
void beginRun(int runNumber)
Prepares Geant4 for a new run.
Definition: RunManager.cc:49
void Initialize()
Initialize the Kernel.
Definition: RunManager.cc:35
The basf2 stacking action.
void setPropagatedPhotonFraction(double fraction)
Set fraction of Cerenkov photons that are actually propagated.
The Class for the stepping action.
void setAbsorbersR(const std::vector< float > &vec)
Sets the radii of absorbers for killing tracks across them.
void setStoreTrajectories(bool store)
Sets the trajectory option to enable storing of the simulated particle trajectories.
void setMaxNumberSteps(int maxSteps)
Sets the maximum number of steps before a track is stopped and killed.
The Tracking Action class.
void setIgnorePairConversions(bool ignore=true)
Set ignore flag for e+ or e- coming from gamma conversions into a pair if set to true,...
void setIgnoreBremsstrahlungPhotons(bool ignore=true)
Set ignore flag for low energy breamsstrahlung photons if set to true, breamsstrahlung photons with k...
void setSecondariesEnergyCut(double cut_MeV)
Set kinetic energy cut for secondaries.
void setStoreTrajectories(int store, double distanceTolerance)
Sets the trajectory option to enable storing of the simulated particle trajectories.
void setBremsstrahlungPhotonsEnergyCut(double cut_MeV)
Set kinetic energy cut for bremsstrahlung photons.
void setPairConversionsEnergyCut(double cut_MeV)
Set kinetic energy cut for e+ e- pair conversions.
void setIgnoreSecondaries(bool ignore=true)
Set ignore flag for low energy Geant-produced secondary particles if set to true, secondaries with ki...
void setIgnoreOpticalPhotons(bool ignore=true)
Set ignore flag for optical photons if set to true, optical photons will not be stored in MCParticles...
bool isRequired(const std::string &name="")
Ensure this array/object has been registered previously.
bool registerInDataStore(DataStore::EStoreFlags storeFlags=DataStore::c_WriteOut)
Register the object/array in the DataStore.
Accessor to arrays stored in the data store.
Definition: StoreArray.h:113
static const double mm
[millimeters]
Definition: Unit.h:70
static const double e
Standard of [electric charge].
Definition: Unit.h:53
static const double MeV
[megaelectronvolt]
Definition: Unit.h:114

◆ setAbortLevel()

void setAbortLevel ( int  abortLevel)
inherited

Configure the abort log level.

Definition at line 67 of file Module.cc.

68{
69 m_logConfig.setAbortLevel(static_cast<LogConfig::ELogLevel>(abortLevel));
70}
ELogLevel
Definition of the supported log levels.
Definition: LogConfig.h:26
void setAbortLevel(ELogLevel abortLevel)
Configure the abort level.
Definition: LogConfig.h:112

◆ setDebugLevel()

void setDebugLevel ( int  debugLevel)
inherited

Configure the debug messaging level.

Definition at line 61 of file Module.cc.

62{
63 m_logConfig.setDebugLevel(debugLevel);
64}
void setDebugLevel(int debugLevel)
Configure the debug messaging level.
Definition: LogConfig.h:98

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 214 of file Module.cc.

215{
216 m_description = description;
217}

◆ setLogConfig()

void setLogConfig ( const LogConfig logConfig)
inlineinherited

Set the log system configuration.

Definition at line 230 of file Module.h.

230{m_logConfig = logConfig;}

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 73 of file Module.cc.

74{
75 m_logConfig.setLogInfo(static_cast<LogConfig::ELogLevel>(logLevel), logInfo);
76}
void setLogInfo(ELogLevel logLevel, unsigned int logInfo)
Configure the printed log information for the given level.
Definition: LogConfig.h:127

◆ setLogLevel()

void setLogLevel ( int  logLevel)
inherited

Configure the log level.

Definition at line 55 of file Module.cc.

56{
57 m_logConfig.setLogLevel(static_cast<LogConfig::ELogLevel>(logLevel));
58}
void setLogLevel(ELogLevel logLevel)
Configure the log level.
Definition: LogConfig.cc:25

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 214 of file Module.h.

214{ m_name = name; };

◆ setParamList()

void setParamList ( const ModuleParamList params)
inlineprotectedinherited

Replace existing parameter list.

Definition at line 501 of file Module.h.

501{ m_moduleParamList = params; }

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 234 of file Module.cc.

235{
236 LogSystem& logSystem = LogSystem::Instance();
237 logSystem.updateModule(&(getLogConfig()), getName());
238 try {
240 } catch (std::runtime_error& e) {
241 throw std::runtime_error("Cannot set parameter '" + name + "' for module '"
242 + m_name + "': " + e.what());
243 }
244
245 logSystem.updateModule(nullptr);
246}
Class for logging debug, info and error messages.
Definition: LogSystem.h:46
void updateModule(const LogConfig *moduleLogConfig=nullptr, const std::string &moduleName="")
Sets the log configuration to the given module log configuration and sets the module name This method...
Definition: LogSystem.h:191
static LogSystem & Instance()
Static method to get a reference to the LogSystem instance.
Definition: LogSystem.cc:31
void setParamPython(const std::string &name, const PythonObject &pyObj)
Implements a method for setting boost::python objects.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 249 of file Module.cc.

250{
251
252 LogSystem& logSystem = LogSystem::Instance();
253 logSystem.updateModule(&(getLogConfig()), getName());
254
255 boost::python::list dictKeys = dictionary.keys();
256 int nKey = boost::python::len(dictKeys);
257
258 //Loop over all keys in the dictionary
259 for (int iKey = 0; iKey < nKey; ++iKey) {
260 boost::python::object currKey = dictKeys[iKey];
261 boost::python::extract<std::string> keyProxy(currKey);
262
263 if (keyProxy.check()) {
264 const boost::python::object& currValue = dictionary[currKey];
265 setParamPython(keyProxy, currValue);
266 } else {
267 B2ERROR("Setting the module parameters from a python dictionary: invalid key in dictionary!");
268 }
269 }
270
271 logSystem.updateModule(nullptr);
272}
void setParamPython(const std::string &name, const boost::python::object &pyObj)
Implements a method for setting boost::python objects.
Definition: Module.cc:234

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 208 of file Module.cc.

209{
210 m_propertyFlags = propertyFlags;
211}

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 227 of file Module.cc.

228{
229 m_hasReturnValue = true;
230 m_returnValue = value;
231}

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 220 of file Module.cc.

221{
222 m_hasReturnValue = true;
223 m_returnValue = value;
224}

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 48 of file Module.cc.

49{
50 if (!m_type.empty())
51 B2FATAL("Trying to change module type from " << m_type << " is not allowed, the value is assumed to be fixed.");
52 m_type = type;
53}

◆ terminate()

void terminate ( void  )
overridevirtual

Terminates the module.

Reimplemented from Module.

Definition at line 464 of file FullSimModule.cc.

465{
466 //We used one Geant4 run for all Belle2 runs so end the geant4 run here
468 //And clean up the run manager
469 if (m_visManager != nullptr) delete m_visManager;
471 // Delete the step limiter process
472 delete m_stepLimiter;
473 // Delete the objects associated with transport in magnetic field
474 if (m_chordFinder) delete m_chordFinder;
475 if (m_stepper) delete m_stepper;
479}
void destroy()
Destroys the RunManager at the end of the simulation.
Definition: RunManager.cc:85
void endRun()
Terminates a Geant4 run.
Definition: RunManager.cc:79

Member Data Documentation

◆ m_absorbers

std::vector<float> m_absorbers
protected

The absorbers defined at given radii where tracks across them will be destroyed.

This set is used in the PXD only simulation for PXD gain calibration.

Definition at line 132 of file FullSimModule.h.

◆ m_arichtopProductionCut

double m_arichtopProductionCut
protected

Secondary production threshold in ARICH and TOP envelopes.

Definition at line 106 of file FullSimModule.h.

◆ m_bremsstrahlungPhotonsEnergyCut

double m_bremsstrahlungPhotonsEnergyCut
protected

kinetic energy cut for the stored bremsstrahlung photons

Definition at line 122 of file FullSimModule.h.

◆ m_cdcProductionCut

double m_cdcProductionCut
protected

Secondary production threshold in CDC envelope.

Definition at line 105 of file FullSimModule.h.

◆ m_chordFinder

G4ChordFinder* m_chordFinder
private

Pointer to the equation-of-motion chord finder (if not the default)

Definition at line 155 of file FullSimModule.h.

◆ m_conditions

std::vector<ModuleCondition> m_conditions
privateinherited

Module condition, only non-null if set.

Definition at line 521 of file Module.h.

◆ m_deltaChordInMagneticField

double m_deltaChordInMagneticField
protected

The maximum miss-distance between the trajectory curve and its linear chord(s) approximation.

Definition at line 128 of file FullSimModule.h.

◆ m_description

std::string m_description
privateinherited

The description of the module.

Definition at line 511 of file Module.h.

◆ m_eclProductionCut

double m_eclProductionCut
protected

Secondary production threshold in ECL envelopes.

Definition at line 107 of file FullSimModule.h.

◆ m_emProcessVerbosity

int m_emProcessVerbosity
protected

Loss Table verbosity: 0=Silent; 1=info level; 2=debug level, default=0.

Definition at line 95 of file FullSimModule.h.

◆ m_EnableVisualization

bool m_EnableVisualization
protected

If set to true the Geant4 visualization support is enabled.

Definition at line 116 of file FullSimModule.h.

◆ m_hadronProcessVerbosity

int m_hadronProcessVerbosity
protected

Hadron Process verbosity: 0=Silent; 1=info level; 2=debug level, default=0.

Definition at line 94 of file FullSimModule.h.

◆ m_hasReturnValue

bool m_hasReturnValue
privateinherited

True, if the return value is set.

Definition at line 518 of file Module.h.

◆ m_HPneutrons

bool m_HPneutrons
protected

If true, high precision neutron models used below 20 MeV.

Definition at line 99 of file FullSimModule.h.

◆ m_klmProductionCut

double m_klmProductionCut
protected

Secondary production threshold in BKLM and EKLM envelopes.

Definition at line 108 of file FullSimModule.h.

◆ m_logConfig

LogConfig m_logConfig
privateinherited

The log system configuration of the module.

Definition at line 514 of file Module.h.

◆ m_magFldEquation

G4Mag_UsualEqRhs* m_magFldEquation
private

Pointer to the equation of motion in the magnetic field (if not the default)

Definition at line 149 of file FullSimModule.h.

◆ m_magneticCacheDistance

double m_magneticCacheDistance
protected

minimal distance for magnetic field lookup.

If distance is smaller, return last value

Definition at line 127 of file FullSimModule.h.

◆ m_magneticField

G4MagneticField* m_magneticField
private

Pointer to the (un)cached magnetic field.

Definition at line 146 of file FullSimModule.h.

◆ m_magneticFieldName

std::string m_magneticFieldName
protected

magnetic field stepper to use

Definition at line 126 of file FullSimModule.h.

◆ m_maxNumberSteps

int m_maxNumberSteps
protected

The maximum number of steps before the track transportation is stopped and the track is killed.

Definition at line 109 of file FullSimModule.h.

◆ m_mcParticleGraph

MCParticleGraph m_mcParticleGraph
private

The MCParticle Graph used to manage the MCParticles before and after the simulation.

Definition at line 140 of file FullSimModule.h.

◆ m_mcParticleInputColName

std::string m_mcParticleInputColName
protected

The parameter variable for the name of the input MCParticle collection.

Definition at line 89 of file FullSimModule.h.

◆ m_moduleParamList

ModuleParamList m_moduleParamList
privateinherited

List storing and managing all parameter of the module.

Definition at line 516 of file Module.h.

◆ m_monopoleMagneticCharge

double m_monopoleMagneticCharge
protected

The value of monopole magnetic charge in units of e+.

Definition at line 101 of file FullSimModule.h.

◆ m_monopoles

bool m_monopoles
protected

If set to true, G4MonopolePhysics is registered in Geant4 PhysicsList.

Definition at line 100 of file FullSimModule.h.

◆ m_name

std::string m_name
privateinherited

The name of the module, saved as a string (user-modifiable)

Definition at line 508 of file Module.h.

◆ m_optics

bool m_optics
protected

If set to true, registers the optical physics list.

Definition at line 98 of file FullSimModule.h.

◆ m_package

std::string m_package
privateinherited

Package this module is found in (may be empty).

Definition at line 510 of file Module.h.

◆ m_pairConversionsEnergyCut

double m_pairConversionsEnergyCut
protected

kinetic energy cut for the stored e+ or e- from pair conversions

Definition at line 124 of file FullSimModule.h.

◆ m_photonFraction

double m_photonFraction
protected

The fraction of Cerenkov photons which will be kept and propagated.

Definition at line 110 of file FullSimModule.h.

◆ m_physicsList

std::string m_physicsList
protected

The name of the physics list which is used for the simulation.

Definition at line 96 of file FullSimModule.h.

◆ m_productionCut

double m_productionCut
protected

Apply continuous energy loss to primary particle which has no longer enough energy to produce secondaries which travel at least the specified productionCut distance.

Definition at line 102 of file FullSimModule.h.

◆ m_propertyFlags

unsigned int m_propertyFlags
privateinherited

The properties of the module as bitwise or (with |) of EModulePropFlags.

Definition at line 512 of file Module.h.

◆ m_pxdProductionCut

double m_pxdProductionCut
protected

Secondary production threshold in PXD envelope.

Definition at line 103 of file FullSimModule.h.

◆ m_returnValue

int m_returnValue
privateinherited

The return value.

Definition at line 519 of file Module.h.

◆ m_runEventVerbosity

int m_runEventVerbosity
protected

Geant4 run/event verbosity: 0=Silent; 1=info level; 2=debug level, default=0.

Definition at line 92 of file FullSimModule.h.

◆ m_secondariesEnergyCut

double m_secondariesEnergyCut
protected

kinetic energy cut for the stored Geant secondaries

Definition at line 120 of file FullSimModule.h.

◆ m_standardEM

bool m_standardEM
protected

If set to true, replaces fast EM physics with standard EM physics.

Definition at line 97 of file FullSimModule.h.

◆ m_stepLimiter

G4StepLimiter* m_stepLimiter
private

Pointer to the step limiter.

Definition at line 161 of file FullSimModule.h.

◆ m_stepper

G4MagIntegratorStepper* m_stepper
private

Pointer to the equation-of-motion stepper (if not the default)

Definition at line 152 of file FullSimModule.h.

◆ m_storeBremsstrahlungPhotons

bool m_storeBremsstrahlungPhotons
protected

controls storing of bremsstrahlung photons in MCParticles

Definition at line 121 of file FullSimModule.h.

◆ m_storeOpticalPhotons

bool m_storeOpticalPhotons
protected

controls storing of optical photons in MCParticles

Definition at line 118 of file FullSimModule.h.

◆ m_storePairConversions

bool m_storePairConversions
protected

controls storing of e+ or e- from pair conversions in MCParticles

Definition at line 123 of file FullSimModule.h.

◆ m_storeSecondaries

bool m_storeSecondaries
protected

controls storing of Geant secondaries in MCParticles

Definition at line 119 of file FullSimModule.h.

◆ m_svdProductionCut

double m_svdProductionCut
protected

Secondary production threshold in SVD envelope.

Definition at line 104 of file FullSimModule.h.

◆ m_thresholdImportantEnergy

double m_thresholdImportantEnergy
protected

A particle which got 'stuck' and has less than this energy will be killed after m_thresholdTrials trials.

Definition at line 90 of file FullSimModule.h.

◆ m_thresholdTrials

int m_thresholdTrials
protected

Geant4 will try m_thresholdTrials times to move a particle which got 'stuck' and has an energy less than m_thresholdImportantEnergy.

Definition at line 91 of file FullSimModule.h.

◆ m_trackingVerbosity

int m_trackingVerbosity
protected

Tracking verbosity: 0=Silent; 1=Min info per step; 2=sec particles; 3=pre/post step info; 4=like 3 but more info; 5=proposed step length info.

Definition at line 93 of file FullSimModule.h.

◆ m_trajectoryDistanceTolerance

double m_trajectoryDistanceTolerance
protected

Maximum distance to actuall trajectory when merging points.

Definition at line 131 of file FullSimModule.h.

◆ m_trajectoryStore

int m_trajectoryStore
protected

If true, store the trajectories of all primary particles.

Definition at line 130 of file FullSimModule.h.

◆ m_type

std::string m_type
privateinherited

The type of the module, saved as a string.

Definition at line 509 of file Module.h.

◆ m_uiCommandsAtIdle

std::vector<std::string> m_uiCommandsAtIdle
protected

A list of Geant4 UI commands that should be applied at Idle state, after the Geant4 initialization and before the simulation starts.

Definition at line 114 of file FullSimModule.h.

◆ m_uiCommandsAtPreInit

std::vector<std::string> m_uiCommandsAtPreInit
protected

A list of Geant4 UI commands that should be applied at PreInit state, before the Geant4 initialization and before the simulation starts.

Definition at line 112 of file FullSimModule.h.

◆ m_uncachedField

G4MagneticField* m_uncachedField
private

Pointer to the uncached magnetic field (might be superseded by its cached version)

Definition at line 143 of file FullSimModule.h.

◆ m_useNativeGeant4

bool m_useNativeGeant4
protected

If set to true, uses the Geant4 navigator and native detector construction class.

Definition at line 111 of file FullSimModule.h.

◆ m_visManager

G4VisManager* m_visManager
private

Pointer to the visualization manager (if used)

Definition at line 158 of file FullSimModule.h.


The documentation for this class was generated from the following files: