Belle II Software development
MicrotpcStudyModule Class Reference

Study module for Microtpcs (BEAST) More...

#include <MicrotpcStudyModule.h>

Inheritance diagram for MicrotpcStudyModule:
HistoModule Module PathElement

Public Types

enum  EModulePropFlags {
  c_Input = 1 ,
  c_Output = 2 ,
  c_ParallelProcessingCertified = 4 ,
  c_HistogramManager = 8 ,
  c_InternalSerializer = 16 ,
  c_TerminateInAllProcesses = 32 ,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

 MicrotpcStudyModule ()
 Constructor: Sets the description, the properties and the parameters of the module.
 
virtual ~MicrotpcStudyModule ()
 Destructor.
 
virtual void initialize () override
 Initialize the Module.
 
virtual void beginRun () override
 Called when entering a new run.
 
virtual void event () override
 Event processor.
 
virtual void endRun () override
 End-of-run action.
 
virtual void terminate () override
 Termination action.
 
virtual void defineHisto () override
 Defines the histograms.
 
virtual std::vector< std::string > getFileNames (bool outputFiles)
 Return a list of output filenames for this modules.
 
const std::string & getName () const
 Returns the name of the module.
 
const std::string & getType () const
 Returns the type of the module (i.e.
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module.
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties.
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level.
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module.
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module.
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module.
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true.
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished.
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module.
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter.
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module.
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module.
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters.
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Protected Member Functions

virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python.
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side.
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module.
 
void setType (const std::string &type)
 Set the module type.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module.
 
void setReturnValue (int value)
 Sets the return value for this module as integer.
 
void setReturnValue (bool value)
 Sets the return value for this module as bool.
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Private Member Functions

virtual void getXMLData ()
 reads data from MICROTPC.xml: tube location, drift data filename, sigma of impulse response function
 
std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects.
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary.
 

Private Attributes

int m_ChipColumnNb
 Chip column number.
 
int m_ChipRowNb
 Chip row number.
 
double m_ChipColumnX
 Chip column x dimension.
 
double m_ChipRowY
 Chip row y dimension.
 
double m_z_DG
 z drift gap
 
int nTPC = 0
 number of detectors.
 
std::vector< ROOT::Math::XYZVector > TPCCenter
 TPC coordinate.
 
TH1F * h_tpc_rate [20]
 Event counter.
 
TH2F * h_mctpc_kinetic [20]
 Neutron kin energy dis.
 
TH2F * h_mctpc_kinetic_zoom [20]
 Neutron kin energy dis.
 
TH2F * h_mctpc_tvp [20]
 theta v phi dis
 
TH2F * h_mctpc_tvpW [20]
 theta v phi dis
 
TH2F * h_mctpc_zr [20]
 r v z
 
TH1F * h_z [8]
 Charged density vs z vs section.
 
TH2F * h_xy [8]
 Charged density vs x vs y.
 
TH2F * h_zr [8]
 Charged density vs z vs r.
 
TH2F * h_zx [8]
 Charged density vs x vs r.
 
TH2F * h_zy [8]
 Charged density vs y vs r.
 
TH2F * h_evtrl [8]
 Track length v.
 
TH2F * h_evtrlb [8]
 Track length v.
 
TH2F * h_evtrlc [8]
 Track length v.
 
TH2F * h_evtrld [8]
 Track length v.
 
TH2F * h_evtrl_He [8]
 Track length v.
 
TH2F * h_evtrl_Hex [8]
 Track length v.
 
TH2F * h_evtrl_He_pure [8]
 Track length v.
 
TH2F * h_evtrl_p [8]
 Track length v.
 
TH2F * h_evtrl_O [8]
 Track length v.
 
TH2F * h_evtrl_C [8]
 Track length v.
 
TH2F * h_evtrl_x [8]
 Track length v.
 
TH2F * h_tevtrl [8]
 Track length v.
 
TH2F * h_tevtrl_He [8]
 Track length v.
 
TH2F * h_tevtrl_Hex [8]
 Track length v.
 
TH2F * h_tevtrl_He_pure [8]
 Track length v.
 
TH2F * h_tevtrl_p [8]
 Track length v.
 
TH2F * h_tevtrl_O [8]
 Track length v.
 
TH2F * h_tevtrl_C [8]
 Track length v.
 
TH2F * h_tevtrl_x [8]
 Track length v.
 
TH2F * h_tvp [8]
 Phi v.
 
TH2F * h_tvpb [8]
 Phi v.
 
TH2F * h_tvpc [8]
 Phi v.
 
TH2F * h_tvpd [8]
 Phi v.
 
TH2F * h_wtvpb [8]
 Phi v.
 
TH2F * h_wtvpc [8]
 Phi v.
 
TH2F * h_wtvpd [8]
 Phi v.
 
TH2F * h_tvp_He [8]
 Phi v.
 
TH2F * h_tvp_Hex [8]
 Phi v.
 
TH2F * h_tvp_He_pure [8]
 Phi v.
 
TH2F * h_tvp_p [8]
 Phi v.
 
TH2F * h_tvp_O [8]
 Phi v.
 
TH2F * h_tvp_C [8]
 Phi v.
 
TH2F * h_tvp_x [8]
 Phi v.
 
TH2F * h_ttvp [8]
 Phi v.
 
TH2F * h_ttvp_He [8]
 Phi v.
 
TH2F * h_ttvp_Hex [8]
 Phi v.
 
TH2F * h_ttvp_He_pure [8]
 Phi v.
 
TH2F * h_ttvp_p [8]
 Phi v.
 
TH2F * h_ttvp_O [8]
 Phi v.
 
TH2F * h_ttvp_C [8]
 Phi v.
 
TH2F * h_ttvp_x [8]
 Phi v.
 
TH2F * h_Wtvp1 [8][12]
 Phi v.
 
TH2F * h_Wtvp2 [8][12]
 Phi v.
 
TH2F * h_Wevtrl1 [8][12]
 e v l
 
TH2F * h_Wevtrl2 [8][12]
 e v l
 
TH2F * h_twtvp_He_pure [8]
 Phi v.
 
TH3F * h_mctpc_recoil [3]
 recoil energy
 
TH3F * h_mctpc_recoilW [3]
 weighted recoil energy
 
std::vector< TGraph * > m_intProb
 vector of interaction probability vs E graphs for all recoils
 
std::vector< double > m_maxEnFrac
 vector of maximal energy fraction transfered to recoil
 
TH2F * h_wtvp [8]
 Phi v.
 
TH2F * h_wtvp_He [8]
 Phi v.
 
TH2F * h_wtvp_Hex [8]
 Phi v.
 
TH2F * h_wtvp_He_pure [8]
 Phi v.
 
TH2F * h_wtvp_p [8]
 Phi v.
 
TH2F * h_wtvp_O [8]
 Phi v.
 
TH2F * h_wtvp_C [8]
 Phi v.
 
TH2F * h_wtvp_x [8]
 Phi v.
 
Bool_t xRec [8]
 X-ray boolean per TPC.
 
Bool_t pRec [8]
 p boolean per TPC
 
Bool_t HeRec [8]
 He boolean per TPC.
 
Bool_t ORec [8]
 O boolean per TPC.
 
Bool_t CRec [8]
 C boolean per TPC.
 
int pid_old [8]
 A boolean per TPC.
 
std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 

Detailed Description

Study module for Microtpcs (BEAST)

Produces histograms from BEAST data for the Microtpcs. *

Definition at line 33 of file MicrotpcStudyModule.h.

Member Typedef Documentation

◆ EAfterConditionPath

Forward the EAfterConditionPath definition from the ModuleCondition.

Definition at line 88 of file Module.h.

Member Enumeration Documentation

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 77 of file Module.h.

77 {
78 c_Input = 1,
79 c_Output = 2,
85 };
@ c_HistogramManager
This module is used to manage histograms accumulated by other modules.
Definition: Module.h:81
@ c_Input
This module is an input module (reads data).
Definition: Module.h:78
@ c_DontCollectStatistics
No statistics is collected for this module.
Definition: Module.h:84
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
Definition: Module.h:80
@ c_InternalSerializer
This module is an internal serializer/deserializer for parallel processing.
Definition: Module.h:82
@ c_Output
This module is an output module (writes data).
Definition: Module.h:79
@ c_TerminateInAllProcesses
When using parallel processing, call this module's terminate() function in all processes().
Definition: Module.h:83

Constructor & Destructor Documentation

◆ MicrotpcStudyModule()

Constructor: Sets the description, the properties and the parameters of the module.

Definition at line 48 of file MicrotpcStudyModule.cc.

48 : HistoModule()
49{
50 // Set module properties
51 setDescription("Study module for Microtpcs (BEAST)");
52
53 //Default values are set here. New values can be in MICROTPC.xml.
54 addParam("ChipRowNb", m_ChipRowNb, "Chip number of row", 226);
55 addParam("ChipColumnNb", m_ChipColumnNb, "Chip number of column", 80);
56 addParam("ChipColumnX", m_ChipColumnX, "Chip x dimension in cm / 2", 1.0);
57 addParam("ChipRowY", m_ChipRowY, "Chip y dimension in cm / 2", 0.86);
58 addParam("z_DG", m_z_DG, "Drift gap distance [cm]", 12.0);
59}
HistoModule()
Constructor.
Definition: HistoModule.h:32
void setDescription(const std::string &description)
Sets the description of the module.
Definition: Module.cc:214
double m_ChipRowY
Chip row y dimension.
double m_ChipColumnX
Chip column x dimension.
void addParam(const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
Definition: Module.h:560

◆ ~MicrotpcStudyModule()

~MicrotpcStudyModule ( )
virtual

Destructor.

Definition at line 61 of file MicrotpcStudyModule.cc.

62{
63}

Member Function Documentation

◆ beginRun()

void beginRun ( void  )
overridevirtual

Called when entering a new run.

Set run dependent things like run header parameters, alignment, etc.

Reimplemented from HistoModule.

Definition at line 249 of file MicrotpcStudyModule.cc.

250{
251}

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 179 of file Module.cc.

180{
182 newModule->m_moduleParamList.setParameters(getParamList());
183 newModule->setName(getName());
184 newModule->m_package = m_package;
185 newModule->m_propertyFlags = m_propertyFlags;
186 newModule->m_logConfig = m_logConfig;
187 newModule->m_conditions = m_conditions;
188
189 return newModule;
190}
std::shared_ptr< Module > registerModule(const std::string &moduleName, std::string sharedLibPath="") noexcept(false)
Creates an instance of a module and registers it to the ModuleManager.
static ModuleManager & Instance()
Exception is thrown if the requested module could not be created by the ModuleManager.
const ModuleParamList & getParamList() const
Return module param list.
Definition: Module.h:363
const std::string & getName() const
Returns the name of the module.
Definition: Module.h:187
const std::string & getType() const
Returns the type of the module (i.e.
Definition: Module.cc:41
unsigned int m_propertyFlags
The properties of the module as bitwise or (with |) of EModulePropFlags.
Definition: Module.h:512
LogConfig m_logConfig
The log system configuration of the module.
Definition: Module.h:514
std::vector< ModuleCondition > m_conditions
Module condition, only non-null if set.
Definition: Module.h:521
std::string m_package
Package this module is found in (may be empty).
Definition: Module.h:510
std::shared_ptr< Module > ModulePtr
Defines a pointer to a module object as a boost shared pointer.
Definition: Module.h:43

◆ def_beginRun()

virtual void def_beginRun ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 426 of file Module.h.

426{ beginRun(); }
virtual void beginRun()
Called when entering a new run.
Definition: Module.h:147

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 439 of file Module.h.

439{ endRun(); }
virtual void endRun()
This method is called if the current run ends.
Definition: Module.h:166

◆ def_event()

virtual void def_event ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 432 of file Module.h.

432{ event(); }
virtual void event()
This method is the core of the module.
Definition: Module.h:157

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 420 of file Module.h.

420{ initialize(); }
virtual void initialize()
Initialize the Module.
Definition: Module.h:109

◆ def_terminate()

virtual void def_terminate ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 445 of file Module.h.

445{ terminate(); }
virtual void terminate()
This method is called at the end of the event processing.
Definition: Module.h:176

◆ defineHisto()

void defineHisto ( )
overridevirtual

Defines the histograms.

Reimplemented from HistoModule.

Definition at line 66 of file MicrotpcStudyModule.cc.

67{
68 for (int i = 0 ; i < 6 ; i++) {
69 h_tpc_rate[i] = new TH1F(TString::Format("h_tpc_rate_%d", i), "detector #", 8, 0., 8.);
70 }
71
72 h_mctpc_recoil[0] = new TH3F("h_mctpc_recoil_He", "Neutron recoil energy [MeV]", 13, -0.5, 12.5, 8, -0.5, 7.5, 1000, 0., 10.);
73 h_mctpc_recoilW[0] = new TH3F("h_mctpc_recoil_w_He", "Neutron recoil energy [MeV]", 13, -0.5, 12.5, 8, -0.5, 7.5, 1000, 0., 10.);
74 h_mctpc_recoil[0]->Sumw2();
75 h_mctpc_recoilW[0]->Sumw2();
76
77 h_mctpc_recoil[1] = new TH3F("h_mctpc_recoil_O", "Neutron recoil energy [MeV]", 13, -0.5, 12.5, 8, -0.5, 7.5, 1000, 0., 10.);
78 h_mctpc_recoilW[1] = new TH3F("h_mctpc_recoil_w_O", "Neutron recoil energy [MeV]", 13, -0.5, 12.5, 8, -0.5, 7.5, 1000, 0., 10.);
79 h_mctpc_recoil[1]->Sumw2();
80 h_mctpc_recoilW[1]->Sumw2();
81
82 h_mctpc_recoil[2] = new TH3F("h_mctpc_recoil_C", "Neutron recoil energy [MeV]", 13, -0.5, 12.5, 8, -0.5, 7.5, 1000, 0., 10.);
83 h_mctpc_recoilW[2] = new TH3F("h_mctpc_recoil_w_C", "Neutron recoil energy [MeV]", 13, -0.5, 12.5, 8, -0.5, 7.5, 1000, 0., 10.);
84 h_mctpc_recoil[2]->Sumw2();
85 h_mctpc_recoilW[2]->Sumw2();
86
87
88 for (int i = 0 ; i < 12 ; i++) {
89 h_mctpc_kinetic[i] = new TH2F(TString::Format("h_mctpc_kinetic_%d", i), "Neutron kin. energy [GeV]", 8, -0.5, 7.5, 1000, 0., 10.);
90 h_mctpc_kinetic_zoom[i] = new TH2F(TString::Format("h_mctpc_kinetic_zoom_%d", i), "Neutron kin. energy [MeV]", 8, -0.5, 7.5, 1000,
91 0., 10.);
92 h_mctpc_tvp[i] = new TH2F(TString::Format("h_mctpc_tvp_%d", i), "theta v phi", 180, 0., 180., 360, -180., 180.);
93 h_mctpc_tvpW[i] = new TH2F(TString::Format("h_mctpc_tvpW_%d", i), "theta v phi weighted by kin", 180, 0., 180., 360, -180., 180.);
94 h_mctpc_zr[i] = new TH2F(TString::Format("h_mctpc_zr_%d", i), "r v z", 200, -400., 400., 200, 0., 400.);
95 h_mctpc_kinetic[i]->Sumw2();
96 h_mctpc_kinetic_zoom[i]->Sumw2();
97 h_mctpc_tvp[i]->Sumw2();
98 h_mctpc_tvpW[i]->Sumw2();
99 h_mctpc_zr[i]->Sumw2();
100 }
101 for (int i = 0 ; i < 8 ; i++) {
102 for (int j = 0; j < 12; j++) {
103 h_Wtvp1[i][j] = new TH2F(TString::Format("h_Wtvp1_%d_%d", i, j), "Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
104 h_Wtvp2[i][j] = new TH2F(TString::Format("h_Wtvp2_%d_%d", i, j), "Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
105 h_Wevtrl1[i][j] = new TH2F(TString::Format("h_Wevtrl1_%d_%d", i, j), "Deposited energy [keV] v. track length [cm]", 2000, 0., 10000,
106 200, 0., 6.);
107 h_Wevtrl2[i][j] = new TH2F(TString::Format("h_Wevtrl2_%d_%d", i, j), "Deposited energy [keV] v. track length [cm]", 2000, 0., 10000,
108 200, 0., 6.);
109 }
110 }
111
112 for (int i = 0 ; i < 8 ; i++) {
113 h_z[i] = new TH1F(TString::Format("h_z_%d", i), "Charged density per cm^2", 2000, 0.0, 20.0);
114
115 h_zr[i] = new TH2F(TString::Format("h_zr_%d", i), "Charged density vs z vs r", 100, 0, 20, 100, 0., 5.);
116
117 h_xy[i] = new TH2F(TString::Format("h_xy_%d", i), "Charged density vs y vs x", 100, -5., 5., 100, -5., 5.);
118
119 h_zx[i] = new TH2F(TString::Format("h_zx_%d", i), "Charged density vs x vs r", 100, 0, 20, 100, -5., 5.);
120
121 h_zy[i] = new TH2F(TString::Format("h_zy_%d", i), "Charged density vs y vs r", 100, 0, 20, 100, -5., 5.);
122
123 h_evtrl[i] = new TH2F(TString::Format("h_evtrl_%d", i), "Deposited energy [keV] v. track length [cm]", 2000, 0., 10000, 200, 0.,
124 6.);
125 h_evtrlb[i] = new TH2F(TString::Format("h_evtrlb_%d", i), "Deposited energy [keV] v. track length [cm]", 2000, 0., 10000, 200, 0.,
126 6.);
127 h_evtrlc[i] = new TH2F(TString::Format("h_evtrlc_%d", i), "Deposited energy [keV] v. track length [cm]", 2000, 0., 10000, 200, 0.,
128 6.);
129 h_evtrld[i] = new TH2F(TString::Format("h_evtrld_%d", i), "Deposited energy [keV] v. track length [cm]", 2000, 0., 10000, 200, 0.,
130 6.);
131
132 h_evtrl_p[i] = new TH2F(TString::Format("h_evtrl_p_%d", i), "Deposited energy [keV] v. track length [cm]", 2000, 0., 2000, 200, 0.,
133 6.);
134 h_evtrl_x[i] = new TH2F(TString::Format("h_evtrl_x_%d", i), "Deposited energy [keV] v. track length [cm]", 2000, 0., 2000, 200, 0.,
135 6.);
136 h_evtrl_Hex[i] = new TH2F(TString::Format("h_evtrl_Hex_%d", i), "Deposited energy [keV] v. track length [cm]", 2000, 0., 2000, 200,
137 0., 6.);
138 h_evtrl_He[i] = new TH2F(TString::Format("h_evtrl_He_%d", i), "Deposited energy [keV] v. track length [cm]", 2000, 0., 2000, 200,
139 0., 6.);
140 h_evtrl_C[i] = new TH2F(TString::Format("h_evtrl_C_%d", i), "Deposited energy [keV] v. track length [cm]", 2000, 0., 2000, 200, 0.,
141 6.);
142 h_evtrl_O[i] = new TH2F(TString::Format("h_evtrl_O_%d", i), "Deposited energy [keV] v. track length [cm]", 2000, 0., 2000, 200, 0.,
143 6.);
144 h_evtrl_He_pure[i] = new TH2F(TString::Format("h_evtrl_He_pure_%d", i), "Deposited energy [keV] v. track length [cm]", 2000, 0.,
145 2000, 200, 0., 6.);
146
147
148 h_tevtrl[i] = new TH2F(TString::Format("h_tevtrl_%d", i), "t: Deposited energy [keV] v. track length [cm]", 2000, 0., 2000, 200, 0.,
149 6.);
150 h_tevtrl_p[i] = new TH2F(TString::Format("h_tevtrl_p_%d", i), "t: Deposited energy [keV] v. track length [cm]", 2000, 0., 2000, 200,
151 0.,
152 6.);
153 h_tevtrl_x[i] = new TH2F(TString::Format("h_tevtrl_x_%d", i), "t: Deposited energy [keV] v. track length [cm]", 2000, 0., 2000, 200,
154 0.,
155 6.);
156 h_tevtrl_Hex[i] = new TH2F(TString::Format("h_tevtrl_Hex_%d", i), "t: Deposited energy [keV] v. track length [cm]", 2000, 0., 2000,
157 200,
158 0., 6.);
159 h_tevtrl_He[i] = new TH2F(TString::Format("h_tevtrl_He_%d", i), "t: Deposited energy [keV] v. track length [cm]", 2000, 0., 2000,
160 200,
161 0., 6.);
162 h_tevtrl_C[i] = new TH2F(TString::Format("h_tevtrl_C_%d", i), "t: Deposited energy [keV] v. track length [cm]", 2000, 0., 2000, 200,
163 0.,
164 6.);
165 h_tevtrl_O[i] = new TH2F(TString::Format("h_tevtrl_O_%d", i), "t: Deposited energy [keV] v. track length [cm]", 2000, 0., 2000, 200,
166 0.,
167 6.);
168 h_tevtrl_He_pure[i] = new TH2F(TString::Format("h_tevtrl_He_pure_%d", i), "t: Deposited energy [keV] v. track length [cm]", 2000,
169 0.,
170 2000, 200, 0., 6.);
171
172 h_tvp[i] = new TH2F(TString::Format("h_tvp_%d", i), "Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
173 h_wtvpb[i] = new TH2F(TString::Format("h_wtvpb_%d", i), "Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
174 h_wtvpc[i] = new TH2F(TString::Format("h_wtvpc_%d", i), "Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
175 h_wtvpd[i] = new TH2F(TString::Format("h_wtvpd_%d", i), "Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
176
177 h_tvpb[i] = new TH2F(TString::Format("h_tvpb_%d", i), "Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
178 h_tvpc[i] = new TH2F(TString::Format("h_tvpc_%d", i), "Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
179 h_tvpd[i] = new TH2F(TString::Format("h_tvpd_%d", i), "Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
180 h_ttvp[i] = new TH2F(TString::Format("h_ttvp_%d", i), "t: Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
181 h_wtvp[i] = new TH2F(TString::Format("h_wtvp_%d", i), "Phi [deg] v. theta [deg] - weighted", 180, 0., 180, 360, -180., 180.);
182 h_tvp_x[i] = new TH2F(TString::Format("h_tvp_x_%d", i), "Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
183 h_ttvp_x[i] = new TH2F(TString::Format("h_ttvp_x_%d", i), "t: Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
184 h_wtvp_x[i] = new TH2F(TString::Format("h_wtvp_x_%d", i), "Phi [deg] v. theta [deg] - weighted", 180, 0., 180, 360, -180., 180.);
185 h_tvp_p[i] = new TH2F(TString::Format("h_tvp_p_%d", i), "Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
186 h_ttvp_p[i] = new TH2F(TString::Format("h_ttvp_p_%d", i), "t: Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
187 h_wtvp_p[i] = new TH2F(TString::Format("h_wtvp_p_%d", i), "Phi [deg] v. theta [deg] - weighted", 180, 0., 180, 360, -180., 180.);
188 h_tvp_He[i] = new TH2F(TString::Format("h_tvp_He_%d", i), "Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
189 h_ttvp_He[i] = new TH2F(TString::Format("h_ttvp_He_%d", i), "t: Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
190 h_wtvp_He[i] = new TH2F(TString::Format("h_wtvp_He_%d", i), "Phi [deg] v. theta [deg] - weighted", 180, 0., 180, 360, -180., 180.);
191 h_tvp_Hex[i] = new TH2F(TString::Format("h_tvp_Hex_%d", i), "Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
192 h_ttvp_Hex[i] = new TH2F(TString::Format("h_ttvp_Hex_%d", i), "t: Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
193 h_wtvp_Hex[i] = new TH2F(TString::Format("h_wtvp_Hex_%d", i), "Phi [deg] v. theta [deg] - weighted", 180, 0., 180, 360, -180.,
194 180.);
195 h_tvp_He_pure[i] = new TH2F(TString::Format("h_tvp_He_pure_%d", i), "Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
196 h_ttvp_He_pure[i] = new TH2F(TString::Format("h_ttvp_He_pure_%d", i), "t: Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180.,
197 180.);
198 h_wtvp_He_pure[i] = new TH2F(TString::Format("h_wtvp_He_pure_%d", i), "Phi [deg] v. theta [deg] - weighted", 180, 0., 180, 360,
199 -180., 180.);
200 h_twtvp_He_pure[i] = new TH2F(TString::Format("h_twtvp_He_pure_%d", i), "t: Phi [deg] v. theta [deg] - weighted", 180, 0., 180,
201 360,
202 -180., 180.);
203 h_tvp_C[i] = new TH2F(TString::Format("h_tvp_C_%d", i), "Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
204 h_ttvp_C[i] = new TH2F(TString::Format("h_ttvp_C_%d", i), "t: Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
205 h_wtvp_C[i] = new TH2F(TString::Format("h_wtvp_C_%d", i), "Phi [deg] v. theta [deg] - weighted", 180, 0., 180, 360, -180., 180.);
206 h_tvp_O[i] = new TH2F(TString::Format("h_tvp_O_%d", i), "Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
207 h_ttvp_O[i] = new TH2F(TString::Format("h_ttvp_O_%d", i), "t: Phi [deg] v. theta [deg]", 180, 0., 180, 360, -180., 180.);
208 h_wtvp_O[i] = new TH2F(TString::Format("h_wtvp_O_%d", i), "Phi [deg] v. theta [deg] - weighted", 180, 0., 180, 360, -180., 180.);
209
210 h_tvp[i]->Sumw2();
211 h_tvpb[i]->Sumw2();
212 h_tvpc[i]->Sumw2();
213 h_tvpd[i]->Sumw2();
214
215 h_wtvpb[i]->Sumw2();
216 h_wtvpc[i]->Sumw2();
217 h_wtvpd[i]->Sumw2();
218
219 h_ttvp[i]->Sumw2();
220 h_tvp_x[i]->Sumw2();
221 h_ttvp_x[i]->Sumw2();
222 h_tvp_p[i]->Sumw2();
223 h_ttvp_p[i]->Sumw2();
224 h_tvp_He[i]->Sumw2();
225 h_ttvp_He[i]->Sumw2();
226 h_wtvp[i]->Sumw2();
227 h_wtvp_x[i]->Sumw2();
228 h_wtvp_p[i]->Sumw2();
229 h_wtvp_He[i]->Sumw2();
230
231 }
232
233}
TH1F * h_z[8]
Charged density vs z vs section.
TH2F * h_zy[8]
Charged density vs y vs r.
TH2F * h_zx[8]
Charged density vs x vs r.
TH2F * h_zr[8]
Charged density vs z vs r.
TH3F * h_mctpc_recoilW[3]
weighted recoil energy
TH2F * h_mctpc_kinetic_zoom[20]
Neutron kin energy dis.
TH2F * h_mctpc_kinetic[20]
Neutron kin energy dis.
TH2F * h_xy[8]
Charged density vs x vs y.

◆ endRun()

void endRun ( void  )
overridevirtual

End-of-run action.

Save run-related stuff, such as statistics.

Reimplemented from HistoModule.

Definition at line 690 of file MicrotpcStudyModule.cc.

691{
692
693 //B2RESULT("MicrotpcStudyModule: # of p recoils: " << npHits);
694 //B2RESULT("MicrotpcStudyModule: # of He recoils: " << nHeHits);
695 //B2RESULT("MicrotpcStudyModule: # of O recoils: " << nOHits);
696 //B2RESULT("MicrotpcStudyModule: # of C recoils: " << nCHits);
697
698}

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 96 of file Module.cc.

97{
98 if (m_conditions.empty()) return false;
99
100 //okay, a condition was set for this Module...
101 if (!m_hasReturnValue) {
102 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
103 }
104
105 for (const auto& condition : m_conditions) {
106 if (condition.evaluate(m_returnValue)) {
107 return true;
108 }
109 }
110 return false;
111}
int m_returnValue
The return value.
Definition: Module.h:519
bool m_hasReturnValue
True, if the return value is set.
Definition: Module.h:518

◆ event()

void event ( void  )
overridevirtual

Event processor.

Reimplemented from HistoModule.

Definition at line 253 of file MicrotpcStudyModule.cc.

254{
255 //Here comes the actual event processing
256
261 StoreArray<SADMetaHit> sadMetaHits;
262 double rate = 0;
263 int ring_section = 0;
264 const int section_ordering[12] = {1, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2};
265 for (const auto& sadMetaHit : sadMetaHits) {
266 rate = sadMetaHit.getrate();
267 double ss = sadMetaHit.getss() / 100.;
268 if (ss < 0) ss += 3000.;
269 int section = (int)(ss / 250.);
270 if (section >= 0 && section < 12) ring_section = section_ordering[section];
271 }
272
273 /*
274 StoreArray<MicrotpcDataHit> DataHits;
275 int dentries = DataHits.getEntries();
276 for (int j = 0; j < dentries; j++) {
277 MicrotpcDataHit* aHit = DataHits[j];
278 int detNb = aHit->getdetNb();
279 //int trkID = aHit->gettrkID();
280 int col = aHit->getcolumn();
281 int row = aHit->getrow();
282 int tot = aHit->getTOT();
283 cout << " col " << col << " row " << row << " tot " << tot << " detNb " << detNb << endl;
284 }
285 */
286 //Bool_t EdgeCut[8];
287 double esum[8];
288 //Initialize recoil and hit type counters
289 for (int i = 0; i < 8; i++) {
290 xRec[i] = false;
291 pRec[i] = false;
292 HeRec[i] = false;
293 ORec[i] = false;
294 CRec[i] = false;
295 //ARec[i] = false;
296 pid_old[i] = 0;
297 //EdgeCut[i] = true;
298 esum[i] = 0;
299 }
300
301 //number of entries in SimHit
302 int nSimHits = SimHits.getEntries();
303
304 auto phiArray = new vector<double>[8](); //phi
305 auto thetaArray = new vector<double>[8](); //theta
306 auto pidArray = new vector<int>[8](); //PID
307 //auto edgeArray = new vector<int>[8](); // Edge cut
308 auto esumArray = new vector<double>[8](); // esum
309 auto trlArray = new vector<double>[8](); // trl
310
311 ROOT::Math::XYZVector EndPoint;
312 //loop over all SimHit entries
313 for (int i = 0; i < nSimHits; i++) {
314 MicrotpcSimHit* aHit = SimHits[i];
315 int detNb = aHit->getdetNb();
316 ROOT::Math::XYZVector position = aHit->gettkPos();
317 double xpos = position.X() / 100. - TPCCenter[detNb].X();
318 double ypos = position.Y() / 100. - TPCCenter[detNb].Y();
319 double zpos = position.Z() / 100. - TPCCenter[detNb].Z() + m_z_DG / 2.;
320 if (0. < zpos && zpos < m_z_DG) {
321
322 int PDGid = aHit->gettkPDG();
323 if (PDGid == 1000080160) ORec[detNb] = true;
324 if (PDGid == 1000060120) CRec[detNb] = true;
325 if (PDGid == 1000020040) HeRec[detNb] = true;
326 if (PDGid == Const::proton.getPDGCode()) pRec[detNb] = true;
327 if (fabs(PDGid) == Const::electron.getPDGCode() || PDGid == Const::photon.getPDGCode()) xRec[detNb] = true;
328
329 double edep = aHit->getEnergyDep();
330 double niel = aHit->getEnergyNiel();
331 double ioni = (edep - niel) * 1e3; //MeV -> keV
332
333 double r = sqrt(xpos * xpos + ypos * ypos);
334 h_z[detNb]->Fill(zpos, ioni);
335 h_zr[detNb]->Fill(zpos, r, ioni);
336 h_zx[detNb]->Fill(zpos, xpos, ioni);
337 h_xy[detNb]->Fill(xpos, ypos, ioni);
338 h_zy[detNb]->Fill(zpos, ypos, ioni);
339 ROOT::Math::XYZVector direction = aHit->gettkMomDir();
340 double theta = direction.Theta() * TMath::RadToDeg();
341 double phi = direction.Phi() * TMath::RadToDeg();
342
343 if ((-m_ChipColumnX < xpos && xpos < m_ChipColumnX) &&
344 (-m_ChipRowY < ypos && ypos < m_ChipRowY) &&
345 (0. < zpos && zpos < m_z_DG)) {
346 //edgeArray].push_back(1);
347 } else {
348 //edgeArray[i].push_back(0);
349 //EdgeCut[detNb] = false;
350 }
351
352 if (pid_old[detNb] != PDGid) {
353 if (esum[detNb] > 0) {
354 esumArray[detNb].push_back(esum[detNb]);
355 ROOT::Math::XYZVector BeginPoint;
356 BeginPoint.SetXYZ(xpos, ypos, zpos);
357 double trl0 = BeginPoint.Dot(direction.Unit());
358 double trl1 = EndPoint.Dot(direction.Unit());
359 trlArray[detNb].push_back(fabs(trl0 - trl1));
360 /*
361 double trl = fabs(trl0 - trl1);
362 double ioniz = esum[detNb];
363 if (PDGid == 1000080160) {
364 h_ttvp_O[detNb]->Fill(theta, phi);
365 h_tevtrl_O[detNb]->Fill(ioniz, trl);
366 }
367 if (PDGid == 1000060120) {
368 h_ttvp_C[detNb]->Fill(theta, phi);
369 h_tevtrl_C[detNb]->Fill(ioniz, trl);
370 }
371 if (PDGid == 1000020040) {
372 h_ttvp_He[detNb]->Fill(theta, phi);
373 h_tevtrl_He[detNb]->Fill(ioniz, trl);
374 }
375 if (PDGid == Const::proton.getPDGCode()) {
376 h_ttvp_p[detNb]->Fill(theta, phi);
377 h_tevtrl_p[detNb]->Fill(ioniz, trl);
378 }
379 if (fabs(PDGid) == Const::electron.getPDGCode() || PDGid == Const::photon.getPDGCode()) {
380 h_ttvp_x[detNb]->Fill(theta, phi);
381 h_tevtrl_x[detNb]->Fill(ioniz, trl);
382 }
383 h_ttvp[detNb]->Fill(theta, phi);
384 h_tevtrl[detNb]->Fill(ioniz, trl);
385
386 if (EdgeCut[detNb]) {
387 if (PDGid == 1000020040) {
388 h_ttvp_He_pure[detNb]->Fill(theta, phi);
389 h_twtvp_He_pure[detNb]->Fill(theta, phi, ioniz);
390 h_tevtrl_He_pure[detNb]->Fill(ioni, trl);
391 }
392 }
393 */
394
395 thetaArray[detNb].push_back(theta);
396 phiArray[detNb].push_back(phi);
397 pidArray[detNb].push_back(PDGid);
398
399 }
400 pid_old[detNb] = PDGid;
401 esum[detNb] = 0;
402
403 } else {
404 esum[detNb] += ioni;
405 EndPoint.SetXYZ(xpos, ypos, zpos);
406 }
407 }
408 }
409 /*
410 for (int i = 0; i < 8; i++) {
411
412 for (int j = 0; j < (int)phiArray[i].size(); j++) {
413 //if (EdgeCut[i]) {
414 double phi = phiArray[i][j];
415 double theta = thetaArray[i][j];
416 int PDGid = pidArray[i][j];
417 double ioni = esumArray[i][j];
418 double trl = trlArray[i][j];
419 if (PDGid == 1000080160) {
420 h_ttvp_O[i]->Fill(theta, phi);
421 h_tevtrl_O[i]->Fill(ioni, trl);
422 }
423 if (PDGid == 1000060120) {
424 h_ttvp_C[i]->Fill(theta, phi);
425 h_tevtrl_C[i]->Fill(ioni, trl);
426 }
427 if (PDGid == 1000020040) {
428 h_ttvp_He[i]->Fill(theta, phi);
429 h_tevtrl_He[i]->Fill(ioni, trl);
430 }
431 if (PDGid == Const::proton.getPDGCode()) {
432 h_ttvp_p[i]->Fill(theta, phi);
433 h_tevtrl_p[i]->Fill(ioni, trl);
434 }
435 if (fabs(PDGid) == Const::electron.getPDGCode() || PDGid == Const::photon.getPDGCode()) {
436 h_ttvp_x[i]->Fill(theta, phi);
437 h_tevtrl_x[i]->Fill(ioni, trl);
438 }
439 h_ttvp[i]->Fill(theta, phi);
440 h_tevtrl[i]->Fill(ioni, trl);
441
442 if (EdgeCut[i]) {
443 //if (PDGid == 1000020040) {
444 h_ttvp_He_pure[i]->Fill(theta, phi);
445 h_twtvp_He_pure[i]->Fill(theta, phi, ioni);
446 h_tevtrl_He_pure[i]->Fill(ioni, trl);
447 //}
448 }
449 //}
450 }
451 }
452 */
453 int trID = 0;
454 for (const auto& mcpart : mcparts) { // start loop over all Tracks
455 const double energy = mcpart.getEnergy();
456 const double mass = mcpart.getMass();
457 double kin = energy - mass;
458 const double PDG = mcpart.getPDG();
459 const ROOT::Math::XYZVector vtx = mcpart.getProductionVertex();
460 const ROOT::Math::XYZVector mom = mcpart.getMomentum();
461 double theta = mom.Theta() * TMath::RadToDeg();
462 double phi = mom.Phi() * TMath::RadToDeg();
463 double z = vtx.Z();
464 double r = sqrt(vtx.X() * vtx.X() + vtx.Y() * vtx.Y());
465 int partID[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
466 if (trID == mcpart.getTrackID()) continue;
467 else trID = mcpart.getTrackID();
468 int detNb = -1;
469 // int nhit = 0; // unused variable
470 for (const auto& sHit : SimHits) {
471 if (sHit.gettkID() == trID) {
472 detNb = sHit.getdetNb(); // nhit++;
473 kin = sHit.gettkKEnergy() / 1000;
474 }
475 }
476
477 // the only part that is actually used at the moment // Santelj 28.2.2019
478 if (PDG == Const::neutron.getPDGCode()) {
479 double trlen = abs(2. / TMath::Sin(mom.Theta()));
480 if (trlen > 10) trlen = 10.;
481 int irecoil = 0;
482 for (auto fract : m_maxEnFrac) { // loop over all recoils in beast/microtpc/data/MICROTPC-recoilProb.xml
483 double recoil = gRandom->Uniform(fract) * kin * 1e3; // calculate recoil energy
484 double weight = m_intProb[irecoil]->Eval(kin * 1e3) * trlen; // weight - interaction probability * track lenght
485 if (weight < 0) weight = 0;
486 h_mctpc_recoil[irecoil]->Fill(ring_section, detNb, recoil); // fill recoil energy
487 h_mctpc_recoilW[irecoil]->Fill(ring_section, detNb, recoil, weight); // fill weighted recoil energy
488 // std::cout << ring_section << " " << detNb << " " << recoil << " " << weight << std::endl;
489 irecoil++;
490 }
491 }
492 //------------------------------------------------------
493
494 if (PDG == Const::electron.getPDGCode()) partID[0] = 1; //positron
495 else if (PDG == -Const::electron.getPDGCode()) partID[1] = 1; //electron
496 else if (PDG == Const::photon.getPDGCode()) partID[2] = 1; //photon
497 else if (PDG == Const::neutron.getPDGCode()) partID[3] = 1; //neutron
498 else if (PDG == Const::proton.getPDGCode()) partID[4] = 1; //proton
499 else if (PDG == 1000080160) partID[5] = 1; // O
500 else if (PDG == 1000060120) partID[6] = 1; // C
501 else if (PDG == 1000020040) partID[7] = 1; // He
502 else partID[8] = 1;
503
504 if (PDG == Const::neutron.getPDGCode()) {
505
506 if (r < 10.0) {
507 h_mctpc_kinetic[9]->Fill(detNb, kin);
508 h_mctpc_kinetic_zoom[9]->Fill(detNb, kin * 1e3);
509 h_mctpc_tvp[9]->Fill(theta, phi);
510 h_mctpc_tvpW[9]->Fill(theta, phi, kin);
511 h_mctpc_zr[9]->Fill(z, r);
512 }
513 if (r > 70.0) {
514 h_mctpc_kinetic[10]->Fill(detNb, kin);
515 h_mctpc_kinetic_zoom[10]->Fill(detNb, kin * 1e3);
516 h_mctpc_tvp[10]->Fill(theta, phi);
517 h_mctpc_tvpW[10]->Fill(theta, phi, kin);
518 h_mctpc_zr[10]->Fill(z, r);
519 }
520 }
521
522 for (int i = 0; i < 9; i++) {
523 if (partID[i] == 1) {
524 h_mctpc_kinetic[i]->Fill(detNb, kin);
525 h_mctpc_kinetic_zoom[i]->Fill(detNb, kin * 1e3);
526 h_mctpc_tvp[i]->Fill(theta, phi);
527 h_mctpc_tvpW[i]->Fill(theta, phi, kin);
528 h_mctpc_zr[i]->Fill(z, r);
529 }
530 }
531 }
532
533 //number of Tracks
534 //int nTracks = Tracks.getEntries();
535
536 //loop over all Tracks
537 for (const auto& aTrack : Tracks) { // start loop over all Tracks
538 const int detNb = aTrack.getdetNb();
539 const float phi = aTrack.getphi();
540 const float theta = aTrack.gettheta();
541 const float trl = aTrack.gettrl();
542 const float tesum = aTrack.getesum();
543 const int pixnb = aTrack.getpixnb();
544 //const int time_range = aTrack.gettime_range();
545 int side[16];
546 for (int j = 0; j < 16; j++) {
547 side[j] = 0;
548 side[j] = aTrack.getside()[j];
549 }
550 Bool_t EdgeCuts = false;
551 if (side[0] == 0 && side[1] == 0 && side[2] == 0 && side[3] == 0) EdgeCuts = true;
552 Bool_t Asource = false;
553 if (side[4] == 2 && side[5] == 2) Asource = true;
554 //Bool_t Goodtrk = false;
555 //if (2.015 < trl && trl < 2.03) Goodtrk = true;
556 //Bool_t GoodAngle = false;
557 //if (88.5 < theta && theta < 91.5) GoodAngle = true;
558 int partID[7];
559 partID[0] = 1; //[0] for all events
560 for (int j = 0; j < 6; j++) partID[j + 1] = aTrack.getpartID()[j];
561
562 if (ORec[detNb] || CRec[detNb] || HeRec[detNb])
563 h_tpc_rate[0]->Fill(detNb);
564 if (pRec[detNb])
565 h_tpc_rate[1]->Fill(detNb);
566 if (xRec[detNb])
567 h_tpc_rate[2]->Fill(detNb);
568
569 if (EdgeCuts) {
570 if (ORec[detNb] || CRec[detNb] || HeRec[detNb])
571 h_tpc_rate[3]->Fill(detNb);
572 if (pRec[detNb])
573 h_tpc_rate[4]->Fill(detNb);
574 if (xRec[detNb])
575 h_tpc_rate[5]->Fill(detNb);
576 }
577
578 h_evtrl[detNb]->Fill(tesum, trl);
579 h_tvp[detNb]->Fill(theta, phi);
580 h_wtvp[detNb]->Fill(theta, phi, tesum);
581 h_Wtvp1[detNb][0]->Fill(theta, phi, rate);
582 h_Wevtrl1[detNb][0]->Fill(tesum, trl, rate);
583 h_Wtvp2[detNb][0]->Fill(theta, phi, rate * tesum);
584 //h_Wevtrl1[detNb][0]->Fill(tesum, trl, rate);
585 if (EdgeCuts && pixnb > 10. && tesum > 10.) {
586 h_evtrlb[detNb]->Fill(tesum, trl);
587 h_tvpb[detNb]->Fill(theta, phi);
588 h_wtvpb[detNb]->Fill(theta, phi, tesum);
589 h_Wtvp1[detNb][1]->Fill(theta, phi, rate);
590 h_Wevtrl1[detNb][1]->Fill(tesum, trl, rate);
591 h_Wtvp2[detNb][1]->Fill(theta, phi, rate * tesum);
592 }
593
594 for (int j = 0; j < 7; j++) {
595 if (j == 3 && !EdgeCuts && (partID[1] == 1 || partID[2] == 1 || partID[4] == 1 || partID[5] == 1 || partID[6] == 1)) partID[j] = 0;
596 if ((j == 4 || j == 5) && !Asource) partID[j] = 0;
597 if (partID[j] == 1) {
598 h_Wtvp1[detNb][2 + j]->Fill(theta, phi, rate);
599 h_Wevtrl1[detNb][2 + j]->Fill(tesum, trl, rate);
600 h_Wtvp2[detNb][2 + j]->Fill(theta, phi, rate * tesum);
601 if (j == 0) {
602 h_evtrlc[detNb]->Fill(tesum, trl);
603 h_tvpc[detNb]->Fill(theta, phi);
604 h_wtvpc[detNb]->Fill(theta, phi, tesum);
605 }
606 if (j == 1) {
607 h_evtrld[detNb]->Fill(tesum, trl);
608 h_tvpd[detNb]->Fill(theta, phi);
609 h_wtvpd[detNb]->Fill(theta, phi, tesum);
610 }
611 if (j == 2) {
612 h_evtrl_x[detNb]->Fill(tesum, trl);
613 h_tvp_x[detNb]->Fill(theta, phi);
614 h_wtvp_x[detNb]->Fill(theta, phi, tesum);
615 }
616 if (j == 3) {
617 h_evtrl_p[detNb]->Fill(tesum, trl);
618 h_tvp_p[detNb]->Fill(theta, phi);
619 h_wtvp_p[detNb]->Fill(theta, phi, tesum);
620 }
621 if (j == 4) {
622 h_evtrl_x[detNb]->Fill(tesum, trl);
623 h_tvp_x[detNb]->Fill(theta, phi);
624 h_wtvp_x[detNb]->Fill(theta, phi, tesum);
625 }
626 if (j == 5) {
627 h_evtrl_He[detNb]->Fill(tesum, trl);
628 h_tvp_He[detNb]->Fill(theta, phi);
629 h_wtvp_He[detNb]->Fill(theta, phi, tesum);
630 }
631 if (j == 6) {
632 h_evtrl_Hex[detNb]->Fill(tesum, trl);
633 h_tvp_Hex[detNb]->Fill(theta, phi);
634 h_wtvp_Hex[detNb]->Fill(theta, phi, tesum);
635 }
636 }
637 }
638 }
639
640 eventNum++;
641
642 //delete
643 delete [] phiArray;
644 delete [] thetaArray;
645 delete [] pidArray;
646 //delete [] edgeArray;
647 delete [] esumArray;
648 delete [] trlArray;
649
650}
int getPDGCode() const
PDG code.
Definition: Const.h:473
static const ParticleType neutron
neutron particle
Definition: Const.h:675
static const ChargedStable proton
proton particle
Definition: Const.h:663
static const ParticleType photon
photon particle
Definition: Const.h:673
static const ChargedStable electron
electron particle
Definition: Const.h:659
ClassMicrotpcSimHit - Geant4 simulated hit for the Microtpc detector.
float getEnergyDep() const
Return the energy deposition in electrons.
ROOT::Math::XYZVector gettkPos() const
Return the track position.
float getdetNb() const
Return the TPC number.
float getEnergyNiel() const
Return the non-ionization energy in electrons.
ROOT::Math::XYZVector gettkMomDir() const
Return the track momentum direction.
int gettkPDG() const
Return the PDG number of the track.
Accessor to arrays stored in the data store.
Definition: StoreArray.h:113
int getEntries() const
Get the number of objects in the array.
Definition: StoreArray.h:216
Bool_t HeRec[8]
He boolean per TPC.
std::vector< double > m_maxEnFrac
vector of maximal energy fraction transfered to recoil
std::vector< TGraph * > m_intProb
vector of interaction probability vs E graphs for all recoils
Bool_t xRec[8]
X-ray boolean per TPC.
std::vector< ROOT::Math::XYZVector > TPCCenter
TPC coordinate.
double sqrt(double a)
sqrt for double
Definition: beamHelpers.h:28

◆ exposePythonAPI()

void exposePythonAPI ( )
staticinherited

Exposes methods of the Module class to Python.

Definition at line 325 of file Module.cc.

326{
327 // to avoid confusion between std::arg and boost::python::arg we want a shorthand namespace as well
328 namespace bp = boost::python;
329
330 docstring_options options(true, true, false); //userdef, py sigs, c++ sigs
331
332 void (Module::*setReturnValueInt)(int) = &Module::setReturnValue;
333
334 enum_<Module::EAfterConditionPath>("AfterConditionPath",
335 R"(Determines execution behaviour after a conditional path has been executed:
336
337.. attribute:: END
338
339 End processing of this path after the conditional path. (this is the default for if_value() etc.)
340
341.. attribute:: CONTINUE
342
343 After the conditional path, resume execution after this module.)")
344 .value("END", Module::EAfterConditionPath::c_End)
345 .value("CONTINUE", Module::EAfterConditionPath::c_Continue)
346 ;
347
348 /* Do not change the names of >, <, ... we use them to serialize conditional pathes */
349 enum_<Belle2::ModuleCondition::EConditionOperators>("ConditionOperator")
356 ;
357
358 enum_<Module::EModulePropFlags>("ModulePropFlags",
359 R"(Flags to indicate certain low-level features of modules, see :func:`Module.set_property_flags()`, :func:`Module.has_properties()`. Most useful flags are:
360
361.. attribute:: PARALLELPROCESSINGCERTIFIED
362
363 This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)
364
365.. attribute:: HISTOGRAMMANAGER
366
367 This module is used to manage histograms accumulated by other modules
368
369.. attribute:: TERMINATEINALLPROCESSES
370
371 When using parallel processing, call this module's terminate() function in all processes. This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.
372)")
373 .value("INPUT", Module::EModulePropFlags::c_Input)
374 .value("OUTPUT", Module::EModulePropFlags::c_Output)
375 .value("PARALLELPROCESSINGCERTIFIED", Module::EModulePropFlags::c_ParallelProcessingCertified)
376 .value("HISTOGRAMMANAGER", Module::EModulePropFlags::c_HistogramManager)
377 .value("INTERNALSERIALIZER", Module::EModulePropFlags::c_InternalSerializer)
378 .value("TERMINATEINALLPROCESSES", Module::EModulePropFlags::c_TerminateInAllProcesses)
379 ;
380
381 //Python class definition
382 class_<Module, PyModule> module("Module", R"(
383Base class for Modules.
384
385A module is the smallest building block of the framework.
386A typical event processing chain consists of a Path containing
387modules. By inheriting from this base class, various types of
388modules can be created. To use a module, please refer to
389:func:`Path.add_module()`. A list of modules is available by running
390``basf2 -m`` or ``basf2 -m package``, detailed information on parameters is
391given by e.g. ``basf2 -m RootInput``.
392
393The 'Module Development' section in the manual provides detailed information
394on how to create modules, setting parameters, or using return values/conditions:
395https://confluence.desy.de/display/BI/Software+Basf2manual#Module_Development
396
397)");
398 module
399 .def("__str__", &Module::getPathString)
400 .def("name", &Module::getName, return_value_policy<copy_const_reference>(),
401 "Returns the name of the module. Can be changed via :func:`set_name() <Module.set_name()>`, use :func:`type() <Module.type()>` for identifying a particular module class.")
402 .def("type", &Module::getType, return_value_policy<copy_const_reference>(),
403 "Returns the type of the module (i.e. class name minus 'Module')")
404 .def("set_name", &Module::setName, args("name"), R"(
405Set custom name, e.g. to distinguish multiple modules of the same type.
406
407>>> path.add_module('EventInfoSetter')
408>>> ro = path.add_module('RootOutput', branchNames=['EventMetaData'])
409>>> ro.set_name('RootOutput_metadata_only')
410>>> print(path)
411[EventInfoSetter -> RootOutput_metadata_only]
412
413)")
414 .def("description", &Module::getDescription, return_value_policy<copy_const_reference>(),
415 "Returns the description of this module.")
416 .def("package", &Module::getPackage, return_value_policy<copy_const_reference>(),
417 "Returns the package this module belongs to.")
418 .def("available_params", &_getParamInfoListPython,
419 "Return list of all module parameters as `ModuleParamInfo` instances")
420 .def("has_properties", &Module::hasProperties, (bp::arg("properties")),
421 R"DOCSTRING(Allows to check if the module has the given properties out of `ModulePropFlags` set.
422
423>>> if module.has_properties(ModulePropFlags.PARALLELPROCESSINGCERTIFIED):
424>>> ...
425
426Parameters:
427 properties (int): bitmask of `ModulePropFlags` to check for.
428)DOCSTRING")
429 .def("set_property_flags", &Module::setPropertyFlags, args("property_mask"),
430 "Set module properties in the form of an OR combination of `ModulePropFlags`.");
431 {
432 // python signature is too crowded, make ourselves
433 docstring_options subOptions(true, false, false); //userdef, py sigs, c++ sigs
434 module
435 .def("if_value", &Module::if_value,
436 (bp::arg("expression"), bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
437 R"DOCSTRING(if_value(expression, condition_path, after_condition_path=AfterConditionPath.END)
438
439Sets a conditional sub path which will be executed after this
440module if the return value set in the module passes the given ``expression``.
441
442Modules can define a return value (int or bool) using ``setReturnValue()``,
443which can be used in the steering file to split the Path based on this value, for example
444
445>>> module_with_condition.if_value("<1", another_path)
446
447In case the return value of the ``module_with_condition`` for a given event is
448less than 1, the execution will be diverted into ``another_path`` for this event.
449
450You could for example set a special return value if an error occurs, and divert
451the execution into a path containing :b2:mod:`RootOutput` if it is found;
452saving only the data producing/produced by the error.
453
454After a conditional path has executed, basf2 will by default stop processing
455the path for this event. This behaviour can be changed by setting the
456``after_condition_path`` argument.
457
458Parameters:
459 expression (str): Expression to determine if the conditional path should be executed.
460 This should be one of the comparison operators ``<``, ``>``, ``<=``,
461 ``>=``, ``==``, or ``!=`` followed by a numerical value for the return value
462 condition_path (Path): path to execute in case the expression is fulfilled
463 after_condition_path (AfterConditionPath): What to do once the ``condition_path`` has been executed.
464)DOCSTRING")
465 .def("if_false", &Module::if_false,
466 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
467 R"DOC(if_false(condition_path, after_condition_path=AfterConditionPath.END)
468
469Sets a conditional sub path which will be executed after this module if
470the return value of the module evaluates to False. This is equivalent to
471calling `if_value` with ``expression=\"<1\"``)DOC")
472 .def("if_true", &Module::if_true,
473 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
474 R"DOC(if_true(condition_path, after_condition_path=AfterConditionPath.END)
475
476Sets a conditional sub path which will be executed after this module if
477the return value of the module evaluates to True. It is equivalent to
478calling `if_value` with ``expression=\">=1\"``)DOC");
479 }
480 module
481 .def("has_condition", &Module::hasCondition,
482 "Return true if a conditional path has been set for this module "
483 "using `if_value`, `if_true` or `if_false`")
484 .def("get_all_condition_paths", &_getAllConditionPathsPython,
485 "Return a list of all conditional paths set for this module using "
486 "`if_value`, `if_true` or `if_false`")
487 .def("get_all_conditions", &_getAllConditionsPython,
488 "Return a list of all conditional path expressions set for this module using "
489 "`if_value`, `if_true` or `if_false`")
490 .add_property("logging", make_function(&Module::getLogConfig, return_value_policy<reference_existing_object>()),
@ c_GE
Greater or equal than: ">=".
@ c_SE
Smaller or equal than: "<=".
@ c_GT
Greater than: ">"
@ c_NE
Not equal: "!=".
@ c_EQ
Equal: "=" or "=="
@ c_ST
Smaller than: "<"
Base class for Modules.
Definition: Module.h:72
LogConfig & getLogConfig()
Returns the log system configuration.
Definition: Module.h:225
void if_value(const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
Add a condition to the module.
Definition: Module.cc:79
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
Definition: Module.cc:208
void if_true(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to set the condition of the module.
Definition: Module.cc:90
void setReturnValue(int value)
Sets the return value for this module as integer.
Definition: Module.cc:220
void setLogConfig(const LogConfig &logConfig)
Set the log system configuration.
Definition: Module.h:230
const std::string & getDescription() const
Returns the description of the module.
Definition: Module.h:202
void if_false(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to add a condition to the module.
Definition: Module.cc:85
bool hasCondition() const
Returns true if at least one condition was set for the module.
Definition: Module.h:311
const std::string & getPackage() const
Returns the package this module is in.
Definition: Module.h:197
void setName(const std::string &name)
Set the name of the module.
Definition: Module.h:214
bool hasProperties(unsigned int propertyFlags) const
Returns true if all specified property flags are available in this module.
Definition: Module.cc:160
std::string getPathString() const override
return the module name.
Definition: Module.cc:192

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 133 of file Module.cc.

134{
135 if (m_conditions.empty()) return EAfterConditionPath::c_End;
136
137 //okay, a condition was set for this Module...
138 if (!m_hasReturnValue) {
139 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
140 }
141
142 for (const auto& condition : m_conditions) {
143 if (condition.evaluate(m_returnValue)) {
144 return condition.getAfterConditionPath();
145 }
146 }
147
148 return EAfterConditionPath::c_End;
149}

◆ getAllConditionPaths()

std::vector< std::shared_ptr< Path > > getAllConditionPaths ( ) const
inherited

Return all condition paths currently set (no matter if the condition is true or not).

Definition at line 150 of file Module.cc.

151{
152 std::vector<std::shared_ptr<Path>> allConditionPaths;
153 for (const auto& condition : m_conditions) {
154 allConditionPaths.push_back(condition.getPath());
155 }
156
157 return allConditionPaths;
158}

◆ getAllConditions()

const std::vector< ModuleCondition > & getAllConditions ( ) const
inlineinherited

Return all set conditions for this module.

Definition at line 324 of file Module.h.

325 {
326 return m_conditions;
327 }

◆ getCondition()

const ModuleCondition * getCondition ( ) const
inlineinherited

Return a pointer to the first condition (or nullptr, if none was set)

Definition at line 314 of file Module.h.

315 {
316 if (m_conditions.empty()) {
317 return nullptr;
318 } else {
319 return &m_conditions.front();
320 }
321 }

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 113 of file Module.cc.

114{
115 PathPtr p;
116 if (m_conditions.empty()) return p;
117
118 //okay, a condition was set for this Module...
119 if (!m_hasReturnValue) {
120 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
121 }
122
123 for (const auto& condition : m_conditions) {
124 if (condition.evaluate(m_returnValue)) {
125 return condition.getPath();
126 }
127 }
128
129 // if none of the conditions were true, return a null pointer.
130 return p;
131}
std::shared_ptr< Path > PathPtr
Defines a pointer to a path object as a boost shared pointer.
Definition: Path.h:35

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Returns the description of the module.

Definition at line 202 of file Module.h.

202{return m_description;}
std::string m_description
The description of the module.
Definition: Module.h:511

◆ getFileNames()

virtual std::vector< std::string > getFileNames ( bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Reimplemented in RootInputModule, StorageRootOutputModule, and RootOutputModule.

Definition at line 134 of file Module.h.

135 {
136 return std::vector<std::string>();
137 }

◆ getLogConfig()

LogConfig & getLogConfig ( )
inlineinherited

Returns the log system configuration.

Definition at line 225 of file Module.h.

225{return m_logConfig;}

◆ getModules()

std::list< ModulePtr > getModules ( ) const
inlineoverrideprivatevirtualinherited

no submodules, return empty list

Implements PathElement.

Definition at line 506 of file Module.h.

506{ return std::list<ModulePtr>(); }

◆ getName()

const std::string & getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 187 of file Module.h.

187{return m_name;}
std::string m_name
The name of the module, saved as a string (user-modifiable)
Definition: Module.h:508

◆ getPackage()

const std::string & getPackage ( ) const
inlineinherited

Returns the package this module is in.

Definition at line 197 of file Module.h.

197{return m_package;}

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 279 of file Module.cc.

280{
282}
std::shared_ptr< boost::python::list > getParamInfoListPython() const
Returns a python list of all parameters.
ModuleParamList m_moduleParamList
List storing and managing all parameter of the module.
Definition: Module.h:516

◆ getParamList()

const ModuleParamList & getParamList ( ) const
inlineinherited

Return module param list.

Definition at line 363 of file Module.h.

363{ return m_moduleParamList; }

◆ getPathString()

std::string getPathString ( ) const
overrideprivatevirtualinherited

return the module name.

Implements PathElement.

Definition at line 192 of file Module.cc.

193{
194
195 std::string output = getName();
196
197 for (const auto& condition : m_conditions) {
198 output += condition.getString();
199 }
200
201 return output;
202}

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 381 of file Module.h.

381{ return m_returnValue; }

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 41 of file Module.cc.

42{
43 if (m_type.empty())
44 B2FATAL("Module type not set for " << getName());
45 return m_type;
46}
std::string m_type
The type of the module, saved as a string.
Definition: Module.h:509

◆ getXMLData()

void getXMLData ( )
privatevirtual

reads data from MICROTPC.xml: tube location, drift data filename, sigma of impulse response function

Definition at line 652 of file MicrotpcStudyModule.cc.

653{
654 GearDir content = GearDir("/Detector/DetectorComponent[@name=\"MICROTPC\"]/Content/");
655
656 //get the location of the tubes
657 BOOST_FOREACH(const GearDir & activeParams, content.getNodes("Active")) {
658
659 TPCCenter.push_back(ROOT::Math::XYZVector(activeParams.getLength("TPCpos_x"),
660 activeParams.getLength("TPCpos_y"),
661 activeParams.getLength("TPCpos_z")));
662 nTPC++;
663 }
664
665 m_ChipColumnNb = content.getInt("ChipColumnNb");
666 m_ChipRowNb = content.getInt("ChipRowNb");
667 m_ChipColumnX = content.getDouble("ChipColumnX");
668 m_ChipRowY = content.getDouble("ChipRowY");
669 m_z_DG = content.getDouble("z_DG");
670
671 GearDir content2 = GearDir("/Detector/DetectorComponent[@name=\"MICROTPC\"]/Content/RecoilProbability");
672 for (const GearDir& recoil : content2.getNodes("Recoil")) {
673 m_maxEnFrac.push_back(recoil.getDouble("Fraction"));
674 istringstream probstream;
675 double e, prob;
676 probstream.str(recoil.getString("Probability"));
677 TGraph* gr = new TGraph();
678 int i = 0;
679 while (probstream >> e >> prob) {
680 gr->SetPoint(i, e, prob);
681 i++;
682 }
683 m_intProb.push_back(gr);
684 }
685
686 B2INFO("TpcDigitizer: Aquired tpc locations and gas parameters");
687 B2INFO(" from MICROTPC.xml. There are " << nTPC << " TPCs implemented");
688
689}
GearDir is the basic class used for accessing the parameter store.
Definition: GearDir.h:31
double getLength(const std::string &path="") const noexcept(false)
Get the parameter path as a double converted to the standard length unit.
Definition: Interface.h:259
std::vector< GearDir > getNodes(const std::string &path="") const
Get vector of GearDirs which point to all the nodes the given path evaluates to.
Definition: Interface.cc:21

◆ hasCondition()

bool hasCondition ( ) const
inlineinherited

Returns true if at least one condition was set for the module.

Definition at line 311 of file Module.h.

311{ return not m_conditions.empty(); };

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 160 of file Module.cc.

161{
162 return (propertyFlags & m_propertyFlags) == propertyFlags;
163}

◆ hasReturnValue()

bool hasReturnValue ( ) const
inlineinherited

Return true if this module has a valid return value set.

Definition at line 378 of file Module.h.

378{ return m_hasReturnValue; }

◆ hasUnsetForcedParams()

bool hasUnsetForcedParams ( ) const
inherited

Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.

Definition at line 166 of file Module.cc.

167{
169 std::string allMissing = "";
170 for (const auto& s : missing)
171 allMissing += s + " ";
172 if (!missing.empty())
173 B2ERROR("The following required parameters of Module '" << getName() << "' were not specified: " << allMissing <<
174 "\nPlease add them to your steering file.");
175 return !missing.empty();
176}
std::vector< std::string > getUnsetForcedParams() const
Returns list of unset parameters (if they are required to have a value.

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 85 of file Module.cc.

86{
87 if_value("<1", path, afterConditionPath);
88}

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 90 of file Module.cc.

91{
92 if_value(">=1", path, afterConditionPath);
93}

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://confluence.desy.de/display/BI/Software+ModCondTut or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 79 of file Module.cc.

80{
81 m_conditions.emplace_back(expression, path, afterConditionPath);
82}

◆ initialize()

void initialize ( void  )
overridevirtual

Initialize the Module.

This method is called at the beginning of data processing.

Reimplemented from HistoModule.

Definition at line 236 of file MicrotpcStudyModule.cc.

237{
238 B2INFO("MicrotpcStudyModule: Initialize");
239
240 //read microtpc xml file
241 getXMLData();
242
243 REG_HISTOGRAM
244
245 //convert sample time into rate in Hz
246 //rateCorrection = m_sampletime / 1e6;
247}
virtual void getXMLData()
reads data from MICROTPC.xml: tube location, drift data filename, sigma of impulse response function

◆ setAbortLevel()

void setAbortLevel ( int  abortLevel)
inherited

Configure the abort log level.

Definition at line 67 of file Module.cc.

68{
69 m_logConfig.setAbortLevel(static_cast<LogConfig::ELogLevel>(abortLevel));
70}
ELogLevel
Definition of the supported log levels.
Definition: LogConfig.h:26
void setAbortLevel(ELogLevel abortLevel)
Configure the abort level.
Definition: LogConfig.h:112

◆ setDebugLevel()

void setDebugLevel ( int  debugLevel)
inherited

Configure the debug messaging level.

Definition at line 61 of file Module.cc.

62{
63 m_logConfig.setDebugLevel(debugLevel);
64}
void setDebugLevel(int debugLevel)
Configure the debug messaging level.
Definition: LogConfig.h:98

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 214 of file Module.cc.

215{
216 m_description = description;
217}

◆ setLogConfig()

void setLogConfig ( const LogConfig logConfig)
inlineinherited

Set the log system configuration.

Definition at line 230 of file Module.h.

230{m_logConfig = logConfig;}

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 73 of file Module.cc.

74{
75 m_logConfig.setLogInfo(static_cast<LogConfig::ELogLevel>(logLevel), logInfo);
76}
void setLogInfo(ELogLevel logLevel, unsigned int logInfo)
Configure the printed log information for the given level.
Definition: LogConfig.h:127

◆ setLogLevel()

void setLogLevel ( int  logLevel)
inherited

Configure the log level.

Definition at line 55 of file Module.cc.

56{
57 m_logConfig.setLogLevel(static_cast<LogConfig::ELogLevel>(logLevel));
58}
void setLogLevel(ELogLevel logLevel)
Configure the log level.
Definition: LogConfig.cc:25

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 214 of file Module.h.

214{ m_name = name; };

◆ setParamList()

void setParamList ( const ModuleParamList params)
inlineprotectedinherited

Replace existing parameter list.

Definition at line 501 of file Module.h.

501{ m_moduleParamList = params; }

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 234 of file Module.cc.

235{
236 LogSystem& logSystem = LogSystem::Instance();
237 logSystem.updateModule(&(getLogConfig()), getName());
238 try {
240 } catch (std::runtime_error& e) {
241 throw std::runtime_error("Cannot set parameter '" + name + "' for module '"
242 + m_name + "': " + e.what());
243 }
244
245 logSystem.updateModule(nullptr);
246}
Class for logging debug, info and error messages.
Definition: LogSystem.h:46
void updateModule(const LogConfig *moduleLogConfig=nullptr, const std::string &moduleName="")
Sets the log configuration to the given module log configuration and sets the module name This method...
Definition: LogSystem.h:191
static LogSystem & Instance()
Static method to get a reference to the LogSystem instance.
Definition: LogSystem.cc:31
void setParamPython(const std::string &name, const PythonObject &pyObj)
Implements a method for setting boost::python objects.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 249 of file Module.cc.

250{
251
252 LogSystem& logSystem = LogSystem::Instance();
253 logSystem.updateModule(&(getLogConfig()), getName());
254
255 boost::python::list dictKeys = dictionary.keys();
256 int nKey = boost::python::len(dictKeys);
257
258 //Loop over all keys in the dictionary
259 for (int iKey = 0; iKey < nKey; ++iKey) {
260 boost::python::object currKey = dictKeys[iKey];
261 boost::python::extract<std::string> keyProxy(currKey);
262
263 if (keyProxy.check()) {
264 const boost::python::object& currValue = dictionary[currKey];
265 setParamPython(keyProxy, currValue);
266 } else {
267 B2ERROR("Setting the module parameters from a python dictionary: invalid key in dictionary!");
268 }
269 }
270
271 logSystem.updateModule(nullptr);
272}
void setParamPython(const std::string &name, const boost::python::object &pyObj)
Implements a method for setting boost::python objects.
Definition: Module.cc:234

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 208 of file Module.cc.

209{
210 m_propertyFlags = propertyFlags;
211}

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 227 of file Module.cc.

228{
229 m_hasReturnValue = true;
230 m_returnValue = value;
231}

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 220 of file Module.cc.

221{
222 m_hasReturnValue = true;
223 m_returnValue = value;
224}

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 48 of file Module.cc.

49{
50 if (!m_type.empty())
51 B2FATAL("Trying to change module type from " << m_type << " is not allowed, the value is assumed to be fixed.");
52 m_type = type;
53}

◆ terminate()

void terminate ( void  )
overridevirtual

Termination action.

Clean-up, close files, summarize statistics, etc.

Reimplemented from HistoModule.

Definition at line 700 of file MicrotpcStudyModule.cc.

701{
702}

Member Data Documentation

◆ CRec

Bool_t CRec[8]
private

C boolean per TPC.

Definition at line 251 of file MicrotpcStudyModule.h.

◆ h_evtrl

TH2F* h_evtrl[8]
private

Track length v.

energy deposited per TPC

Definition at line 124 of file MicrotpcStudyModule.h.

◆ h_evtrl_C

TH2F* h_evtrl_C[8]
private

Track length v.

energy deposited per TPC for C

Definition at line 142 of file MicrotpcStudyModule.h.

◆ h_evtrl_He

TH2F* h_evtrl_He[8]
private

Track length v.

energy deposited per TPC for He

Definition at line 132 of file MicrotpcStudyModule.h.

◆ h_evtrl_He_pure

TH2F* h_evtrl_He_pure[8]
private

Track length v.

energy deposited per TPC for He w/ edge cuts

Definition at line 136 of file MicrotpcStudyModule.h.

◆ h_evtrl_Hex

TH2F* h_evtrl_Hex[8]
private

Track length v.

energy deposited per TPC for He and x

Definition at line 134 of file MicrotpcStudyModule.h.

◆ h_evtrl_O

TH2F* h_evtrl_O[8]
private

Track length v.

energy deposited per TPC for O

Definition at line 140 of file MicrotpcStudyModule.h.

◆ h_evtrl_p

TH2F* h_evtrl_p[8]
private

Track length v.

energy deposited per TPC for p

Definition at line 138 of file MicrotpcStudyModule.h.

◆ h_evtrl_x

TH2F* h_evtrl_x[8]
private

Track length v.

energy deposited per TPC for X-ray

Definition at line 144 of file MicrotpcStudyModule.h.

◆ h_evtrlb

TH2F* h_evtrlb[8]
private

Track length v.

energy deposited per TPC

Definition at line 126 of file MicrotpcStudyModule.h.

◆ h_evtrlc

TH2F* h_evtrlc[8]
private

Track length v.

energy deposited per TPC

Definition at line 128 of file MicrotpcStudyModule.h.

◆ h_evtrld

TH2F* h_evtrld[8]
private

Track length v.

energy deposited per TPC

Definition at line 130 of file MicrotpcStudyModule.h.

◆ h_mctpc_kinetic

TH2F* h_mctpc_kinetic[20]
private

Neutron kin energy dis.

Definition at line 104 of file MicrotpcStudyModule.h.

◆ h_mctpc_kinetic_zoom

TH2F* h_mctpc_kinetic_zoom[20]
private

Neutron kin energy dis.

Definition at line 106 of file MicrotpcStudyModule.h.

◆ h_mctpc_recoil

TH3F* h_mctpc_recoil[3]
private

recoil energy

Definition at line 219 of file MicrotpcStudyModule.h.

◆ h_mctpc_recoilW

TH3F* h_mctpc_recoilW[3]
private

weighted recoil energy

Definition at line 221 of file MicrotpcStudyModule.h.

◆ h_mctpc_tvp

TH2F* h_mctpc_tvp[20]
private

theta v phi dis

Definition at line 108 of file MicrotpcStudyModule.h.

◆ h_mctpc_tvpW

TH2F* h_mctpc_tvpW[20]
private

theta v phi dis

Definition at line 110 of file MicrotpcStudyModule.h.

◆ h_mctpc_zr

TH2F* h_mctpc_zr[20]
private

r v z

Definition at line 112 of file MicrotpcStudyModule.h.

◆ h_tevtrl

TH2F* h_tevtrl[8]
private

Track length v.

energy deposited per TPC

Definition at line 147 of file MicrotpcStudyModule.h.

◆ h_tevtrl_C

TH2F* h_tevtrl_C[8]
private

Track length v.

energy deposited per TPC for C

Definition at line 159 of file MicrotpcStudyModule.h.

◆ h_tevtrl_He

TH2F* h_tevtrl_He[8]
private

Track length v.

energy deposited per TPC for He

Definition at line 149 of file MicrotpcStudyModule.h.

◆ h_tevtrl_He_pure

TH2F* h_tevtrl_He_pure[8]
private

Track length v.

energy deposited per TPC for He w/ edge cuts

Definition at line 153 of file MicrotpcStudyModule.h.

◆ h_tevtrl_Hex

TH2F* h_tevtrl_Hex[8]
private

Track length v.

energy deposited per TPC for He and x

Definition at line 151 of file MicrotpcStudyModule.h.

◆ h_tevtrl_O

TH2F* h_tevtrl_O[8]
private

Track length v.

energy deposited per TPC for O

Definition at line 157 of file MicrotpcStudyModule.h.

◆ h_tevtrl_p

TH2F* h_tevtrl_p[8]
private

Track length v.

energy deposited per TPC for p

Definition at line 155 of file MicrotpcStudyModule.h.

◆ h_tevtrl_x

TH2F* h_tevtrl_x[8]
private

Track length v.

energy deposited per TPC for X-ray

Definition at line 161 of file MicrotpcStudyModule.h.

◆ h_tpc_rate

TH1F* h_tpc_rate[20]
private

Event counter.

rate

Definition at line 102 of file MicrotpcStudyModule.h.

◆ h_ttvp

TH2F* h_ttvp[8]
private

Phi v.

theta per TPC

Definition at line 193 of file MicrotpcStudyModule.h.

◆ h_ttvp_C

TH2F* h_ttvp_C[8]
private

Phi v.

theta per TPC for C

Definition at line 205 of file MicrotpcStudyModule.h.

◆ h_ttvp_He

TH2F* h_ttvp_He[8]
private

Phi v.

theta per TPC for He

Definition at line 195 of file MicrotpcStudyModule.h.

◆ h_ttvp_He_pure

TH2F* h_ttvp_He_pure[8]
private

Phi v.

theta per TPC for He w/ edge cuts

Definition at line 199 of file MicrotpcStudyModule.h.

◆ h_ttvp_Hex

TH2F* h_ttvp_Hex[8]
private

Phi v.

theta per TPC for He and x

Definition at line 197 of file MicrotpcStudyModule.h.

◆ h_ttvp_O

TH2F* h_ttvp_O[8]
private

Phi v.

theta per TPC for O

Definition at line 203 of file MicrotpcStudyModule.h.

◆ h_ttvp_p

TH2F* h_ttvp_p[8]
private

Phi v.

theta per TPC for p

Definition at line 201 of file MicrotpcStudyModule.h.

◆ h_ttvp_x

TH2F* h_ttvp_x[8]
private

Phi v.

theta per TPC for X-ray

Definition at line 207 of file MicrotpcStudyModule.h.

◆ h_tvp

TH2F* h_tvp[8]
private

Phi v.

theta per TPC

Definition at line 164 of file MicrotpcStudyModule.h.

◆ h_tvp_C

TH2F* h_tvp_C[8]
private

Phi v.

theta per TPC for C

Definition at line 188 of file MicrotpcStudyModule.h.

◆ h_tvp_He

TH2F* h_tvp_He[8]
private

Phi v.

theta per TPC for He

Definition at line 178 of file MicrotpcStudyModule.h.

◆ h_tvp_He_pure

TH2F* h_tvp_He_pure[8]
private

Phi v.

theta per TPC for He w/ edge cuts

Definition at line 182 of file MicrotpcStudyModule.h.

◆ h_tvp_Hex

TH2F* h_tvp_Hex[8]
private

Phi v.

theta per TPC for He and x

Definition at line 180 of file MicrotpcStudyModule.h.

◆ h_tvp_O

TH2F* h_tvp_O[8]
private

Phi v.

theta per TPC for O

Definition at line 186 of file MicrotpcStudyModule.h.

◆ h_tvp_p

TH2F* h_tvp_p[8]
private

Phi v.

theta per TPC for p

Definition at line 184 of file MicrotpcStudyModule.h.

◆ h_tvp_x

TH2F* h_tvp_x[8]
private

Phi v.

theta per TPC for X-ray

Definition at line 190 of file MicrotpcStudyModule.h.

◆ h_tvpb

TH2F* h_tvpb[8]
private

Phi v.

theta per TPC

Definition at line 166 of file MicrotpcStudyModule.h.

◆ h_tvpc

TH2F* h_tvpc[8]
private

Phi v.

theta per TPC

Definition at line 168 of file MicrotpcStudyModule.h.

◆ h_tvpd

TH2F* h_tvpd[8]
private

Phi v.

theta per TPC

Definition at line 170 of file MicrotpcStudyModule.h.

◆ h_twtvp_He_pure

TH2F* h_twtvp_He_pure[8]
private

Phi v.

theta per TPC for He w/ edge cuts weighted

Definition at line 217 of file MicrotpcStudyModule.h.

◆ h_Wevtrl1

TH2F* h_Wevtrl1[8][12]
private

e v l

Definition at line 213 of file MicrotpcStudyModule.h.

◆ h_Wevtrl2

TH2F* h_Wevtrl2[8][12]
private

e v l

Definition at line 215 of file MicrotpcStudyModule.h.

◆ h_wtvp

TH2F* h_wtvp[8]
private

Phi v.

theta, weighted per TPC

Definition at line 227 of file MicrotpcStudyModule.h.

◆ h_Wtvp1

TH2F* h_Wtvp1[8][12]
private

Phi v.

theta

Definition at line 209 of file MicrotpcStudyModule.h.

◆ h_Wtvp2

TH2F* h_Wtvp2[8][12]
private

Phi v.

theta

Definition at line 211 of file MicrotpcStudyModule.h.

◆ h_wtvp_C

TH2F* h_wtvp_C[8]
private

Phi v.

theta, weighted per TPC for C

Definition at line 239 of file MicrotpcStudyModule.h.

◆ h_wtvp_He

TH2F* h_wtvp_He[8]
private

Phi v.

theta, weighted per TPC for He

Definition at line 229 of file MicrotpcStudyModule.h.

◆ h_wtvp_He_pure

TH2F* h_wtvp_He_pure[8]
private

Phi v.

theta, weighted per TPC for He w/ edge cuts

Definition at line 233 of file MicrotpcStudyModule.h.

◆ h_wtvp_Hex

TH2F* h_wtvp_Hex[8]
private

Phi v.

theta, weighted per TPC for He and x

Definition at line 231 of file MicrotpcStudyModule.h.

◆ h_wtvp_O

TH2F* h_wtvp_O[8]
private

Phi v.

theta, weighted per TPC for O

Definition at line 237 of file MicrotpcStudyModule.h.

◆ h_wtvp_p

TH2F* h_wtvp_p[8]
private

Phi v.

theta, weighted per TPC for p

Definition at line 235 of file MicrotpcStudyModule.h.

◆ h_wtvp_x

TH2F* h_wtvp_x[8]
private

Phi v.

theta, weighted per TPC for X-ray

Definition at line 241 of file MicrotpcStudyModule.h.

◆ h_wtvpb

TH2F* h_wtvpb[8]
private

Phi v.

theta per TPC

Definition at line 172 of file MicrotpcStudyModule.h.

◆ h_wtvpc

TH2F* h_wtvpc[8]
private

Phi v.

theta per TPC

Definition at line 174 of file MicrotpcStudyModule.h.

◆ h_wtvpd

TH2F* h_wtvpd[8]
private

Phi v.

theta per TPC

Definition at line 176 of file MicrotpcStudyModule.h.

◆ h_xy

TH2F* h_xy[8]
private

Charged density vs x vs y.

Definition at line 116 of file MicrotpcStudyModule.h.

◆ h_z

TH1F* h_z[8]
private

Charged density vs z vs section.

Definition at line 114 of file MicrotpcStudyModule.h.

◆ h_zr

TH2F* h_zr[8]
private

Charged density vs z vs r.

Definition at line 118 of file MicrotpcStudyModule.h.

◆ h_zx

TH2F* h_zx[8]
private

Charged density vs x vs r.

Definition at line 120 of file MicrotpcStudyModule.h.

◆ h_zy

TH2F* h_zy[8]
private

Charged density vs y vs r.

Definition at line 122 of file MicrotpcStudyModule.h.

◆ HeRec

Bool_t HeRec[8]
private

He boolean per TPC.

Definition at line 247 of file MicrotpcStudyModule.h.

◆ m_ChipColumnNb

int m_ChipColumnNb
private

Chip column number.

Definition at line 86 of file MicrotpcStudyModule.h.

◆ m_ChipColumnX

double m_ChipColumnX
private

Chip column x dimension.

Definition at line 90 of file MicrotpcStudyModule.h.

◆ m_ChipRowNb

int m_ChipRowNb
private

Chip row number.

Definition at line 88 of file MicrotpcStudyModule.h.

◆ m_ChipRowY

double m_ChipRowY
private

Chip row y dimension.

Definition at line 92 of file MicrotpcStudyModule.h.

◆ m_conditions

std::vector<ModuleCondition> m_conditions
privateinherited

Module condition, only non-null if set.

Definition at line 521 of file Module.h.

◆ m_description

std::string m_description
privateinherited

The description of the module.

Definition at line 511 of file Module.h.

◆ m_hasReturnValue

bool m_hasReturnValue
privateinherited

True, if the return value is set.

Definition at line 518 of file Module.h.

◆ m_intProb

std::vector<TGraph*> m_intProb
private

vector of interaction probability vs E graphs for all recoils

Definition at line 223 of file MicrotpcStudyModule.h.

◆ m_logConfig

LogConfig m_logConfig
privateinherited

The log system configuration of the module.

Definition at line 514 of file Module.h.

◆ m_maxEnFrac

std::vector<double> m_maxEnFrac
private

vector of maximal energy fraction transfered to recoil

Definition at line 225 of file MicrotpcStudyModule.h.

◆ m_moduleParamList

ModuleParamList m_moduleParamList
privateinherited

List storing and managing all parameter of the module.

Definition at line 516 of file Module.h.

◆ m_name

std::string m_name
privateinherited

The name of the module, saved as a string (user-modifiable)

Definition at line 508 of file Module.h.

◆ m_package

std::string m_package
privateinherited

Package this module is found in (may be empty).

Definition at line 510 of file Module.h.

◆ m_propertyFlags

unsigned int m_propertyFlags
privateinherited

The properties of the module as bitwise or (with |) of EModulePropFlags.

Definition at line 512 of file Module.h.

◆ m_returnValue

int m_returnValue
privateinherited

The return value.

Definition at line 519 of file Module.h.

◆ m_type

std::string m_type
privateinherited

The type of the module, saved as a string.

Definition at line 509 of file Module.h.

◆ m_z_DG

double m_z_DG
private

z drift gap

Definition at line 94 of file MicrotpcStudyModule.h.

◆ nTPC

int nTPC = 0
private

number of detectors.

Read from MICROTPC.xml

Definition at line 96 of file MicrotpcStudyModule.h.

◆ ORec

Bool_t ORec[8]
private

O boolean per TPC.

Definition at line 249 of file MicrotpcStudyModule.h.

◆ pid_old

int pid_old[8]
private

A boolean per TPC.

First hit of ...

Definition at line 255 of file MicrotpcStudyModule.h.

◆ pRec

Bool_t pRec[8]
private

p boolean per TPC

Definition at line 245 of file MicrotpcStudyModule.h.

◆ TPCCenter

std::vector<ROOT::Math::XYZVector> TPCCenter
private

TPC coordinate.

Definition at line 98 of file MicrotpcStudyModule.h.

◆ xRec

Bool_t xRec[8]
private

X-ray boolean per TPC.

Definition at line 243 of file MicrotpcStudyModule.h.


The documentation for this class was generated from the following files: