Belle II Software development
MicrotpcStudyModule Class Reference

Study module for Microtpcs (BEAST) More...

#include <MicrotpcStudyModule.h>

Inheritance diagram for MicrotpcStudyModule:
HistoModule Module PathElement

Public Types

enum  EModulePropFlags {
  c_Input = 1 ,
  c_Output = 2 ,
  c_ParallelProcessingCertified = 4 ,
  c_HistogramManager = 8 ,
  c_InternalSerializer = 16 ,
  c_TerminateInAllProcesses = 32 ,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

 MicrotpcStudyModule ()
 Constructor: Sets the description, the properties and the parameters of the module.
 
virtual ~MicrotpcStudyModule ()
 Destructor.
 
virtual void initialize () override
 Initialize the Module.
 
virtual void beginRun () override
 Called when entering a new run.
 
virtual void event () override
 Event processor.
 
virtual void endRun () override
 End-of-run action.
 
virtual void terminate () override
 Termination action.
 
virtual void defineHisto () override
 Defines the histograms.
 
virtual std::vector< std::string > getFileNames (bool outputFiles)
 Return a list of output filenames for this modules.
 
const std::string & getName () const
 Returns the name of the module.
 
const std::string & getType () const
 Returns the type of the module (i.e.
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module.
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties.
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level.
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module.
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module.
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module.
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true.
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished.
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module.
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter.
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module.
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module.
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters.
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Protected Member Functions

virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python.
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side.
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module.
 
void setType (const std::string &type)
 Set the module type.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module.
 
void setReturnValue (int value)
 Sets the return value for this module as integer.
 
void setReturnValue (bool value)
 Sets the return value for this module as bool.
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Private Member Functions

virtual void getXMLData ()
 reads data from MICROTPC.xml: tube location, drift data filename, sigma of impulse response function
 
std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects.
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary.
 

Private Attributes

int m_ChipColumnNb
 Chip column number.
 
int m_ChipRowNb
 Chip row number.
 
double m_ChipColumnX
 Chip column x dimension.
 
double m_ChipRowY
 Chip row y dimension.
 
double m_z_DG
 z drift gap
 
int nTPC = 0
 number of detectors.
 
std::vector< ROOT::Math::XYZVector > TPCCenter
 TPC coordinate.
 
TH1F * h_tpc_rate [20]
 Event counter.
 
TH2F * h_mctpc_kinetic [20]
 Neutron kin energy dis.
 
TH2F * h_mctpc_kinetic_zoom [20]
 Neutron kin energy dis.
 
TH2F * h_mctpc_tvp [20]
 theta v phi dis
 
TH2F * h_mctpc_tvpW [20]
 theta v phi dis
 
TH2F * h_mctpc_zr [20]
 r v z
 
TH1F * h_z [8]
 Charged density vs z vs section.
 
TH2F * h_xy [8]
 Charged density vs x vs y.
 
TH2F * h_zr [8]
 Charged density vs z vs r.
 
TH2F * h_zx [8]
 Charged density vs x vs r.
 
TH2F * h_zy [8]
 Charged density vs y vs r.
 
TH2F * h_evtrl [8]
 Track length v.
 
TH2F * h_evtrlb [8]
 Track length v.
 
TH2F * h_evtrlc [8]
 Track length v.
 
TH2F * h_evtrld [8]
 Track length v.
 
TH2F * h_evtrl_He [8]
 Track length v.
 
TH2F * h_evtrl_Hex [8]
 Track length v.
 
TH2F * h_evtrl_He_pure [8]
 Track length v.
 
TH2F * h_evtrl_p [8]
 Track length v.
 
TH2F * h_evtrl_O [8]
 Track length v.
 
TH2F * h_evtrl_C [8]
 Track length v.
 
TH2F * h_evtrl_x [8]
 Track length v.
 
TH2F * h_tevtrl [8]
 Track length v.
 
TH2F * h_tevtrl_He [8]
 Track length v.
 
TH2F * h_tevtrl_Hex [8]
 Track length v.
 
TH2F * h_tevtrl_He_pure [8]
 Track length v.
 
TH2F * h_tevtrl_p [8]
 Track length v.
 
TH2F * h_tevtrl_O [8]
 Track length v.
 
TH2F * h_tevtrl_C [8]
 Track length v.
 
TH2F * h_tevtrl_x [8]
 Track length v.
 
TH2F * h_tvp [8]
 Phi v.
 
TH2F * h_tvpb [8]
 Phi v.
 
TH2F * h_tvpc [8]
 Phi v.
 
TH2F * h_tvpd [8]
 Phi v.
 
TH2F * h_wtvpb [8]
 Phi v.
 
TH2F * h_wtvpc [8]
 Phi v.
 
TH2F * h_wtvpd [8]
 Phi v.
 
TH2F * h_tvp_He [8]
 Phi v.
 
TH2F * h_tvp_Hex [8]
 Phi v.
 
TH2F * h_tvp_He_pure [8]
 Phi v.
 
TH2F * h_tvp_p [8]
 Phi v.
 
TH2F * h_tvp_O [8]
 Phi v.
 
TH2F * h_tvp_C [8]
 Phi v.
 
TH2F * h_tvp_x [8]
 Phi v.
 
TH2F * h_ttvp [8]
 Phi v.
 
TH2F * h_ttvp_He [8]
 Phi v.
 
TH2F * h_ttvp_Hex [8]
 Phi v.
 
TH2F * h_ttvp_He_pure [8]
 Phi v.
 
TH2F * h_ttvp_p [8]
 Phi v.
 
TH2F * h_ttvp_O [8]
 Phi v.
 
TH2F * h_ttvp_C [8]
 Phi v.
 
TH2F * h_ttvp_x [8]
 Phi v.
 
TH2F * h_Wtvp1 [8][12]
 Phi v.
 
TH2F * h_Wtvp2 [8][12]
 Phi v.
 
TH2F * h_Wevtrl1 [8][12]
 e v l
 
TH2F * h_Wevtrl2 [8][12]
 e v l
 
TH2F * h_twtvp_He_pure [8]
 Phi v.
 
TH3F * h_mctpc_recoil [3]
 recoil energy
 
TH3F * h_mctpc_recoilW [3]
 weighted recoil energy
 
std::vector< TGraph * > m_intProb
 vector of interaction probability vs E graphs for all recoils
 
std::vector< double > m_maxEnFrac
 vector of maximal energy fraction transferred to recoil
 
TH2F * h_wtvp [8]
 Phi v.
 
TH2F * h_wtvp_He [8]
 Phi v.
 
TH2F * h_wtvp_Hex [8]
 Phi v.
 
TH2F * h_wtvp_He_pure [8]
 Phi v.
 
TH2F * h_wtvp_p [8]
 Phi v.
 
TH2F * h_wtvp_O [8]
 Phi v.
 
TH2F * h_wtvp_C [8]
 Phi v.
 
TH2F * h_wtvp_x [8]
 Phi v.
 
Bool_t xRec [8]
 X-ray boolean per TPC.
 
Bool_t pRec [8]
 p boolean per TPC
 
Bool_t HeRec [8]
 He boolean per TPC.
 
Bool_t ORec [8]
 O boolean per TPC.
 
Bool_t CRec [8]
 C boolean per TPC.
 
int pid_old [8]
 A boolean per TPC.
 
std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 

Detailed Description

Study module for Microtpcs (BEAST)

Produces histograms from BEAST data for the Microtpcs. *

Definition at line 33 of file MicrotpcStudyModule.h.

Member Typedef Documentation

◆ EAfterConditionPath

Forward the EAfterConditionPath definition from the ModuleCondition.

Definition at line 88 of file Module.h.

Member Enumeration Documentation

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 77 of file Module.h.

77 {
78 c_Input = 1,
79 c_Output = 2,
85 };
@ c_HistogramManager
This module is used to manage histograms accumulated by other modules.
Definition: Module.h:81
@ c_Input
This module is an input module (reads data).
Definition: Module.h:78
@ c_DontCollectStatistics
No statistics is collected for this module.
Definition: Module.h:84
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
Definition: Module.h:80
@ c_InternalSerializer
This module is an internal serializer/deserializer for parallel processing.
Definition: Module.h:82
@ c_Output
This module is an output module (writes data).
Definition: Module.h:79
@ c_TerminateInAllProcesses
When using parallel processing, call this module's terminate() function in all processes().
Definition: Module.h:83

Constructor & Destructor Documentation

◆ MicrotpcStudyModule()

Constructor: Sets the description, the properties and the parameters of the module.

Definition at line 43 of file MicrotpcStudyModule.cc.

43 : HistoModule()
44{
45 // Set module properties
46 setDescription("Study module for Microtpcs (BEAST)");
47
48 //Default values are set here. New values can be in MICROTPC.xml.
49 addParam("ChipRowNb", m_ChipRowNb, "Chip number of row", 226);
50 addParam("ChipColumnNb", m_ChipColumnNb, "Chip number of column", 80);
51 addParam("ChipColumnX", m_ChipColumnX, "Chip x dimension in cm / 2", 1.0);
52 addParam("ChipRowY", m_ChipRowY, "Chip y dimension in cm / 2", 0.86);
53 addParam("z_DG", m_z_DG, "Drift gap distance [cm]", 12.0);
54}
HistoModule()
Constructor.
Definition: HistoModule.h:32
void setDescription(const std::string &description)
Sets the description of the module.
Definition: Module.cc:214
double m_ChipRowY
Chip row y dimension.
double m_ChipColumnX
Chip column x dimension.
void addParam(const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
Definition: Module.h:559

◆ ~MicrotpcStudyModule()

~MicrotpcStudyModule ( )
virtual

Destructor.

Definition at line 56 of file MicrotpcStudyModule.cc.

57{
58}

Member Function Documentation

◆ beginRun()

void beginRun ( void  )
overridevirtual

Called when entering a new run.

Set run dependent things like run header parameters, alignment, etc.

Reimplemented from HistoModule.

Definition at line 244 of file MicrotpcStudyModule.cc.

245{
246}

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 179 of file Module.cc.

180{
182 newModule->m_moduleParamList.setParameters(getParamList());
183 newModule->setName(getName());
184 newModule->m_package = m_package;
185 newModule->m_propertyFlags = m_propertyFlags;
186 newModule->m_logConfig = m_logConfig;
187 newModule->m_conditions = m_conditions;
188
189 return newModule;
190}
std::shared_ptr< Module > registerModule(const std::string &moduleName, std::string sharedLibPath="") noexcept(false)
Creates an instance of a module and registers it to the ModuleManager.
static ModuleManager & Instance()
Exception is thrown if the requested module could not be created by the ModuleManager.
const ModuleParamList & getParamList() const
Return module param list.
Definition: Module.h:362
const std::string & getName() const
Returns the name of the module.
Definition: Module.h:186
const std::string & getType() const
Returns the type of the module (i.e.
Definition: Module.cc:41
unsigned int m_propertyFlags
The properties of the module as bitwise or (with |) of EModulePropFlags.
Definition: Module.h:511
LogConfig m_logConfig
The log system configuration of the module.
Definition: Module.h:513
std::vector< ModuleCondition > m_conditions
Module condition, only non-null if set.
Definition: Module.h:520
std::string m_package
Package this module is found in (may be empty).
Definition: Module.h:509
std::shared_ptr< Module > ModulePtr
Defines a pointer to a module object as a boost shared pointer.
Definition: Module.h:43

◆ def_beginRun()

virtual void def_beginRun ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 425 of file Module.h.

425{ beginRun(); }
virtual void beginRun()
Called when entering a new run.
Definition: Module.h:146

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 438 of file Module.h.

438{ endRun(); }
virtual void endRun()
This method is called if the current run ends.
Definition: Module.h:165

◆ def_event()

virtual void def_event ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 431 of file Module.h.

431{ event(); }
virtual void event()
This method is the core of the module.
Definition: Module.h:156

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 419 of file Module.h.

419{ initialize(); }
virtual void initialize()
Initialize the Module.
Definition: Module.h:109

◆ def_terminate()

virtual void def_terminate ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 444 of file Module.h.

444{ terminate(); }
virtual void terminate()
This method is called at the end of the event processing.
Definition: Module.h:175

◆ defineHisto()

void defineHisto ( )
overridevirtual

Defines the histograms.

Reimplemented from HistoModule.

Definition at line 61 of file MicrotpcStudyModule.cc.

62{
63 for (int i = 0 ; i < 6 ; i++) {
64 h_tpc_rate[i] = new TH1F(TString::Format("h_tpc_rate_%d", i), "detector #", 8, 0., 8.);
65 }
66
67 h_mctpc_recoil[0] = new TH3F("h_mctpc_recoil_He", "Neutron recoil energy [MeV]", 13, -0.5, 12.5, 8, -0.5, 7.5, 1000, 0., 10.);
68 h_mctpc_recoilW[0] = new TH3F("h_mctpc_recoil_w_He", "Neutron recoil energy [MeV]", 13, -0.5, 12.5, 8, -0.5, 7.5, 1000, 0., 10.);
69 h_mctpc_recoil[0]->Sumw2();
70 h_mctpc_recoilW[0]->Sumw2();
71
72 h_mctpc_recoil[1] = new TH3F("h_mctpc_recoil_O", "Neutron recoil energy [MeV]", 13, -0.5, 12.5, 8, -0.5, 7.5, 1000, 0., 10.);
73 h_mctpc_recoilW[1] = new TH3F("h_mctpc_recoil_w_O", "Neutron recoil energy [MeV]", 13, -0.5, 12.5, 8, -0.5, 7.5, 1000, 0., 10.);
74 h_mctpc_recoil[1]->Sumw2();
75 h_mctpc_recoilW[1]->Sumw2();
76
77 h_mctpc_recoil[2] = new TH3F("h_mctpc_recoil_C", "Neutron recoil energy [MeV]", 13, -0.5, 12.5, 8, -0.5, 7.5, 1000, 0., 10.);
78 h_mctpc_recoilW[2] = new TH3F("h_mctpc_recoil_w_C", "Neutron recoil energy [MeV]", 13, -0.5, 12.5, 8, -0.5, 7.5, 1000, 0., 10.);
79 h_mctpc_recoil[2]->Sumw2();
80 h_mctpc_recoilW[2]->Sumw2();
81
82
83 for (int i = 0 ; i < 12 ; i++) {
84 h_mctpc_kinetic[i] = new TH2F(TString::Format("h_mctpc_kinetic_%d", i), "Neutron kin. energy [GeV]", 8, -0.5, 7.5, 1000, 0., 10.);
85 h_mctpc_kinetic_zoom[i] = new TH2F(TString::Format("h_mctpc_kinetic_zoom_%d", i), "Neutron kin. energy [MeV]", 8, -0.5, 7.5, 1000,
86 0., 10.);
87 h_mctpc_tvp[i] = new TH2F(TString::Format("h_mctpc_tvp_%d", i), "theta v phi", 180, 0., 180., 360, -180., 180.);
88 h_mctpc_tvpW[i] = new TH2F(TString::Format("h_mctpc_tvpW_%d", i), "theta v phi weighted by kin", 180, 0., 180., 360, -180., 180.);
89 h_mctpc_zr[i] = new TH2F(TString::Format("h_mctpc_zr_%d", i), "r v z", 200, -400., 400., 200, 0., 400.);
90 h_mctpc_kinetic[i]->Sumw2();
91 h_mctpc_kinetic_zoom[i]->Sumw2();
92 h_mctpc_tvp[i]->Sumw2();
93 h_mctpc_tvpW[i]->Sumw2();
94 h_mctpc_zr[i]->Sumw2();
95 }
96 for (int i = 0 ; i < 8 ; i++) {
97 for (int j = 0; j < 12; j++) {
98 h_Wtvp1[i][j] = new TH2F(TString::Format("h_Wtvp1_%d_%d", i, j), "Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
99 h_Wtvp2[i][j] = new TH2F(TString::Format("h_Wtvp2_%d_%d", i, j), "Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
100 h_Wevtrl1[i][j] = new TH2F(TString::Format("h_Wevtrl1_%d_%d", i, j), "Deposited energy [keV] v. track length [cm]", 2000, 0., 10000,
101 200, 0., 6.);
102 h_Wevtrl2[i][j] = new TH2F(TString::Format("h_Wevtrl2_%d_%d", i, j), "Deposited energy [keV] v. track length [cm]", 2000, 0., 10000,
103 200, 0., 6.);
104 }
105 }
106
107 for (int i = 0 ; i < 8 ; i++) {
108 h_z[i] = new TH1F(TString::Format("h_z_%d", i), "Charged density per cm^2", 2000, 0.0, 20.0);
109
110 h_zr[i] = new TH2F(TString::Format("h_zr_%d", i), "Charged density vs z vs r", 100, 0, 20, 100, 0., 5.);
111
112 h_xy[i] = new TH2F(TString::Format("h_xy_%d", i), "Charged density vs y vs x", 100, -5., 5., 100, -5., 5.);
113
114 h_zx[i] = new TH2F(TString::Format("h_zx_%d", i), "Charged density vs x vs r", 100, 0, 20, 100, -5., 5.);
115
116 h_zy[i] = new TH2F(TString::Format("h_zy_%d", i), "Charged density vs y vs r", 100, 0, 20, 100, -5., 5.);
117
118 h_evtrl[i] = new TH2F(TString::Format("h_evtrl_%d", i), "Deposited energy [keV] v. track length [cm]", 2000, 0., 10000, 200, 0.,
119 6.);
120 h_evtrlb[i] = new TH2F(TString::Format("h_evtrlb_%d", i), "Deposited energy [keV] v. track length [cm]", 2000, 0., 10000, 200, 0.,
121 6.);
122 h_evtrlc[i] = new TH2F(TString::Format("h_evtrlc_%d", i), "Deposited energy [keV] v. track length [cm]", 2000, 0., 10000, 200, 0.,
123 6.);
124 h_evtrld[i] = new TH2F(TString::Format("h_evtrld_%d", i), "Deposited energy [keV] v. track length [cm]", 2000, 0., 10000, 200, 0.,
125 6.);
126
127 h_evtrl_p[i] = new TH2F(TString::Format("h_evtrl_p_%d", i), "Deposited energy [keV] v. track length [cm]", 2000, 0., 2000, 200, 0.,
128 6.);
129 h_evtrl_x[i] = new TH2F(TString::Format("h_evtrl_x_%d", i), "Deposited energy [keV] v. track length [cm]", 2000, 0., 2000, 200, 0.,
130 6.);
131 h_evtrl_Hex[i] = new TH2F(TString::Format("h_evtrl_Hex_%d", i), "Deposited energy [keV] v. track length [cm]", 2000, 0., 2000, 200,
132 0., 6.);
133 h_evtrl_He[i] = new TH2F(TString::Format("h_evtrl_He_%d", i), "Deposited energy [keV] v. track length [cm]", 2000, 0., 2000, 200,
134 0., 6.);
135 h_evtrl_C[i] = new TH2F(TString::Format("h_evtrl_C_%d", i), "Deposited energy [keV] v. track length [cm]", 2000, 0., 2000, 200, 0.,
136 6.);
137 h_evtrl_O[i] = new TH2F(TString::Format("h_evtrl_O_%d", i), "Deposited energy [keV] v. track length [cm]", 2000, 0., 2000, 200, 0.,
138 6.);
139 h_evtrl_He_pure[i] = new TH2F(TString::Format("h_evtrl_He_pure_%d", i), "Deposited energy [keV] v. track length [cm]", 2000, 0.,
140 2000, 200, 0., 6.);
141
142
143 h_tevtrl[i] = new TH2F(TString::Format("h_tevtrl_%d", i), "t: Deposited energy [keV] v. track length [cm]", 2000, 0., 2000, 200, 0.,
144 6.);
145 h_tevtrl_p[i] = new TH2F(TString::Format("h_tevtrl_p_%d", i), "t: Deposited energy [keV] v. track length [cm]", 2000, 0., 2000, 200,
146 0.,
147 6.);
148 h_tevtrl_x[i] = new TH2F(TString::Format("h_tevtrl_x_%d", i), "t: Deposited energy [keV] v. track length [cm]", 2000, 0., 2000, 200,
149 0.,
150 6.);
151 h_tevtrl_Hex[i] = new TH2F(TString::Format("h_tevtrl_Hex_%d", i), "t: Deposited energy [keV] v. track length [cm]", 2000, 0., 2000,
152 200,
153 0., 6.);
154 h_tevtrl_He[i] = new TH2F(TString::Format("h_tevtrl_He_%d", i), "t: Deposited energy [keV] v. track length [cm]", 2000, 0., 2000,
155 200,
156 0., 6.);
157 h_tevtrl_C[i] = new TH2F(TString::Format("h_tevtrl_C_%d", i), "t: Deposited energy [keV] v. track length [cm]", 2000, 0., 2000, 200,
158 0.,
159 6.);
160 h_tevtrl_O[i] = new TH2F(TString::Format("h_tevtrl_O_%d", i), "t: Deposited energy [keV] v. track length [cm]", 2000, 0., 2000, 200,
161 0.,
162 6.);
163 h_tevtrl_He_pure[i] = new TH2F(TString::Format("h_tevtrl_He_pure_%d", i), "t: Deposited energy [keV] v. track length [cm]", 2000,
164 0.,
165 2000, 200, 0., 6.);
166
167 h_tvp[i] = new TH2F(TString::Format("h_tvp_%d", i), "Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
168 h_wtvpb[i] = new TH2F(TString::Format("h_wtvpb_%d", i), "Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
169 h_wtvpc[i] = new TH2F(TString::Format("h_wtvpc_%d", i), "Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
170 h_wtvpd[i] = new TH2F(TString::Format("h_wtvpd_%d", i), "Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
171
172 h_tvpb[i] = new TH2F(TString::Format("h_tvpb_%d", i), "Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
173 h_tvpc[i] = new TH2F(TString::Format("h_tvpc_%d", i), "Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
174 h_tvpd[i] = new TH2F(TString::Format("h_tvpd_%d", i), "Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
175 h_ttvp[i] = new TH2F(TString::Format("h_ttvp_%d", i), "t: Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
176 h_wtvp[i] = new TH2F(TString::Format("h_wtvp_%d", i), "Phi [deg] v. theta [deg] - weighted", 180, 0., 180, 360, -180., 180.);
177 h_tvp_x[i] = new TH2F(TString::Format("h_tvp_x_%d", i), "Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
178 h_ttvp_x[i] = new TH2F(TString::Format("h_ttvp_x_%d", i), "t: Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
179 h_wtvp_x[i] = new TH2F(TString::Format("h_wtvp_x_%d", i), "Phi [deg] v. theta [deg] - weighted", 180, 0., 180, 360, -180., 180.);
180 h_tvp_p[i] = new TH2F(TString::Format("h_tvp_p_%d", i), "Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
181 h_ttvp_p[i] = new TH2F(TString::Format("h_ttvp_p_%d", i), "t: Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
182 h_wtvp_p[i] = new TH2F(TString::Format("h_wtvp_p_%d", i), "Phi [deg] v. theta [deg] - weighted", 180, 0., 180, 360, -180., 180.);
183 h_tvp_He[i] = new TH2F(TString::Format("h_tvp_He_%d", i), "Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
184 h_ttvp_He[i] = new TH2F(TString::Format("h_ttvp_He_%d", i), "t: Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
185 h_wtvp_He[i] = new TH2F(TString::Format("h_wtvp_He_%d", i), "Phi [deg] v. theta [deg] - weighted", 180, 0., 180, 360, -180., 180.);
186 h_tvp_Hex[i] = new TH2F(TString::Format("h_tvp_Hex_%d", i), "Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
187 h_ttvp_Hex[i] = new TH2F(TString::Format("h_ttvp_Hex_%d", i), "t: Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
188 h_wtvp_Hex[i] = new TH2F(TString::Format("h_wtvp_Hex_%d", i), "Phi [deg] v. theta [deg] - weighted", 180, 0., 180, 360, -180.,
189 180.);
190 h_tvp_He_pure[i] = new TH2F(TString::Format("h_tvp_He_pure_%d", i), "Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
191 h_ttvp_He_pure[i] = new TH2F(TString::Format("h_ttvp_He_pure_%d", i), "t: Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180.,
192 180.);
193 h_wtvp_He_pure[i] = new TH2F(TString::Format("h_wtvp_He_pure_%d", i), "Phi [deg] v. theta [deg] - weighted", 180, 0., 180, 360,
194 -180., 180.);
195 h_twtvp_He_pure[i] = new TH2F(TString::Format("h_twtvp_He_pure_%d", i), "t: Phi [deg] v. theta [deg] - weighted", 180, 0., 180,
196 360,
197 -180., 180.);
198 h_tvp_C[i] = new TH2F(TString::Format("h_tvp_C_%d", i), "Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
199 h_ttvp_C[i] = new TH2F(TString::Format("h_ttvp_C_%d", i), "t: Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
200 h_wtvp_C[i] = new TH2F(TString::Format("h_wtvp_C_%d", i), "Phi [deg] v. theta [deg] - weighted", 180, 0., 180, 360, -180., 180.);
201 h_tvp_O[i] = new TH2F(TString::Format("h_tvp_O_%d", i), "Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
202 h_ttvp_O[i] = new TH2F(TString::Format("h_ttvp_O_%d", i), "t: Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
203 h_wtvp_O[i] = new TH2F(TString::Format("h_wtvp_O_%d", i), "Phi [deg] v. theta [deg] - weighted", 180, 0., 180, 360, -180., 180.);
204
205 h_tvp[i]->Sumw2();
206 h_tvpb[i]->Sumw2();
207 h_tvpc[i]->Sumw2();
208 h_tvpd[i]->Sumw2();
209
210 h_wtvpb[i]->Sumw2();
211 h_wtvpc[i]->Sumw2();
212 h_wtvpd[i]->Sumw2();
213
214 h_ttvp[i]->Sumw2();
215 h_tvp_x[i]->Sumw2();
216 h_ttvp_x[i]->Sumw2();
217 h_tvp_p[i]->Sumw2();
218 h_ttvp_p[i]->Sumw2();
219 h_tvp_He[i]->Sumw2();
220 h_ttvp_He[i]->Sumw2();
221 h_wtvp[i]->Sumw2();
222 h_wtvp_x[i]->Sumw2();
223 h_wtvp_p[i]->Sumw2();
224 h_wtvp_He[i]->Sumw2();
225
226 }
227
228}
TH1F * h_z[8]
Charged density vs z vs section.
TH2F * h_zy[8]
Charged density vs y vs r.
TH2F * h_zx[8]
Charged density vs x vs r.
TH2F * h_zr[8]
Charged density vs z vs r.
TH3F * h_mctpc_recoilW[3]
weighted recoil energy
TH2F * h_mctpc_kinetic_zoom[20]
Neutron kin energy dis.
TH2F * h_mctpc_kinetic[20]
Neutron kin energy dis.
TH2F * h_xy[8]
Charged density vs x vs y.

◆ endRun()

void endRun ( void  )
overridevirtual

End-of-run action.

Save run-related stuff, such as statistics.

Reimplemented from HistoModule.

Definition at line 685 of file MicrotpcStudyModule.cc.

686{
687
688 //B2RESULT("MicrotpcStudyModule: # of p recoils: " << npHits);
689 //B2RESULT("MicrotpcStudyModule: # of He recoils: " << nHeHits);
690 //B2RESULT("MicrotpcStudyModule: # of O recoils: " << nOHits);
691 //B2RESULT("MicrotpcStudyModule: # of C recoils: " << nCHits);
692
693}

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 96 of file Module.cc.

97{
98 if (m_conditions.empty()) return false;
99
100 //okay, a condition was set for this Module...
101 if (!m_hasReturnValue) {
102 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
103 }
104
105 for (const auto& condition : m_conditions) {
106 if (condition.evaluate(m_returnValue)) {
107 return true;
108 }
109 }
110 return false;
111}
int m_returnValue
The return value.
Definition: Module.h:518
bool m_hasReturnValue
True, if the return value is set.
Definition: Module.h:517

◆ event()

void event ( void  )
overridevirtual

Event processor.

Reimplemented from HistoModule.

Definition at line 248 of file MicrotpcStudyModule.cc.

249{
250 //Here comes the actual event processing
251
256 StoreArray<SADMetaHit> sadMetaHits;
257 double rate = 0;
258 int ring_section = 0;
259 const int section_ordering[12] = {1, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2};
260 for (const auto& sadMetaHit : sadMetaHits) {
261 rate = sadMetaHit.getrate();
262 double ss = sadMetaHit.getss() / 100.;
263 if (ss < 0) ss += 3000.;
264 int section = (int)(ss / 250.);
265 if (section >= 0 && section < 12) ring_section = section_ordering[section];
266 }
267
268 /*
269 StoreArray<MicrotpcDataHit> DataHits;
270 int dentries = DataHits.getEntries();
271 for (int j = 0; j < dentries; j++) {
272 MicrotpcDataHit* aHit = DataHits[j];
273 int detNb = aHit->getdetNb();
274 //int trkID = aHit->gettrkID();
275 int col = aHit->getcolumn();
276 int row = aHit->getrow();
277 int tot = aHit->getTOT();
278 cout << " col " << col << " row " << row << " tot " << tot << " detNb " << detNb << endl;
279 }
280 */
281 //Bool_t EdgeCut[8];
282 double esum[8];
283 //Initialize recoil and hit type counters
284 for (int i = 0; i < 8; i++) {
285 xRec[i] = false;
286 pRec[i] = false;
287 HeRec[i] = false;
288 ORec[i] = false;
289 CRec[i] = false;
290 //ARec[i] = false;
291 pid_old[i] = 0;
292 //EdgeCut[i] = true;
293 esum[i] = 0;
294 }
295
296 //number of entries in SimHit
297 int nSimHits = SimHits.getEntries();
298
299 auto phiArray = new vector<double>[8](); //phi
300 auto thetaArray = new vector<double>[8](); //theta
301 auto pidArray = new vector<int>[8](); //PID
302 //auto edgeArray = new vector<int>[8](); // Edge cut
303 auto esumArray = new vector<double>[8](); // esum
304 auto trlArray = new vector<double>[8](); // trl
305
306 ROOT::Math::XYZVector EndPoint;
307 //loop over all SimHit entries
308 for (int i = 0; i < nSimHits; i++) {
309 MicrotpcSimHit* aHit = SimHits[i];
310 int detNb = aHit->getdetNb();
311 ROOT::Math::XYZVector position = aHit->gettkPos();
312 double xpos = position.X() / 100. - TPCCenter[detNb].X();
313 double ypos = position.Y() / 100. - TPCCenter[detNb].Y();
314 double zpos = position.Z() / 100. - TPCCenter[detNb].Z() + m_z_DG / 2.;
315 if (0. < zpos && zpos < m_z_DG) {
316
317 int PDGid = aHit->gettkPDG();
318 if (PDGid == 1000080160) ORec[detNb] = true;
319 if (PDGid == 1000060120) CRec[detNb] = true;
320 if (PDGid == 1000020040) HeRec[detNb] = true;
321 if (PDGid == Const::proton.getPDGCode()) pRec[detNb] = true;
322 if (fabs(PDGid) == Const::electron.getPDGCode() || PDGid == Const::photon.getPDGCode()) xRec[detNb] = true;
323
324 double edep = aHit->getEnergyDep();
325 double niel = aHit->getEnergyNiel();
326 double ioni = (edep - niel) * 1e3; //MeV -> keV
327
328 double r = sqrt(xpos * xpos + ypos * ypos);
329 h_z[detNb]->Fill(zpos, ioni);
330 h_zr[detNb]->Fill(zpos, r, ioni);
331 h_zx[detNb]->Fill(zpos, xpos, ioni);
332 h_xy[detNb]->Fill(xpos, ypos, ioni);
333 h_zy[detNb]->Fill(zpos, ypos, ioni);
334 ROOT::Math::XYZVector direction = aHit->gettkMomDir();
335 double theta = direction.Theta() * TMath::RadToDeg();
336 double phi = direction.Phi() * TMath::RadToDeg();
337
338 if ((-m_ChipColumnX < xpos && xpos < m_ChipColumnX) &&
339 (-m_ChipRowY < ypos && ypos < m_ChipRowY) &&
340 (0. < zpos && zpos < m_z_DG)) {
341 //edgeArray].push_back(1);
342 } else {
343 //edgeArray[i].push_back(0);
344 //EdgeCut[detNb] = false;
345 }
346
347 if (pid_old[detNb] != PDGid) {
348 if (esum[detNb] > 0) {
349 esumArray[detNb].push_back(esum[detNb]);
350 ROOT::Math::XYZVector BeginPoint;
351 BeginPoint.SetXYZ(xpos, ypos, zpos);
352 double trl0 = BeginPoint.Dot(direction.Unit());
353 double trl1 = EndPoint.Dot(direction.Unit());
354 trlArray[detNb].push_back(fabs(trl0 - trl1));
355 /*
356 double trl = fabs(trl0 - trl1);
357 double ioniz = esum[detNb];
358 if (PDGid == 1000080160) {
359 h_ttvp_O[detNb]->Fill(theta, phi);
360 h_tevtrl_O[detNb]->Fill(ioniz, trl);
361 }
362 if (PDGid == 1000060120) {
363 h_ttvp_C[detNb]->Fill(theta, phi);
364 h_tevtrl_C[detNb]->Fill(ioniz, trl);
365 }
366 if (PDGid == 1000020040) {
367 h_ttvp_He[detNb]->Fill(theta, phi);
368 h_tevtrl_He[detNb]->Fill(ioniz, trl);
369 }
370 if (PDGid == Const::proton.getPDGCode()) {
371 h_ttvp_p[detNb]->Fill(theta, phi);
372 h_tevtrl_p[detNb]->Fill(ioniz, trl);
373 }
374 if (fabs(PDGid) == Const::electron.getPDGCode() || PDGid == Const::photon.getPDGCode()) {
375 h_ttvp_x[detNb]->Fill(theta, phi);
376 h_tevtrl_x[detNb]->Fill(ioniz, trl);
377 }
378 h_ttvp[detNb]->Fill(theta, phi);
379 h_tevtrl[detNb]->Fill(ioniz, trl);
380
381 if (EdgeCut[detNb]) {
382 if (PDGid == 1000020040) {
383 h_ttvp_He_pure[detNb]->Fill(theta, phi);
384 h_twtvp_He_pure[detNb]->Fill(theta, phi, ioniz);
385 h_tevtrl_He_pure[detNb]->Fill(ioni, trl);
386 }
387 }
388 */
389
390 thetaArray[detNb].push_back(theta);
391 phiArray[detNb].push_back(phi);
392 pidArray[detNb].push_back(PDGid);
393
394 }
395 pid_old[detNb] = PDGid;
396 esum[detNb] = 0;
397
398 } else {
399 esum[detNb] += ioni;
400 EndPoint.SetXYZ(xpos, ypos, zpos);
401 }
402 }
403 }
404 /*
405 for (int i = 0; i < 8; i++) {
406
407 for (int j = 0; j < (int)phiArray[i].size(); j++) {
408 //if (EdgeCut[i]) {
409 double phi = phiArray[i][j];
410 double theta = thetaArray[i][j];
411 int PDGid = pidArray[i][j];
412 double ioni = esumArray[i][j];
413 double trl = trlArray[i][j];
414 if (PDGid == 1000080160) {
415 h_ttvp_O[i]->Fill(theta, phi);
416 h_tevtrl_O[i]->Fill(ioni, trl);
417 }
418 if (PDGid == 1000060120) {
419 h_ttvp_C[i]->Fill(theta, phi);
420 h_tevtrl_C[i]->Fill(ioni, trl);
421 }
422 if (PDGid == 1000020040) {
423 h_ttvp_He[i]->Fill(theta, phi);
424 h_tevtrl_He[i]->Fill(ioni, trl);
425 }
426 if (PDGid == Const::proton.getPDGCode()) {
427 h_ttvp_p[i]->Fill(theta, phi);
428 h_tevtrl_p[i]->Fill(ioni, trl);
429 }
430 if (fabs(PDGid) == Const::electron.getPDGCode() || PDGid == Const::photon.getPDGCode()) {
431 h_ttvp_x[i]->Fill(theta, phi);
432 h_tevtrl_x[i]->Fill(ioni, trl);
433 }
434 h_ttvp[i]->Fill(theta, phi);
435 h_tevtrl[i]->Fill(ioni, trl);
436
437 if (EdgeCut[i]) {
438 //if (PDGid == 1000020040) {
439 h_ttvp_He_pure[i]->Fill(theta, phi);
440 h_twtvp_He_pure[i]->Fill(theta, phi, ioni);
441 h_tevtrl_He_pure[i]->Fill(ioni, trl);
442 //}
443 }
444 //}
445 }
446 }
447 */
448 int trID = 0;
449 for (const auto& mcpart : mcparts) { // start loop over all Tracks
450 const double energy = mcpart.getEnergy();
451 const double mass = mcpart.getMass();
452 double kin = energy - mass;
453 const double PDG = mcpart.getPDG();
454 const ROOT::Math::XYZVector vtx = mcpart.getProductionVertex();
455 const ROOT::Math::XYZVector mom = mcpart.getMomentum();
456 double theta = mom.Theta() * TMath::RadToDeg();
457 double phi = mom.Phi() * TMath::RadToDeg();
458 double z = vtx.Z();
459 double r = sqrt(vtx.X() * vtx.X() + vtx.Y() * vtx.Y());
460 int partID[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
461 if (trID == mcpart.getTrackID()) continue;
462 else trID = mcpart.getTrackID();
463 int detNb = -1;
464 // int nhit = 0; // unused variable
465 for (const auto& sHit : SimHits) {
466 if (sHit.gettkID() == trID) {
467 detNb = sHit.getdetNb(); // nhit++;
468 kin = sHit.gettkKEnergy() / 1000;
469 }
470 }
471
472 // the only part that is actually used at the moment // Santelj 28.2.2019
473 if (PDG == Const::neutron.getPDGCode()) {
474 double trlen = abs(2. / TMath::Sin(mom.Theta()));
475 if (trlen > 10) trlen = 10.;
476 int irecoil = 0;
477 for (auto fract : m_maxEnFrac) { // loop over all recoils in beast/microtpc/data/MICROTPC-recoilProb.xml
478 double recoil = gRandom->Uniform(fract) * kin * 1e3; // calculate recoil energy
479 double weight = m_intProb[irecoil]->Eval(kin * 1e3) * trlen; // weight - interaction probability * track length
480 if (weight < 0) weight = 0;
481 h_mctpc_recoil[irecoil]->Fill(ring_section, detNb, recoil); // fill recoil energy
482 h_mctpc_recoilW[irecoil]->Fill(ring_section, detNb, recoil, weight); // fill weighted recoil energy
483 // std::cout << ring_section << " " << detNb << " " << recoil << " " << weight << std::endl;
484 irecoil++;
485 }
486 }
487 //------------------------------------------------------
488
489 if (PDG == Const::electron.getPDGCode()) partID[0] = 1; //positron
490 else if (PDG == -Const::electron.getPDGCode()) partID[1] = 1; //electron
491 else if (PDG == Const::photon.getPDGCode()) partID[2] = 1; //photon
492 else if (PDG == Const::neutron.getPDGCode()) partID[3] = 1; //neutron
493 else if (PDG == Const::proton.getPDGCode()) partID[4] = 1; //proton
494 else if (PDG == 1000080160) partID[5] = 1; // O
495 else if (PDG == 1000060120) partID[6] = 1; // C
496 else if (PDG == 1000020040) partID[7] = 1; // He
497 else partID[8] = 1;
498
499 if (PDG == Const::neutron.getPDGCode()) {
500
501 if (r < 10.0) {
502 h_mctpc_kinetic[9]->Fill(detNb, kin);
503 h_mctpc_kinetic_zoom[9]->Fill(detNb, kin * 1e3);
504 h_mctpc_tvp[9]->Fill(theta, phi);
505 h_mctpc_tvpW[9]->Fill(theta, phi, kin);
506 h_mctpc_zr[9]->Fill(z, r);
507 }
508 if (r > 70.0) {
509 h_mctpc_kinetic[10]->Fill(detNb, kin);
510 h_mctpc_kinetic_zoom[10]->Fill(detNb, kin * 1e3);
511 h_mctpc_tvp[10]->Fill(theta, phi);
512 h_mctpc_tvpW[10]->Fill(theta, phi, kin);
513 h_mctpc_zr[10]->Fill(z, r);
514 }
515 }
516
517 for (int i = 0; i < 9; i++) {
518 if (partID[i] == 1) {
519 h_mctpc_kinetic[i]->Fill(detNb, kin);
520 h_mctpc_kinetic_zoom[i]->Fill(detNb, kin * 1e3);
521 h_mctpc_tvp[i]->Fill(theta, phi);
522 h_mctpc_tvpW[i]->Fill(theta, phi, kin);
523 h_mctpc_zr[i]->Fill(z, r);
524 }
525 }
526 }
527
528 //number of Tracks
529 //int nTracks = Tracks.getEntries();
530
531 //loop over all Tracks
532 for (const auto& aTrack : Tracks) { // start loop over all Tracks
533 const int detNb = aTrack.getdetNb();
534 const float phi = aTrack.getphi();
535 const float theta = aTrack.gettheta();
536 const float trl = aTrack.gettrl();
537 const float tesum = aTrack.getesum();
538 const int pixnb = aTrack.getpixnb();
539 //const int time_range = aTrack.gettime_range();
540 int side[16];
541 for (int j = 0; j < 16; j++) {
542 side[j] = 0;
543 side[j] = aTrack.getside()[j];
544 }
545 Bool_t EdgeCuts = false;
546 if (side[0] == 0 && side[1] == 0 && side[2] == 0 && side[3] == 0) EdgeCuts = true;
547 Bool_t Asource = false;
548 if (side[4] == 2 && side[5] == 2) Asource = true;
549 //Bool_t Goodtrk = false;
550 //if (2.015 < trl && trl < 2.03) Goodtrk = true;
551 //Bool_t GoodAngle = false;
552 //if (88.5 < theta && theta < 91.5) GoodAngle = true;
553 int partID[7];
554 partID[0] = 1; //[0] for all events
555 for (int j = 0; j < 6; j++) partID[j + 1] = aTrack.getpartID()[j];
556
557 if (ORec[detNb] || CRec[detNb] || HeRec[detNb])
558 h_tpc_rate[0]->Fill(detNb);
559 if (pRec[detNb])
560 h_tpc_rate[1]->Fill(detNb);
561 if (xRec[detNb])
562 h_tpc_rate[2]->Fill(detNb);
563
564 if (EdgeCuts) {
565 if (ORec[detNb] || CRec[detNb] || HeRec[detNb])
566 h_tpc_rate[3]->Fill(detNb);
567 if (pRec[detNb])
568 h_tpc_rate[4]->Fill(detNb);
569 if (xRec[detNb])
570 h_tpc_rate[5]->Fill(detNb);
571 }
572
573 h_evtrl[detNb]->Fill(tesum, trl);
574 h_tvp[detNb]->Fill(theta, phi);
575 h_wtvp[detNb]->Fill(theta, phi, tesum);
576 h_Wtvp1[detNb][0]->Fill(theta, phi, rate);
577 h_Wevtrl1[detNb][0]->Fill(tesum, trl, rate);
578 h_Wtvp2[detNb][0]->Fill(theta, phi, rate * tesum);
579 //h_Wevtrl1[detNb][0]->Fill(tesum, trl, rate);
580 if (EdgeCuts && pixnb > 10. && tesum > 10.) {
581 h_evtrlb[detNb]->Fill(tesum, trl);
582 h_tvpb[detNb]->Fill(theta, phi);
583 h_wtvpb[detNb]->Fill(theta, phi, tesum);
584 h_Wtvp1[detNb][1]->Fill(theta, phi, rate);
585 h_Wevtrl1[detNb][1]->Fill(tesum, trl, rate);
586 h_Wtvp2[detNb][1]->Fill(theta, phi, rate * tesum);
587 }
588
589 for (int j = 0; j < 7; j++) {
590 if (j == 3 && !EdgeCuts && (partID[1] == 1 || partID[2] == 1 || partID[4] == 1 || partID[5] == 1 || partID[6] == 1)) partID[j] = 0;
591 if ((j == 4 || j == 5) && !Asource) partID[j] = 0;
592 if (partID[j] == 1) {
593 h_Wtvp1[detNb][2 + j]->Fill(theta, phi, rate);
594 h_Wevtrl1[detNb][2 + j]->Fill(tesum, trl, rate);
595 h_Wtvp2[detNb][2 + j]->Fill(theta, phi, rate * tesum);
596 if (j == 0) {
597 h_evtrlc[detNb]->Fill(tesum, trl);
598 h_tvpc[detNb]->Fill(theta, phi);
599 h_wtvpc[detNb]->Fill(theta, phi, tesum);
600 }
601 if (j == 1) {
602 h_evtrld[detNb]->Fill(tesum, trl);
603 h_tvpd[detNb]->Fill(theta, phi);
604 h_wtvpd[detNb]->Fill(theta, phi, tesum);
605 }
606 if (j == 2) {
607 h_evtrl_x[detNb]->Fill(tesum, trl);
608 h_tvp_x[detNb]->Fill(theta, phi);
609 h_wtvp_x[detNb]->Fill(theta, phi, tesum);
610 }
611 if (j == 3) {
612 h_evtrl_p[detNb]->Fill(tesum, trl);
613 h_tvp_p[detNb]->Fill(theta, phi);
614 h_wtvp_p[detNb]->Fill(theta, phi, tesum);
615 }
616 if (j == 4) {
617 h_evtrl_x[detNb]->Fill(tesum, trl);
618 h_tvp_x[detNb]->Fill(theta, phi);
619 h_wtvp_x[detNb]->Fill(theta, phi, tesum);
620 }
621 if (j == 5) {
622 h_evtrl_He[detNb]->Fill(tesum, trl);
623 h_tvp_He[detNb]->Fill(theta, phi);
624 h_wtvp_He[detNb]->Fill(theta, phi, tesum);
625 }
626 if (j == 6) {
627 h_evtrl_Hex[detNb]->Fill(tesum, trl);
628 h_tvp_Hex[detNb]->Fill(theta, phi);
629 h_wtvp_Hex[detNb]->Fill(theta, phi, tesum);
630 }
631 }
632 }
633 }
634
635 eventNum++;
636
637 //delete
638 delete [] phiArray;
639 delete [] thetaArray;
640 delete [] pidArray;
641 //delete [] edgeArray;
642 delete [] esumArray;
643 delete [] trlArray;
644
645}
int getPDGCode() const
PDG code.
Definition: Const.h:473
static const ParticleType neutron
neutron particle
Definition: Const.h:675
static const ChargedStable proton
proton particle
Definition: Const.h:663
static const ParticleType photon
photon particle
Definition: Const.h:673
static const ChargedStable electron
electron particle
Definition: Const.h:659
ClassMicrotpcSimHit - Geant4 simulated hit for the Microtpc detector.
float getEnergyDep() const
Return the energy deposition in electrons.
ROOT::Math::XYZVector gettkPos() const
Return the track position.
float getdetNb() const
Return the TPC number.
float getEnergyNiel() const
Return the non-ionization energy in electrons.
ROOT::Math::XYZVector gettkMomDir() const
Return the track momentum direction.
int gettkPDG() const
Return the PDG number of the track.
Accessor to arrays stored in the data store.
Definition: StoreArray.h:113
int getEntries() const
Get the number of objects in the array.
Definition: StoreArray.h:216
Bool_t HeRec[8]
He boolean per TPC.
std::vector< double > m_maxEnFrac
vector of maximal energy fraction transferred to recoil
std::vector< TGraph * > m_intProb
vector of interaction probability vs E graphs for all recoils
Bool_t xRec[8]
X-ray boolean per TPC.
std::vector< ROOT::Math::XYZVector > TPCCenter
TPC coordinate.
double sqrt(double a)
sqrt for double
Definition: beamHelpers.h:28

◆ exposePythonAPI()

void exposePythonAPI ( )
staticinherited

Exposes methods of the Module class to Python.

Definition at line 325 of file Module.cc.

326{
327 // to avoid confusion between std::arg and boost::python::arg we want a shorthand namespace as well
328 namespace bp = boost::python;
329
330 docstring_options options(true, true, false); //userdef, py sigs, c++ sigs
331
332 void (Module::*setReturnValueInt)(int) = &Module::setReturnValue;
333
334 enum_<Module::EAfterConditionPath>("AfterConditionPath",
335 R"(Determines execution behaviour after a conditional path has been executed:
336
337.. attribute:: END
338
339 End processing of this path after the conditional path. (this is the default for if_value() etc.)
340
341.. attribute:: CONTINUE
342
343 After the conditional path, resume execution after this module.)")
344 .value("END", Module::EAfterConditionPath::c_End)
345 .value("CONTINUE", Module::EAfterConditionPath::c_Continue)
346 ;
347
348 /* Do not change the names of >, <, ... we use them to serialize conditional paths */
349 enum_<Belle2::ModuleCondition::EConditionOperators>("ConditionOperator")
356 ;
357
358 enum_<Module::EModulePropFlags>("ModulePropFlags",
359 R"(Flags to indicate certain low-level features of modules, see :func:`Module.set_property_flags()`, :func:`Module.has_properties()`. Most useful flags are:
360
361.. attribute:: PARALLELPROCESSINGCERTIFIED
362
363 This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)
364
365.. attribute:: HISTOGRAMMANAGER
366
367 This module is used to manage histograms accumulated by other modules
368
369.. attribute:: TERMINATEINALLPROCESSES
370
371 When using parallel processing, call this module's terminate() function in all processes. This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.
372)")
373 .value("INPUT", Module::EModulePropFlags::c_Input)
374 .value("OUTPUT", Module::EModulePropFlags::c_Output)
375 .value("PARALLELPROCESSINGCERTIFIED", Module::EModulePropFlags::c_ParallelProcessingCertified)
376 .value("HISTOGRAMMANAGER", Module::EModulePropFlags::c_HistogramManager)
377 .value("INTERNALSERIALIZER", Module::EModulePropFlags::c_InternalSerializer)
378 .value("TERMINATEINALLPROCESSES", Module::EModulePropFlags::c_TerminateInAllProcesses)
379 ;
380
381 //Python class definition
382 class_<Module, PyModule> module("Module", R"(
383Base class for Modules.
384
385A module is the smallest building block of the framework.
386A typical event processing chain consists of a Path containing
387modules. By inheriting from this base class, various types of
388modules can be created. To use a module, please refer to
389:func:`Path.add_module()`. A list of modules is available by running
390``basf2 -m`` or ``basf2 -m package``, detailed information on parameters is
391given by e.g. ``basf2 -m RootInput``.
392
393The 'Module Development' section in the manual provides detailed information
394on how to create modules, setting parameters, or using return values/conditions:
395https://xwiki.desy.de/xwiki/rest/p/f4fa4/#HModuleDevelopment
396
397)");
398 module
399 .def("__str__", &Module::getPathString)
400 .def("name", &Module::getName, return_value_policy<copy_const_reference>(),
401 "Returns the name of the module. Can be changed via :func:`set_name() <Module.set_name()>`, use :func:`type() <Module.type()>` for identifying a particular module class.")
402 .def("type", &Module::getType, return_value_policy<copy_const_reference>(),
403 "Returns the type of the module (i.e. class name minus 'Module')")
404 .def("set_name", &Module::setName, args("name"), R"(
405Set custom name, e.g. to distinguish multiple modules of the same type.
406
407>>> path.add_module('EventInfoSetter')
408>>> ro = path.add_module('RootOutput', branchNames=['EventMetaData'])
409>>> ro.set_name('RootOutput_metadata_only')
410>>> print(path)
411[EventInfoSetter -> RootOutput_metadata_only]
412
413)")
414 .def("description", &Module::getDescription, return_value_policy<copy_const_reference>(),
415 "Returns the description of this module.")
416 .def("package", &Module::getPackage, return_value_policy<copy_const_reference>(),
417 "Returns the package this module belongs to.")
418 .def("available_params", &_getParamInfoListPython,
419 "Return list of all module parameters as `ModuleParamInfo` instances")
420 .def("has_properties", &Module::hasProperties, (bp::arg("properties")),
421 R"DOCSTRING(Allows to check if the module has the given properties out of `ModulePropFlags` set.
422
423>>> if module.has_properties(ModulePropFlags.PARALLELPROCESSINGCERTIFIED):
424>>> ...
425
426Parameters:
427 properties (int): bitmask of `ModulePropFlags` to check for.
428)DOCSTRING")
429 .def("set_property_flags", &Module::setPropertyFlags, args("property_mask"),
430 "Set module properties in the form of an OR combination of `ModulePropFlags`.");
431 {
432 // python signature is too crowded, make ourselves
433 docstring_options subOptions(true, false, false); //userdef, py sigs, c++ sigs
434 module
435 .def("if_value", &Module::if_value,
436 (bp::arg("expression"), bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
437 R"DOCSTRING(if_value(expression, condition_path, after_condition_path=AfterConditionPath.END)
438
439Sets a conditional sub path which will be executed after this
440module if the return value set in the module passes the given ``expression``.
441
442Modules can define a return value (int or bool) using ``setReturnValue()``,
443which can be used in the steering file to split the Path based on this value, for example
444
445>>> module_with_condition.if_value("<1", another_path)
446
447In case the return value of the ``module_with_condition`` for a given event is
448less than 1, the execution will be diverted into ``another_path`` for this event.
449
450You could for example set a special return value if an error occurs, and divert
451the execution into a path containing :b2:mod:`RootOutput` if it is found;
452saving only the data producing/produced by the error.
453
454After a conditional path has executed, basf2 will by default stop processing
455the path for this event. This behaviour can be changed by setting the
456``after_condition_path`` argument.
457
458Parameters:
459 expression (str): Expression to determine if the conditional path should be executed.
460 This should be one of the comparison operators ``<``, ``>``, ``<=``,
461 ``>=``, ``==``, or ``!=`` followed by a numerical value for the return value
462 condition_path (Path): path to execute in case the expression is fulfilled
463 after_condition_path (AfterConditionPath): What to do once the ``condition_path`` has been executed.
464)DOCSTRING")
465 .def("if_false", &Module::if_false,
466 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
467 R"DOC(if_false(condition_path, after_condition_path=AfterConditionPath.END)
468
469Sets a conditional sub path which will be executed after this module if
470the return value of the module evaluates to False. This is equivalent to
471calling `if_value` with ``expression=\"<1\"``)DOC")
472 .def("if_true", &Module::if_true,
473 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
474 R"DOC(if_true(condition_path, after_condition_path=AfterConditionPath.END)
475
476Sets a conditional sub path which will be executed after this module if
477the return value of the module evaluates to True. It is equivalent to
478calling `if_value` with ``expression=\">=1\"``)DOC");
479 }
480 module
481 .def("has_condition", &Module::hasCondition,
482 "Return true if a conditional path has been set for this module "
483 "using `if_value`, `if_true` or `if_false`")
484 .def("get_all_condition_paths", &_getAllConditionPathsPython,
485 "Return a list of all conditional paths set for this module using "
486 "`if_value`, `if_true` or `if_false`")
487 .def("get_all_conditions", &_getAllConditionsPython,
488 "Return a list of all conditional path expressions set for this module using "
489 "`if_value`, `if_true` or `if_false`")
490 .add_property("logging", make_function(&Module::getLogConfig, return_value_policy<reference_existing_object>()),
@ c_GE
Greater or equal than: ">=".
@ c_SE
Smaller or equal than: "<=".
@ c_GT
Greater than: ">"
@ c_NE
Not equal: "!=".
@ c_EQ
Equal: "=" or "=="
@ c_ST
Smaller than: "<"
Base class for Modules.
Definition: Module.h:72
LogConfig & getLogConfig()
Returns the log system configuration.
Definition: Module.h:224
void if_value(const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
Add a condition to the module.
Definition: Module.cc:79
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
Definition: Module.cc:208
void if_true(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to set the condition of the module.
Definition: Module.cc:90
void setReturnValue(int value)
Sets the return value for this module as integer.
Definition: Module.cc:220
void setLogConfig(const LogConfig &logConfig)
Set the log system configuration.
Definition: Module.h:229
const std::string & getDescription() const
Returns the description of the module.
Definition: Module.h:201
void if_false(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to add a condition to the module.
Definition: Module.cc:85
bool hasCondition() const
Returns true if at least one condition was set for the module.
Definition: Module.h:310
const std::string & getPackage() const
Returns the package this module is in.
Definition: Module.h:196
void setName(const std::string &name)
Set the name of the module.
Definition: Module.h:213
bool hasProperties(unsigned int propertyFlags) const
Returns true if all specified property flags are available in this module.
Definition: Module.cc:160
std::string getPathString() const override
return the module name.
Definition: Module.cc:192

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 133 of file Module.cc.

134{
135 if (m_conditions.empty()) return EAfterConditionPath::c_End;
136
137 //okay, a condition was set for this Module...
138 if (!m_hasReturnValue) {
139 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
140 }
141
142 for (const auto& condition : m_conditions) {
143 if (condition.evaluate(m_returnValue)) {
144 return condition.getAfterConditionPath();
145 }
146 }
147
148 return EAfterConditionPath::c_End;
149}

◆ getAllConditionPaths()

std::vector< std::shared_ptr< Path > > getAllConditionPaths ( ) const
inherited

Return all condition paths currently set (no matter if the condition is true or not).

Definition at line 150 of file Module.cc.

151{
152 std::vector<std::shared_ptr<Path>> allConditionPaths;
153 for (const auto& condition : m_conditions) {
154 allConditionPaths.push_back(condition.getPath());
155 }
156
157 return allConditionPaths;
158}

◆ getAllConditions()

const std::vector< ModuleCondition > & getAllConditions ( ) const
inlineinherited

Return all set conditions for this module.

Definition at line 323 of file Module.h.

324 {
325 return m_conditions;
326 }

◆ getCondition()

const ModuleCondition * getCondition ( ) const
inlineinherited

Return a pointer to the first condition (or nullptr, if none was set)

Definition at line 313 of file Module.h.

314 {
315 if (m_conditions.empty()) {
316 return nullptr;
317 } else {
318 return &m_conditions.front();
319 }
320 }

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 113 of file Module.cc.

114{
115 PathPtr p;
116 if (m_conditions.empty()) return p;
117
118 //okay, a condition was set for this Module...
119 if (!m_hasReturnValue) {
120 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
121 }
122
123 for (const auto& condition : m_conditions) {
124 if (condition.evaluate(m_returnValue)) {
125 return condition.getPath();
126 }
127 }
128
129 // if none of the conditions were true, return a null pointer.
130 return p;
131}
std::shared_ptr< Path > PathPtr
Defines a pointer to a path object as a boost shared pointer.
Definition: Path.h:35

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Returns the description of the module.

Definition at line 201 of file Module.h.

201{return m_description;}
std::string m_description
The description of the module.
Definition: Module.h:510

◆ getFileNames()

virtual std::vector< std::string > getFileNames ( bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Reimplemented in RootInputModule, StorageRootOutputModule, and RootOutputModule.

Definition at line 133 of file Module.h.

134 {
135 return std::vector<std::string>();
136 }

◆ getLogConfig()

LogConfig & getLogConfig ( )
inlineinherited

Returns the log system configuration.

Definition at line 224 of file Module.h.

224{return m_logConfig;}

◆ getModules()

std::list< ModulePtr > getModules ( ) const
inlineoverrideprivatevirtualinherited

no submodules, return empty list

Implements PathElement.

Definition at line 505 of file Module.h.

505{ return std::list<ModulePtr>(); }

◆ getName()

const std::string & getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 186 of file Module.h.

186{return m_name;}
std::string m_name
The name of the module, saved as a string (user-modifiable)
Definition: Module.h:507

◆ getPackage()

const std::string & getPackage ( ) const
inlineinherited

Returns the package this module is in.

Definition at line 196 of file Module.h.

196{return m_package;}

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 279 of file Module.cc.

280{
282}
std::shared_ptr< boost::python::list > getParamInfoListPython() const
Returns a python list of all parameters.
ModuleParamList m_moduleParamList
List storing and managing all parameter of the module.
Definition: Module.h:515

◆ getParamList()

const ModuleParamList & getParamList ( ) const
inlineinherited

Return module param list.

Definition at line 362 of file Module.h.

362{ return m_moduleParamList; }

◆ getPathString()

std::string getPathString ( ) const
overrideprivatevirtualinherited

return the module name.

Implements PathElement.

Definition at line 192 of file Module.cc.

193{
194
195 std::string output = getName();
196
197 for (const auto& condition : m_conditions) {
198 output += condition.getString();
199 }
200
201 return output;
202}

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 380 of file Module.h.

380{ return m_returnValue; }

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 41 of file Module.cc.

42{
43 if (m_type.empty())
44 B2FATAL("Module type not set for " << getName());
45 return m_type;
46}
std::string m_type
The type of the module, saved as a string.
Definition: Module.h:508

◆ getXMLData()

void getXMLData ( )
privatevirtual

reads data from MICROTPC.xml: tube location, drift data filename, sigma of impulse response function

Definition at line 647 of file MicrotpcStudyModule.cc.

648{
649 GearDir content = GearDir("/Detector/DetectorComponent[@name=\"MICROTPC\"]/Content/");
650
651 //get the location of the tubes
652 for (const GearDir& activeParams : content.getNodes("Active")) {
653
654 TPCCenter.push_back(ROOT::Math::XYZVector(activeParams.getLength("TPCpos_x"),
655 activeParams.getLength("TPCpos_y"),
656 activeParams.getLength("TPCpos_z")));
657 nTPC++;
658 }
659
660 m_ChipColumnNb = content.getInt("ChipColumnNb");
661 m_ChipRowNb = content.getInt("ChipRowNb");
662 m_ChipColumnX = content.getDouble("ChipColumnX");
663 m_ChipRowY = content.getDouble("ChipRowY");
664 m_z_DG = content.getDouble("z_DG");
665
666 GearDir content2 = GearDir("/Detector/DetectorComponent[@name=\"MICROTPC\"]/Content/RecoilProbability");
667 for (const GearDir& recoil : content2.getNodes("Recoil")) {
668 m_maxEnFrac.push_back(recoil.getDouble("Fraction"));
669 istringstream probstream;
670 double e, prob;
671 probstream.str(recoil.getString("Probability"));
672 TGraph* gr = new TGraph();
673 int i = 0;
674 while (probstream >> e >> prob) {
675 gr->SetPoint(i, e, prob);
676 i++;
677 }
678 m_intProb.push_back(gr);
679 }
680
681 B2INFO("TpcDigitizer: Acquired tpc locations and gas parameters");
682 B2INFO(" from MICROTPC.xml. There are " << nTPC << " TPCs implemented");
683
684}
GearDir is the basic class used for accessing the parameter store.
Definition: GearDir.h:31
std::vector< GearDir > getNodes(const std::string &path="") const
Get vector of GearDirs which point to all the nodes the given path evaluates to.
Definition: Interface.cc:21

◆ hasCondition()

bool hasCondition ( ) const
inlineinherited

Returns true if at least one condition was set for the module.

Definition at line 310 of file Module.h.

310{ return not m_conditions.empty(); };

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 160 of file Module.cc.

161{
162 return (propertyFlags & m_propertyFlags) == propertyFlags;
163}

◆ hasReturnValue()

bool hasReturnValue ( ) const
inlineinherited

Return true if this module has a valid return value set.

Definition at line 377 of file Module.h.

377{ return m_hasReturnValue; }

◆ hasUnsetForcedParams()

bool hasUnsetForcedParams ( ) const
inherited

Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.

Definition at line 166 of file Module.cc.

167{
169 std::string allMissing = "";
170 for (const auto& s : missing)
171 allMissing += s + " ";
172 if (!missing.empty())
173 B2ERROR("The following required parameters of Module '" << getName() << "' were not specified: " << allMissing <<
174 "\nPlease add them to your steering file.");
175 return !missing.empty();
176}
std::vector< std::string > getUnsetForcedParams() const
Returns list of unset parameters (if they are required to have a value.

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 85 of file Module.cc.

86{
87 if_value("<1", path, afterConditionPath);
88}

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 90 of file Module.cc.

91{
92 if_value(">=1", path, afterConditionPath);
93}

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://xwiki.desy.de/xwiki/rest/p/a94f2 or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 79 of file Module.cc.

80{
81 m_conditions.emplace_back(expression, path, afterConditionPath);
82}

◆ initialize()

void initialize ( void  )
overridevirtual

Initialize the Module.

This method is called at the beginning of data processing.

Reimplemented from HistoModule.

Definition at line 231 of file MicrotpcStudyModule.cc.

232{
233 B2INFO("MicrotpcStudyModule: Initialize");
234
235 //read microtpc xml file
236 getXMLData();
237
238 REG_HISTOGRAM
239
240 //convert sample time into rate in Hz
241 //rateCorrection = m_sampletime / 1e6;
242}
virtual void getXMLData()
reads data from MICROTPC.xml: tube location, drift data filename, sigma of impulse response function

◆ setAbortLevel()

void setAbortLevel ( int  abortLevel)
inherited

Configure the abort log level.

Definition at line 67 of file Module.cc.

68{
69 m_logConfig.setAbortLevel(static_cast<LogConfig::ELogLevel>(abortLevel));
70}
ELogLevel
Definition of the supported log levels.
Definition: LogConfig.h:26
void setAbortLevel(ELogLevel abortLevel)
Configure the abort level.
Definition: LogConfig.h:112

◆ setDebugLevel()

void setDebugLevel ( int  debugLevel)
inherited

Configure the debug messaging level.

Definition at line 61 of file Module.cc.

62{
63 m_logConfig.setDebugLevel(debugLevel);
64}
void setDebugLevel(int debugLevel)
Configure the debug messaging level.
Definition: LogConfig.h:98

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 214 of file Module.cc.

215{
216 m_description = description;
217}

◆ setLogConfig()

void setLogConfig ( const LogConfig logConfig)
inlineinherited

Set the log system configuration.

Definition at line 229 of file Module.h.

229{m_logConfig = logConfig;}

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 73 of file Module.cc.

74{
75 m_logConfig.setLogInfo(static_cast<LogConfig::ELogLevel>(logLevel), logInfo);
76}
void setLogInfo(ELogLevel logLevel, unsigned int logInfo)
Configure the printed log information for the given level.
Definition: LogConfig.h:127

◆ setLogLevel()

void setLogLevel ( int  logLevel)
inherited

Configure the log level.

Definition at line 55 of file Module.cc.

56{
57 m_logConfig.setLogLevel(static_cast<LogConfig::ELogLevel>(logLevel));
58}
void setLogLevel(ELogLevel logLevel)
Configure the log level.
Definition: LogConfig.cc:25

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 213 of file Module.h.

213{ m_name = name; };

◆ setParamList()

void setParamList ( const ModuleParamList params)
inlineprotectedinherited

Replace existing parameter list.

Definition at line 500 of file Module.h.

500{ m_moduleParamList = params; }

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 234 of file Module.cc.

235{
236 LogSystem& logSystem = LogSystem::Instance();
237 logSystem.updateModule(&(getLogConfig()), getName());
238 try {
240 } catch (std::runtime_error& e) {
241 throw std::runtime_error("Cannot set parameter '" + name + "' for module '"
242 + m_name + "': " + e.what());
243 }
244
245 logSystem.updateModule(nullptr);
246}
Class for logging debug, info and error messages.
Definition: LogSystem.h:46
void updateModule(const LogConfig *moduleLogConfig=nullptr, const std::string &moduleName="")
Sets the log configuration to the given module log configuration and sets the module name This method...
Definition: LogSystem.h:191
static LogSystem & Instance()
Static method to get a reference to the LogSystem instance.
Definition: LogSystem.cc:28
void setParamPython(const std::string &name, const PythonObject &pyObj)
Implements a method for setting boost::python objects.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 249 of file Module.cc.

250{
251
252 LogSystem& logSystem = LogSystem::Instance();
253 logSystem.updateModule(&(getLogConfig()), getName());
254
255 boost::python::list dictKeys = dictionary.keys();
256 int nKey = boost::python::len(dictKeys);
257
258 //Loop over all keys in the dictionary
259 for (int iKey = 0; iKey < nKey; ++iKey) {
260 boost::python::object currKey = dictKeys[iKey];
261 boost::python::extract<std::string> keyProxy(currKey);
262
263 if (keyProxy.check()) {
264 const boost::python::object& currValue = dictionary[currKey];
265 setParamPython(keyProxy, currValue);
266 } else {
267 B2ERROR("Setting the module parameters from a python dictionary: invalid key in dictionary!");
268 }
269 }
270
271 logSystem.updateModule(nullptr);
272}
void setParamPython(const std::string &name, const boost::python::object &pyObj)
Implements a method for setting boost::python objects.
Definition: Module.cc:234

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 208 of file Module.cc.

209{
210 m_propertyFlags = propertyFlags;
211}

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 227 of file Module.cc.

228{
229 m_hasReturnValue = true;
230 m_returnValue = value;
231}

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 220 of file Module.cc.

221{
222 m_hasReturnValue = true;
223 m_returnValue = value;
224}

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 48 of file Module.cc.

49{
50 if (!m_type.empty())
51 B2FATAL("Trying to change module type from " << m_type << " is not allowed, the value is assumed to be fixed.");
52 m_type = type;
53}

◆ terminate()

void terminate ( void  )
overridevirtual

Termination action.

Clean-up, close files, summarize statistics, etc.

Reimplemented from HistoModule.

Definition at line 695 of file MicrotpcStudyModule.cc.

696{
697}

Member Data Documentation

◆ CRec

Bool_t CRec[8]
private

C boolean per TPC.

Definition at line 251 of file MicrotpcStudyModule.h.

◆ h_evtrl

TH2F* h_evtrl[8]
private

Track length v.

energy deposited per TPC

Definition at line 124 of file MicrotpcStudyModule.h.

◆ h_evtrl_C

TH2F* h_evtrl_C[8]
private

Track length v.

energy deposited per TPC for C

Definition at line 142 of file MicrotpcStudyModule.h.

◆ h_evtrl_He

TH2F* h_evtrl_He[8]
private

Track length v.

energy deposited per TPC for He

Definition at line 132 of file MicrotpcStudyModule.h.

◆ h_evtrl_He_pure

TH2F* h_evtrl_He_pure[8]
private

Track length v.

energy deposited per TPC for He w/ edge cuts

Definition at line 136 of file MicrotpcStudyModule.h.

◆ h_evtrl_Hex

TH2F* h_evtrl_Hex[8]
private

Track length v.

energy deposited per TPC for He and x

Definition at line 134 of file MicrotpcStudyModule.h.

◆ h_evtrl_O

TH2F* h_evtrl_O[8]
private

Track length v.

energy deposited per TPC for O

Definition at line 140 of file MicrotpcStudyModule.h.

◆ h_evtrl_p

TH2F* h_evtrl_p[8]
private

Track length v.

energy deposited per TPC for p

Definition at line 138 of file MicrotpcStudyModule.h.

◆ h_evtrl_x

TH2F* h_evtrl_x[8]
private

Track length v.

energy deposited per TPC for X-ray

Definition at line 144 of file MicrotpcStudyModule.h.

◆ h_evtrlb

TH2F* h_evtrlb[8]
private

Track length v.

energy deposited per TPC

Definition at line 126 of file MicrotpcStudyModule.h.

◆ h_evtrlc

TH2F* h_evtrlc[8]
private

Track length v.

energy deposited per TPC

Definition at line 128 of file MicrotpcStudyModule.h.

◆ h_evtrld

TH2F* h_evtrld[8]
private

Track length v.

energy deposited per TPC

Definition at line 130 of file MicrotpcStudyModule.h.

◆ h_mctpc_kinetic

TH2F* h_mctpc_kinetic[20]
private

Neutron kin energy dis.

Definition at line 104 of file MicrotpcStudyModule.h.

◆ h_mctpc_kinetic_zoom

TH2F* h_mctpc_kinetic_zoom[20]
private

Neutron kin energy dis.

Definition at line 106 of file MicrotpcStudyModule.h.

◆ h_mctpc_recoil

TH3F* h_mctpc_recoil[3]
private

recoil energy

Definition at line 219 of file MicrotpcStudyModule.h.

◆ h_mctpc_recoilW

TH3F* h_mctpc_recoilW[3]
private

weighted recoil energy

Definition at line 221 of file MicrotpcStudyModule.h.

◆ h_mctpc_tvp

TH2F* h_mctpc_tvp[20]
private

theta v phi dis

Definition at line 108 of file MicrotpcStudyModule.h.

◆ h_mctpc_tvpW

TH2F* h_mctpc_tvpW[20]
private

theta v phi dis

Definition at line 110 of file MicrotpcStudyModule.h.

◆ h_mctpc_zr

TH2F* h_mctpc_zr[20]
private

r v z

Definition at line 112 of file MicrotpcStudyModule.h.

◆ h_tevtrl

TH2F* h_tevtrl[8]
private

Track length v.

energy deposited per TPC

Definition at line 147 of file MicrotpcStudyModule.h.

◆ h_tevtrl_C

TH2F* h_tevtrl_C[8]
private

Track length v.

energy deposited per TPC for C

Definition at line 159 of file MicrotpcStudyModule.h.

◆ h_tevtrl_He

TH2F* h_tevtrl_He[8]
private

Track length v.

energy deposited per TPC for He

Definition at line 149 of file MicrotpcStudyModule.h.

◆ h_tevtrl_He_pure

TH2F* h_tevtrl_He_pure[8]
private

Track length v.

energy deposited per TPC for He w/ edge cuts

Definition at line 153 of file MicrotpcStudyModule.h.

◆ h_tevtrl_Hex

TH2F* h_tevtrl_Hex[8]
private

Track length v.

energy deposited per TPC for He and x

Definition at line 151 of file MicrotpcStudyModule.h.

◆ h_tevtrl_O

TH2F* h_tevtrl_O[8]
private

Track length v.

energy deposited per TPC for O

Definition at line 157 of file MicrotpcStudyModule.h.

◆ h_tevtrl_p

TH2F* h_tevtrl_p[8]
private

Track length v.

energy deposited per TPC for p

Definition at line 155 of file MicrotpcStudyModule.h.

◆ h_tevtrl_x

TH2F* h_tevtrl_x[8]
private

Track length v.

energy deposited per TPC for X-ray

Definition at line 161 of file MicrotpcStudyModule.h.

◆ h_tpc_rate

TH1F* h_tpc_rate[20]
private

Event counter.

rate

Definition at line 102 of file MicrotpcStudyModule.h.

◆ h_ttvp

TH2F* h_ttvp[8]
private

Phi v.

theta per TPC

Definition at line 193 of file MicrotpcStudyModule.h.

◆ h_ttvp_C

TH2F* h_ttvp_C[8]
private

Phi v.

theta per TPC for C

Definition at line 205 of file MicrotpcStudyModule.h.

◆ h_ttvp_He

TH2F* h_ttvp_He[8]
private

Phi v.

theta per TPC for He

Definition at line 195 of file MicrotpcStudyModule.h.

◆ h_ttvp_He_pure

TH2F* h_ttvp_He_pure[8]
private

Phi v.

theta per TPC for He w/ edge cuts

Definition at line 199 of file MicrotpcStudyModule.h.

◆ h_ttvp_Hex

TH2F* h_ttvp_Hex[8]
private

Phi v.

theta per TPC for He and x

Definition at line 197 of file MicrotpcStudyModule.h.

◆ h_ttvp_O

TH2F* h_ttvp_O[8]
private

Phi v.

theta per TPC for O

Definition at line 203 of file MicrotpcStudyModule.h.

◆ h_ttvp_p

TH2F* h_ttvp_p[8]
private

Phi v.

theta per TPC for p

Definition at line 201 of file MicrotpcStudyModule.h.

◆ h_ttvp_x

TH2F* h_ttvp_x[8]
private

Phi v.

theta per TPC for X-ray

Definition at line 207 of file MicrotpcStudyModule.h.

◆ h_tvp

TH2F* h_tvp[8]
private

Phi v.

theta per TPC

Definition at line 164 of file MicrotpcStudyModule.h.

◆ h_tvp_C

TH2F* h_tvp_C[8]
private

Phi v.

theta per TPC for C

Definition at line 188 of file MicrotpcStudyModule.h.

◆ h_tvp_He

TH2F* h_tvp_He[8]
private

Phi v.

theta per TPC for He

Definition at line 178 of file MicrotpcStudyModule.h.

◆ h_tvp_He_pure

TH2F* h_tvp_He_pure[8]
private

Phi v.

theta per TPC for He w/ edge cuts

Definition at line 182 of file MicrotpcStudyModule.h.

◆ h_tvp_Hex

TH2F* h_tvp_Hex[8]
private

Phi v.

theta per TPC for He and x

Definition at line 180 of file MicrotpcStudyModule.h.

◆ h_tvp_O

TH2F* h_tvp_O[8]
private

Phi v.

theta per TPC for O

Definition at line 186 of file MicrotpcStudyModule.h.

◆ h_tvp_p

TH2F* h_tvp_p[8]
private

Phi v.

theta per TPC for p

Definition at line 184 of file MicrotpcStudyModule.h.

◆ h_tvp_x

TH2F* h_tvp_x[8]
private

Phi v.

theta per TPC for X-ray

Definition at line 190 of file MicrotpcStudyModule.h.

◆ h_tvpb

TH2F* h_tvpb[8]
private

Phi v.

theta per TPC

Definition at line 166 of file MicrotpcStudyModule.h.

◆ h_tvpc

TH2F* h_tvpc[8]
private

Phi v.

theta per TPC

Definition at line 168 of file MicrotpcStudyModule.h.

◆ h_tvpd

TH2F* h_tvpd[8]
private

Phi v.

theta per TPC

Definition at line 170 of file MicrotpcStudyModule.h.

◆ h_twtvp_He_pure

TH2F* h_twtvp_He_pure[8]
private

Phi v.

theta per TPC for He w/ edge cuts weighted

Definition at line 217 of file MicrotpcStudyModule.h.

◆ h_Wevtrl1

TH2F* h_Wevtrl1[8][12]
private

e v l

Definition at line 213 of file MicrotpcStudyModule.h.

◆ h_Wevtrl2

TH2F* h_Wevtrl2[8][12]
private

e v l

Definition at line 215 of file MicrotpcStudyModule.h.

◆ h_wtvp

TH2F* h_wtvp[8]
private

Phi v.

theta, weighted per TPC

Definition at line 227 of file MicrotpcStudyModule.h.

◆ h_Wtvp1

TH2F* h_Wtvp1[8][12]
private

Phi v.

theta

Definition at line 209 of file MicrotpcStudyModule.h.

◆ h_Wtvp2

TH2F* h_Wtvp2[8][12]
private

Phi v.

theta

Definition at line 211 of file MicrotpcStudyModule.h.

◆ h_wtvp_C

TH2F* h_wtvp_C[8]
private

Phi v.

theta, weighted per TPC for C

Definition at line 239 of file MicrotpcStudyModule.h.

◆ h_wtvp_He

TH2F* h_wtvp_He[8]
private

Phi v.

theta, weighted per TPC for He

Definition at line 229 of file MicrotpcStudyModule.h.

◆ h_wtvp_He_pure

TH2F* h_wtvp_He_pure[8]
private

Phi v.

theta, weighted per TPC for He w/ edge cuts

Definition at line 233 of file MicrotpcStudyModule.h.

◆ h_wtvp_Hex

TH2F* h_wtvp_Hex[8]
private

Phi v.

theta, weighted per TPC for He and x

Definition at line 231 of file MicrotpcStudyModule.h.

◆ h_wtvp_O

TH2F* h_wtvp_O[8]
private

Phi v.

theta, weighted per TPC for O

Definition at line 237 of file MicrotpcStudyModule.h.

◆ h_wtvp_p

TH2F* h_wtvp_p[8]
private

Phi v.

theta, weighted per TPC for p

Definition at line 235 of file MicrotpcStudyModule.h.

◆ h_wtvp_x

TH2F* h_wtvp_x[8]
private

Phi v.

theta, weighted per TPC for X-ray

Definition at line 241 of file MicrotpcStudyModule.h.

◆ h_wtvpb

TH2F* h_wtvpb[8]
private

Phi v.

theta per TPC

Definition at line 172 of file MicrotpcStudyModule.h.

◆ h_wtvpc

TH2F* h_wtvpc[8]
private

Phi v.

theta per TPC

Definition at line 174 of file MicrotpcStudyModule.h.

◆ h_wtvpd

TH2F* h_wtvpd[8]
private

Phi v.

theta per TPC

Definition at line 176 of file MicrotpcStudyModule.h.

◆ h_xy

TH2F* h_xy[8]
private

Charged density vs x vs y.

Definition at line 116 of file MicrotpcStudyModule.h.

◆ h_z

TH1F* h_z[8]
private

Charged density vs z vs section.

Definition at line 114 of file MicrotpcStudyModule.h.

◆ h_zr

TH2F* h_zr[8]
private

Charged density vs z vs r.

Definition at line 118 of file MicrotpcStudyModule.h.

◆ h_zx

TH2F* h_zx[8]
private

Charged density vs x vs r.

Definition at line 120 of file MicrotpcStudyModule.h.

◆ h_zy

TH2F* h_zy[8]
private

Charged density vs y vs r.

Definition at line 122 of file MicrotpcStudyModule.h.

◆ HeRec

Bool_t HeRec[8]
private

He boolean per TPC.

Definition at line 247 of file MicrotpcStudyModule.h.

◆ m_ChipColumnNb

int m_ChipColumnNb
private

Chip column number.

Definition at line 86 of file MicrotpcStudyModule.h.

◆ m_ChipColumnX

double m_ChipColumnX
private

Chip column x dimension.

Definition at line 90 of file MicrotpcStudyModule.h.

◆ m_ChipRowNb

int m_ChipRowNb
private

Chip row number.

Definition at line 88 of file MicrotpcStudyModule.h.

◆ m_ChipRowY

double m_ChipRowY
private

Chip row y dimension.

Definition at line 92 of file MicrotpcStudyModule.h.

◆ m_conditions

std::vector<ModuleCondition> m_conditions
privateinherited

Module condition, only non-null if set.

Definition at line 520 of file Module.h.

◆ m_description

std::string m_description
privateinherited

The description of the module.

Definition at line 510 of file Module.h.

◆ m_hasReturnValue

bool m_hasReturnValue
privateinherited

True, if the return value is set.

Definition at line 517 of file Module.h.

◆ m_intProb

std::vector<TGraph*> m_intProb
private

vector of interaction probability vs E graphs for all recoils

Definition at line 223 of file MicrotpcStudyModule.h.

◆ m_logConfig

LogConfig m_logConfig
privateinherited

The log system configuration of the module.

Definition at line 513 of file Module.h.

◆ m_maxEnFrac

std::vector<double> m_maxEnFrac
private

vector of maximal energy fraction transferred to recoil

Definition at line 225 of file MicrotpcStudyModule.h.

◆ m_moduleParamList

ModuleParamList m_moduleParamList
privateinherited

List storing and managing all parameter of the module.

Definition at line 515 of file Module.h.

◆ m_name

std::string m_name
privateinherited

The name of the module, saved as a string (user-modifiable)

Definition at line 507 of file Module.h.

◆ m_package

std::string m_package
privateinherited

Package this module is found in (may be empty).

Definition at line 509 of file Module.h.

◆ m_propertyFlags

unsigned int m_propertyFlags
privateinherited

The properties of the module as bitwise or (with |) of EModulePropFlags.

Definition at line 511 of file Module.h.

◆ m_returnValue

int m_returnValue
privateinherited

The return value.

Definition at line 518 of file Module.h.

◆ m_type

std::string m_type
privateinherited

The type of the module, saved as a string.

Definition at line 508 of file Module.h.

◆ m_z_DG

double m_z_DG
private

z drift gap

Definition at line 94 of file MicrotpcStudyModule.h.

◆ nTPC

int nTPC = 0
private

number of detectors.

Read from MICROTPC.xml

Definition at line 96 of file MicrotpcStudyModule.h.

◆ ORec

Bool_t ORec[8]
private

O boolean per TPC.

Definition at line 249 of file MicrotpcStudyModule.h.

◆ pid_old

int pid_old[8]
private

A boolean per TPC.

First hit of ...

Definition at line 255 of file MicrotpcStudyModule.h.

◆ pRec

Bool_t pRec[8]
private

p boolean per TPC

Definition at line 245 of file MicrotpcStudyModule.h.

◆ TPCCenter

std::vector<ROOT::Math::XYZVector> TPCCenter
private

TPC coordinate.

Definition at line 98 of file MicrotpcStudyModule.h.

◆ xRec

Bool_t xRec[8]
private

X-ray boolean per TPC.

Definition at line 243 of file MicrotpcStudyModule.h.


The documentation for this class was generated from the following files: