Belle II Software light-2406-ragdoll
TrackIsoCalculatorModule Class Reference

Calculate track isolation variables on the input ParticleList. More...

#include <TrackIsoCalculatorModule.h>

Inheritance diagram for TrackIsoCalculatorModule:
Collaboration diagram for TrackIsoCalculatorModule:

Public Types

enum  EModulePropFlags {
  c_Input = 1 ,
  c_Output = 2 ,
  c_ParallelProcessingCertified = 4 ,
  c_HistogramManager = 8 ,
  c_InternalSerializer = 16 ,
  c_TerminateInAllProcesses = 32 ,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

 TrackIsoCalculatorModule ()
 Constructor: Sets the description, the properties and the parameters of the module.
 
 ~TrackIsoCalculatorModule () override
 Destructor, use this to clean up anything you created in the constructor.
 
void initialize () override
 Use this to initialize resources or memory your module needs.
 
void event () override
 Called once for each event.
 
virtual std::vector< std::string > getFileNames (bool outputFiles)
 Return a list of output filenames for this modules.
 
virtual void beginRun ()
 Called when entering a new run.
 
virtual void endRun ()
 This method is called if the current run ends.
 
virtual void terminate ()
 This method is called at the end of the event processing.
 
const std::string & getName () const
 Returns the name of the module.
 
const std::string & getType () const
 Returns the type of the module (i.e.
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module.
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties.
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level.
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module.
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module.
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module.
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true.
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished.
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module.
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter.
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module.
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module.
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters.
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Protected Member Functions

virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python.
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side.
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module.
 
void setType (const std::string &type)
 Set the module type.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module.
 
void setReturnValue (int value)
 Sets the return value for this module as integer.
 
void setReturnValue (bool value)
 Sets the return value for this module as bool.
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Private Member Functions

double getDistAtDetSurface (const Particle *iParticle, const Particle *jParticle, const std::string &detLayerName) const
 Calculate the distance between the points where the two input extrapolated track helices cross the given detector layer's cylindrical surface.
 
double getDetectorWeight (const Particle *iParticle, const std::string &detName) const
 Get the PID weight, $w_{d} \in [-1, 0]$, for this particle and detector reading it from the payload, if selected.
 
double getWeightedSumNonIsoLayers (const Particle *iParticle, const std::string &detName, const float detWeight) const
 Get the sum of layers with a close-by track, divided by the total number of layers, for the given detector $d$, weighted by the PID detector separation score (if requested):
 
double getWeightedSumInvDists (const Particle *iParticle, const std::string &detName, const float detWeight) const
 Get the sum of the inverse (scaled) minimum distances over the given detector $d$ layers, weighted by the PID detector separation score (if requested):
 
double getDistThreshold (Const::EDetector det, int layer) const
 Get the threshold value per detector layer for the distance to closest ext.
 
bool onlySelectedStdChargedInDecay ()
 Check whether input particle list and reference list are of a valid charged stable particle.
 
Const::EDetector getDetEnum (const std::string &detName) const
 Get the enum type for this detector name.
 
std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects.
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary.
 

Private Attributes

StoreArray< Particlem_particles
 StoreArray of Particles.
 
std::string m_decayString
 The name of the input charged stable particle list, or composite particle w/ charged stable daughters for which distances are to be calculated.
 
unsigned short m_nSelectedDaughters
 The number of selected daughters in the decay string.
 
std::string m_pListReferenceName
 The name of the input ParticleList of reference tracks.
 
std::vector< std::string > m_detNames
 The list of names of the detectors at whose inner (cylindrical) surface we extrapolate each track's polar and azimuthal angle.
 
std::unordered_map< std::string, std::string > m_detLayerToDistVariable
 Map that associates to each detector layer (e.g., 'CDC6') the name of the variable representing the distance to the closest particle in the reference list, based on the track helix extrapolation.
 
std::unordered_map< std::string, std::string > m_detLayerToRefPartIdxVariable
 Map that associates to each detector layer (e.g, 'CDC6') the name of the variable representing the mdst array index of the closest particle in the reference list.
 
std::string m_isoScoreVariable
 The name of the variable representing the track isolation score.
 
std::string m_isoScoreVariableAsWeightedAvg
 The name of the variable representing the track isolation score.
 
std::map< std::pair< std::string, int >, double > m_distThreshPerDetLayer
 Threshold values for the distance (in [cm]) to closest ext.
 
StoreObjPtr< EventMetaDatam_event_metadata
 The event information.
 
StoreObjPtr< ParticleListm_pListTarget
 The input ParticleList object for which distances are to be calculated.
 
DecayDescriptor m_decaydescriptor
 < Decay descriptor of decays to look for.
 
StoreObjPtr< ParticleListm_pListReference
 The input ParticleList object of reference tracks.
 
bool m_useHighestProbMassForExt
 If this option is set, the helix extrapolation for the target and reference particles will use the track fit result for the most probable mass hypothesis, namely, the one that gives the highest chi2Prob of the fit.
 
bool m_excludePIDDetWeights
 Exclude the PID detector weights for the isolation score definition.
 
std::string m_payloadName
 The name of the database payload object with the MVA weights.
 
std::unique_ptr< DBObjPtr< PIDDetectorWeights > > m_DBWeights
 Interface to get the database payload with the PID detector weights.
 
std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 

Detailed Description

Calculate track isolation variables on the input ParticleList.

Definition at line 39 of file TrackIsoCalculatorModule.h.

Member Typedef Documentation

◆ EAfterConditionPath

Forward the EAfterConditionPath definition from the ModuleCondition.

Definition at line 88 of file Module.h.

Member Enumeration Documentation

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 77 of file Module.h.

77 {
78 c_Input = 1,
79 c_Output = 2,
85 };
@ c_HistogramManager
This module is used to manage histograms accumulated by other modules.
Definition: Module.h:81
@ c_Input
This module is an input module (reads data).
Definition: Module.h:78
@ c_DontCollectStatistics
No statistics is collected for this module.
Definition: Module.h:84
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
Definition: Module.h:80
@ c_InternalSerializer
This module is an internal serializer/deserializer for parallel processing.
Definition: Module.h:82
@ c_Output
This module is an output module (writes data).
Definition: Module.h:79
@ c_TerminateInAllProcesses
When using parallel processing, call this module's terminate() function in all processes().
Definition: Module.h:83

Constructor & Destructor Documentation

◆ TrackIsoCalculatorModule()

Constructor: Sets the description, the properties and the parameters of the module.

Definition at line 22 of file TrackIsoCalculatorModule.cc.

22 : Module()
23{
24 // Set module properties
26 R"DOC(Calculate track isolation variables on the charged stable particles, or selected charged daughters, of the input ParticleList.)DOC");
27
28 // Parameter definitions
29 addParam("decayString",
31 "The name of the input charged stable particle list, e.g. ``mu+:all``, or a composite particle w/ charged stable daughters for which distances are to be calculated, e.g. ``D0 -> ^K- pi+``. Note that in the latter case we allow only one daughter to be selected in the decay string per module instance.");
32 addParam("particleListReference",
34 "The name of the input ParticleList of reference tracks. Must be a charged stable particle as defined in Const::chargedStableSet.");
35 addParam("detectorNames",
37 "The list of names of the detectors at whose (cylindrical) surface(s) we extrapolate each helix's polar and azimuthal angle. Allowed values: {CDC, TOP, ARICH, ECL, KLM}.",
38 std::vector<std::string>());
39 addParam("useHighestProbMassForExt",
41 "If this option is set, the helix extrapolation for the target and reference particles will use the track fit result for the most probable mass hypothesis, namely, the one that gives the highest chi2Prob of the fit.",
42 bool(false));
43 addParam("payloadName",
45 "The name of the database payload object with the PID detector weights.",
46 std::string("PIDDetectorWeights"));
47 addParam("excludePIDDetWeights",
49 "If set to true, will not use the PID detector weights for the score definition.",
50 bool(false));
51}
void setDescription(const std::string &description)
Sets the description of the module.
Definition: Module.cc:214
Module()
Constructor.
Definition: Module.cc:30
std::string m_decayString
The name of the input charged stable particle list, or composite particle w/ charged stable daughters...
std::string m_payloadName
The name of the database payload object with the MVA weights.
std::vector< std::string > m_detNames
The list of names of the detectors at whose inner (cylindrical) surface we extrapolate each track's p...
std::string m_pListReferenceName
The name of the input ParticleList of reference tracks.
bool m_excludePIDDetWeights
Exclude the PID detector weights for the isolation score definition.
bool m_useHighestProbMassForExt
If this option is set, the helix extrapolation for the target and reference particles will use the tr...
void addParam(const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
Definition: Module.h:560

◆ ~TrackIsoCalculatorModule()

~TrackIsoCalculatorModule ( )
override

Destructor, use this to clean up anything you created in the constructor.

Definition at line 53 of file TrackIsoCalculatorModule.cc.

54{
55}

Member Function Documentation

◆ beginRun()

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 179 of file Module.cc.

180{
182 newModule->m_moduleParamList.setParameters(getParamList());
183 newModule->setName(getName());
184 newModule->m_package = m_package;
185 newModule->m_propertyFlags = m_propertyFlags;
186 newModule->m_logConfig = m_logConfig;
187 newModule->m_conditions = m_conditions;
188
189 return newModule;
190}
std::shared_ptr< Module > registerModule(const std::string &moduleName, std::string sharedLibPath="") noexcept(false)
Creates an instance of a module and registers it to the ModuleManager.
static ModuleManager & Instance()
Exception is thrown if the requested module could not be created by the ModuleManager.
const ModuleParamList & getParamList() const
Return module param list.
Definition: Module.h:363
const std::string & getName() const
Returns the name of the module.
Definition: Module.h:187
const std::string & getType() const
Returns the type of the module (i.e.
Definition: Module.cc:41
unsigned int m_propertyFlags
The properties of the module as bitwise or (with |) of EModulePropFlags.
Definition: Module.h:512
LogConfig m_logConfig
The log system configuration of the module.
Definition: Module.h:514
std::vector< ModuleCondition > m_conditions
Module condition, only non-null if set.
Definition: Module.h:521
std::string m_package
Package this module is found in (may be empty).
Definition: Module.h:510
std::shared_ptr< Module > ModulePtr
Defines a pointer to a module object as a boost shared pointer.
Definition: Module.h:43

◆ def_beginRun()

virtual void def_beginRun ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 426 of file Module.h.

426{ beginRun(); }
virtual void beginRun()
Called when entering a new run.
Definition: Module.h:147

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 439 of file Module.h.

439{ endRun(); }
virtual void endRun()
This method is called if the current run ends.
Definition: Module.h:166

◆ def_event()

virtual void def_event ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 432 of file Module.h.

432{ event(); }
virtual void event()
This method is the core of the module.
Definition: Module.h:157

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 420 of file Module.h.

420{ initialize(); }
virtual void initialize()
Initialize the Module.
Definition: Module.h:109

◆ def_terminate()

virtual void def_terminate ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 445 of file Module.h.

445{ terminate(); }
virtual void terminate()
This method is called at the end of the event processing.
Definition: Module.h:176

◆ endRun()

virtual void endRun ( )
inlinevirtualinherited

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 96 of file Module.cc.

97{
98 if (m_conditions.empty()) return false;
99
100 //okay, a condition was set for this Module...
101 if (!m_hasReturnValue) {
102 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
103 }
104
105 for (const auto& condition : m_conditions) {
106 if (condition.evaluate(m_returnValue)) {
107 return true;
108 }
109 }
110 return false;
111}
int m_returnValue
The return value.
Definition: Module.h:519
bool m_hasReturnValue
True, if the return value is set.
Definition: Module.h:518

◆ event()

void event ( )
overridevirtual

Called once for each event.

This is most likely where your module will actually do anything.

Reimplemented from Module.

Definition at line 136 of file TrackIsoCalculatorModule.cc.

137{
138 B2DEBUG(11, "Start processing EVENT: " << m_event_metadata->getEvent());
139
140 const auto nMotherParticles = m_pListTarget->getListSize();
141
142 // Fill transient container of all selected charged particles in the decay
143 // for which the distance to nearest neighbour is to be calculated.
144 // If the input ParticleList is that of standard charged particles, just copy
145 // the whole list over, otherwise loop over the selected charged daughters.
146 std::unordered_map<unsigned int, const Particle*> targetParticles;
147 targetParticles.reserve(nMotherParticles);
148
149 for (unsigned int iPart(0); iPart < nMotherParticles; ++iPart) {
150
151 auto iParticle = m_pListTarget->getParticle(iPart);
152
153 // Loop over the input detectors.
154 for (const auto& detName : m_detNames) {
155
156 // Loop over the layer of the input detector.
157 for (const auto& iLayer : DetectorSurface::detToLayers.at(detName)) {
158
159 auto iDetLayer = detName + std::to_string(iLayer);
160
162 for (auto* iDaughter : m_decaydescriptor.getSelectionParticles(iParticle)) {
163 // Check if the distance for this target particle has been set already,
164 // e.g. by a previous instance of this module.
165 if (iDaughter->hasExtraInfo(m_detLayerToDistVariable[iDetLayer])) {
166 continue;
167 }
168 targetParticles.insert({iDaughter->getMdstArrayIndex(), iDaughter});
169 }
170 } else {
171 if (iParticle->hasExtraInfo(m_detLayerToDistVariable[iDetLayer])) {
172 continue;
173 }
174 targetParticles.insert({iParticle->getMdstArrayIndex(), iParticle});
175 }
176
177 }
178 }
179 }
180
181 const auto nParticlesTarget = targetParticles.size();
182 const auto nParticlesReference = m_pListReference->getListSize();
183
184 // Loop over the input detectors.
185 for (const auto& detName : m_detNames) {
186
187 // Loop over the layer of the input detector.
188 for (const auto& iLayer : DetectorSurface::detToLayers.at(detName)) {
189
190 auto iDetLayer = detName + std::to_string(iLayer);
191
192 B2DEBUG(11, "\n"
193 << "Detector surface: " << iDetLayer << "\n"
194 << "nMotherParticles: " << nMotherParticles << "\n"
195 << "nParticlesTarget: " << nParticlesTarget << "\n"
196 << "nParticlesReference: " << nParticlesReference);
197
198 double dummyDist(-1.0);
199
200 // Store the pair-wise distances in a map,
201 // where the keys are pairs of mdst indexes.
202 std::map<std::pair<unsigned int, unsigned int>, double> particleMdstIdxPairsToDist;
203
204 // Loop over input particle list
205 for (const auto& targetParticle : targetParticles) {
206
207 auto iMdstIdx = targetParticle.first;
208 auto iParticle = targetParticle.second;
209
210 for (unsigned int jPart(0); jPart < nParticlesReference; ++jPart) {
211
212 auto jParticle = m_pListReference->getParticle(jPart);
213 auto jMdstIdx = jParticle->getMdstArrayIndex();
214
215 auto partMdstIdxPair = std::make_pair(iMdstIdx, jMdstIdx);
216
217 // Set dummy distance if same particle.
218 if (iMdstIdx == jMdstIdx) {
219 particleMdstIdxPairsToDist[partMdstIdxPair] = dummyDist;
220 continue;
221 }
222 // If:
223 //
224 // - the mass hypothesis of the best fit is used, OR
225 // - the mass hypothesis of the 'default' fit of the two particles is the same,
226 //
227 // avoid re-doing the calculation if a pair with the flipped mdst indexes in the map already exists.
228 if (m_useHighestProbMassForExt || (iParticle->getPDGCodeUsedForFit() == jParticle->getPDGCodeUsedForFit())) {
229 if (particleMdstIdxPairsToDist.count({jMdstIdx, iMdstIdx})) {
230 particleMdstIdxPairsToDist[partMdstIdxPair] = particleMdstIdxPairsToDist[ {jMdstIdx, iMdstIdx}];
231 continue;
232 }
233 }
234 // Calculate the pair-wise distance.
235 particleMdstIdxPairsToDist[partMdstIdxPair] = this->getDistAtDetSurface(iParticle, jParticle, iDetLayer);
236 }
237
238 }
239
240 // For each particle in the input list, find the minimum among all distances to the reference particles.
241 for (const auto& targetParticle : targetParticles) {
242
243 auto iMdstIdx = targetParticle.first;
244 auto iParticle = targetParticle.second;
245
246 // Save the distances and the mdst indexes of the reference particles.
247 std::vector<std::pair<double, unsigned int>> iDistancesAndRefMdstIdxs;
248 for (const auto& [mdstIdxs, dist] : particleMdstIdxPairsToDist) {
249 if (mdstIdxs.first == iMdstIdx) {
250 if (!std::isnan(dist) && dist >= 0) {
251 iDistancesAndRefMdstIdxs.push_back(std::make_pair(dist, mdstIdxs.second));
252 }
253 }
254 }
255
256 if (!iDistancesAndRefMdstIdxs.size()) {
257 B2DEBUG(12, "The container of distances is empty. Perhaps the target and reference lists contain the same exact particles?");
258 continue;
259 }
260
261 const auto minDist = *std::min_element(std::begin(iDistancesAndRefMdstIdxs), std::end(iDistancesAndRefMdstIdxs),
262 [](const auto & l, const auto & r) {return l.first < r.first;});
263
264 auto jParticle = m_pListReference->getParticleWithMdstIdx(minDist.second);
265
266 B2DEBUG(11, "\n"
267 << "Particle w/ mdstIndex[" << iMdstIdx << "] (PDG = "
268 << iParticle->getPDGCode() << "). Closest charged particle w/ mdstIndex["
269 << minDist.second
270 << "] (PDG = " << jParticle->getPDGCode()
271 << ") at " << iDetLayer
272 << " surface is found at D = " << minDist.first
273 << " [cm]\n"
274 << "Storing extraInfo variables:\n"
275 << m_detLayerToDistVariable[iDetLayer]
276 << "\n"
277 << m_detLayerToRefPartIdxVariable[iDetLayer]);
278
279 if (!iParticle->hasExtraInfo(m_detLayerToDistVariable[iDetLayer])) {
280 m_particles[iParticle->getArrayIndex()]->addExtraInfo(m_detLayerToDistVariable[iDetLayer], minDist.first);
281 }
282 m_particles[iParticle->getArrayIndex()]->writeExtraInfo(m_detLayerToRefPartIdxVariable[iDetLayer], minDist.second);
283
284 } // end loop over input particle list.
285
286 } // end loop over detector layers.
287
288 } // end loop over input detectors.
289
290 // Now calculate the isolation score for each target particle.
291 for (const auto& targetParticle : targetParticles) {
292
293 auto iMdstIdx = targetParticle.first;
294 auto iParticle = targetParticle.second;
295
296 // Initialise isolation score.
297 double isoScore(0.0);
298 double isoScoreAsWeightedAvg(0.0);
299 double sumWeights(0.0);
300
301 B2DEBUG(11, "Particle w/ mdstIndex[" << iMdstIdx << "] (PDG = " << iParticle->getPDGCode() << ").");
302
303 for (const auto& detName : m_detNames) {
304
305 auto detWeight = this->getDetectorWeight(iParticle, detName);
306
307 auto weightedSumNonIsoLayers = this->getWeightedSumNonIsoLayers(iParticle, detName, detWeight);
308 auto weightedSumInvDists = this->getWeightedSumInvDists(iParticle, detName, detWeight);
309
310 isoScore += weightedSumNonIsoLayers;
311 isoScoreAsWeightedAvg += weightedSumInvDists;
312 sumWeights += detWeight;
313
314 }
315
316 // Normalise the isolation score to lie in [0, 1].
317 auto minScore = 0.;
318 auto maxScore = m_detNames.size();
319 isoScore = (isoScore - minScore) / (maxScore - minScore);
320
321 isoScoreAsWeightedAvg /= sumWeights;
322 // Normalise weighted average between [0, 1].
323 // But first, clip values that are too large.
324 // Finally, ensure a larger score is assigned for well-isolated tracks.
325 isoScoreAsWeightedAvg = 1. - ((std::min(isoScoreAsWeightedAvg, 1e2) - minScore) / (1e2 - minScore));
326
327 B2DEBUG(11, "\n"
328 << "Isolation score: " << isoScore
329 << "\n"
330 << "Isolation score (as weighted avg): " << isoScoreAsWeightedAvg
331 << "\n"
332 << "Storing extraInfo variable:\n"
334 << "\n"
336
337 m_particles[iParticle->getArrayIndex()]->writeExtraInfo(m_isoScoreVariable, isoScore);
338 m_particles[iParticle->getArrayIndex()]->writeExtraInfo(m_isoScoreVariableAsWeightedAvg, isoScoreAsWeightedAvg);
339
340 }
341
342 B2DEBUG(11, "Finished processing EVENT: " << m_event_metadata->getEvent());
343
344}
std::vector< const Particle * > getSelectionParticles(const Particle *particle)
Get a vector of pointers with selected daughters in the decay tree.
StoreObjPtr< EventMetaData > m_event_metadata
The event information.
double getDistAtDetSurface(const Particle *iParticle, const Particle *jParticle, const std::string &detLayerName) const
Calculate the distance between the points where the two input extrapolated track helices cross the gi...
std::unordered_map< std::string, std::string > m_detLayerToDistVariable
Map that associates to each detector layer (e.g., 'CDC6') the name of the variable representing the d...
StoreObjPtr< ParticleList > m_pListTarget
The input ParticleList object for which distances are to be calculated.
std::string m_isoScoreVariable
The name of the variable representing the track isolation score.
double getWeightedSumInvDists(const Particle *iParticle, const std::string &detName, const float detWeight) const
Get the sum of the inverse (scaled) minimum distances over the given detector layers,...
StoreArray< Particle > m_particles
StoreArray of Particles.
std::unordered_map< std::string, std::string > m_detLayerToRefPartIdxVariable
Map that associates to each detector layer (e.g, 'CDC6') the name of the variable representing the md...
double getDetectorWeight(const Particle *iParticle, const std::string &detName) const
Get the PID weight, , for this particle and detector reading it from the payload, if selected.
DecayDescriptor m_decaydescriptor
< Decay descriptor of decays to look for.
double getWeightedSumNonIsoLayers(const Particle *iParticle, const std::string &detName, const float detWeight) const
Get the sum of layers with a close-by track, divided by the total number of layers,...
unsigned short m_nSelectedDaughters
The number of selected daughters in the decay string.
StoreObjPtr< ParticleList > m_pListReference
The input ParticleList object of reference tracks.
std::string m_isoScoreVariableAsWeightedAvg
The name of the variable representing the track isolation score.
static const std::unordered_map< std::string, std::vector< int > > detToLayers
Map that associates to each detector its list of valid layers.

◆ exposePythonAPI()

void exposePythonAPI ( )
staticinherited

Exposes methods of the Module class to Python.

Definition at line 325 of file Module.cc.

326{
327 // to avoid confusion between std::arg and boost::python::arg we want a shorthand namespace as well
328 namespace bp = boost::python;
329
330 docstring_options options(true, true, false); //userdef, py sigs, c++ sigs
331
332 void (Module::*setReturnValueInt)(int) = &Module::setReturnValue;
333
334 enum_<Module::EAfterConditionPath>("AfterConditionPath",
335 R"(Determines execution behaviour after a conditional path has been executed:
336
337.. attribute:: END
338
339 End processing of this path after the conditional path. (this is the default for if_value() etc.)
340
341.. attribute:: CONTINUE
342
343 After the conditional path, resume execution after this module.)")
344 .value("END", Module::EAfterConditionPath::c_End)
345 .value("CONTINUE", Module::EAfterConditionPath::c_Continue)
346 ;
347
348 /* Do not change the names of >, <, ... we use them to serialize conditional pathes */
349 enum_<Belle2::ModuleCondition::EConditionOperators>("ConditionOperator")
356 ;
357
358 enum_<Module::EModulePropFlags>("ModulePropFlags",
359 R"(Flags to indicate certain low-level features of modules, see :func:`Module.set_property_flags()`, :func:`Module.has_properties()`. Most useful flags are:
360
361.. attribute:: PARALLELPROCESSINGCERTIFIED
362
363 This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)
364
365.. attribute:: HISTOGRAMMANAGER
366
367 This module is used to manage histograms accumulated by other modules
368
369.. attribute:: TERMINATEINALLPROCESSES
370
371 When using parallel processing, call this module's terminate() function in all processes. This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.
372)")
373 .value("INPUT", Module::EModulePropFlags::c_Input)
374 .value("OUTPUT", Module::EModulePropFlags::c_Output)
375 .value("PARALLELPROCESSINGCERTIFIED", Module::EModulePropFlags::c_ParallelProcessingCertified)
376 .value("HISTOGRAMMANAGER", Module::EModulePropFlags::c_HistogramManager)
377 .value("INTERNALSERIALIZER", Module::EModulePropFlags::c_InternalSerializer)
378 .value("TERMINATEINALLPROCESSES", Module::EModulePropFlags::c_TerminateInAllProcesses)
379 ;
380
381 //Python class definition
382 class_<Module, PyModule> module("Module", R"(
383Base class for Modules.
384
385A module is the smallest building block of the framework.
386A typical event processing chain consists of a Path containing
387modules. By inheriting from this base class, various types of
388modules can be created. To use a module, please refer to
389:func:`Path.add_module()`. A list of modules is available by running
390``basf2 -m`` or ``basf2 -m package``, detailed information on parameters is
391given by e.g. ``basf2 -m RootInput``.
392
393The 'Module Development' section in the manual provides detailed information
394on how to create modules, setting parameters, or using return values/conditions:
395https://confluence.desy.de/display/BI/Software+Basf2manual#Module_Development
396
397)");
398 module
399 .def("__str__", &Module::getPathString)
400 .def("name", &Module::getName, return_value_policy<copy_const_reference>(),
401 "Returns the name of the module. Can be changed via :func:`set_name() <Module.set_name()>`, use :func:`type() <Module.type()>` for identifying a particular module class.")
402 .def("type", &Module::getType, return_value_policy<copy_const_reference>(),
403 "Returns the type of the module (i.e. class name minus 'Module')")
404 .def("set_name", &Module::setName, args("name"), R"(
405Set custom name, e.g. to distinguish multiple modules of the same type.
406
407>>> path.add_module('EventInfoSetter')
408>>> ro = path.add_module('RootOutput', branchNames=['EventMetaData'])
409>>> ro.set_name('RootOutput_metadata_only')
410>>> print(path)
411[EventInfoSetter -> RootOutput_metadata_only]
412
413)")
414 .def("description", &Module::getDescription, return_value_policy<copy_const_reference>(),
415 "Returns the description of this module.")
416 .def("package", &Module::getPackage, return_value_policy<copy_const_reference>(),
417 "Returns the package this module belongs to.")
418 .def("available_params", &_getParamInfoListPython,
419 "Return list of all module parameters as `ModuleParamInfo` instances")
420 .def("has_properties", &Module::hasProperties, (bp::arg("properties")),
421 R"DOCSTRING(Allows to check if the module has the given properties out of `ModulePropFlags` set.
422
423>>> if module.has_properties(ModulePropFlags.PARALLELPROCESSINGCERTIFIED):
424>>> ...
425
426Parameters:
427 properties (int): bitmask of `ModulePropFlags` to check for.
428)DOCSTRING")
429 .def("set_property_flags", &Module::setPropertyFlags, args("property_mask"),
430 "Set module properties in the form of an OR combination of `ModulePropFlags`.");
431 {
432 // python signature is too crowded, make ourselves
433 docstring_options subOptions(true, false, false); //userdef, py sigs, c++ sigs
434 module
435 .def("if_value", &Module::if_value,
436 (bp::arg("expression"), bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
437 R"DOCSTRING(if_value(expression, condition_path, after_condition_path=AfterConditionPath.END)
438
439Sets a conditional sub path which will be executed after this
440module if the return value set in the module passes the given ``expression``.
441
442Modules can define a return value (int or bool) using ``setReturnValue()``,
443which can be used in the steering file to split the Path based on this value, for example
444
445>>> module_with_condition.if_value("<1", another_path)
446
447In case the return value of the ``module_with_condition`` for a given event is
448less than 1, the execution will be diverted into ``another_path`` for this event.
449
450You could for example set a special return value if an error occurs, and divert
451the execution into a path containing :b2:mod:`RootOutput` if it is found;
452saving only the data producing/produced by the error.
453
454After a conditional path has executed, basf2 will by default stop processing
455the path for this event. This behaviour can be changed by setting the
456``after_condition_path`` argument.
457
458Parameters:
459 expression (str): Expression to determine if the conditional path should be executed.
460 This should be one of the comparison operators ``<``, ``>``, ``<=``,
461 ``>=``, ``==``, or ``!=`` followed by a numerical value for the return value
462 condition_path (Path): path to execute in case the expression is fulfilled
463 after_condition_path (AfterConditionPath): What to do once the ``condition_path`` has been executed.
464)DOCSTRING")
465 .def("if_false", &Module::if_false,
466 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
467 R"DOC(if_false(condition_path, after_condition_path=AfterConditionPath.END)
468
469Sets a conditional sub path which will be executed after this module if
470the return value of the module evaluates to False. This is equivalent to
471calling `if_value` with ``expression=\"<1\"``)DOC")
472 .def("if_true", &Module::if_true,
473 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
474 R"DOC(if_true(condition_path, after_condition_path=AfterConditionPath.END)
475
476Sets a conditional sub path which will be executed after this module if
477the return value of the module evaluates to True. It is equivalent to
478calling `if_value` with ``expression=\">=1\"``)DOC");
479 }
480 module
481 .def("has_condition", &Module::hasCondition,
482 "Return true if a conditional path has been set for this module "
483 "using `if_value`, `if_true` or `if_false`")
484 .def("get_all_condition_paths", &_getAllConditionPathsPython,
485 "Return a list of all conditional paths set for this module using "
486 "`if_value`, `if_true` or `if_false`")
487 .def("get_all_conditions", &_getAllConditionsPython,
488 "Return a list of all conditional path expressions set for this module using "
489 "`if_value`, `if_true` or `if_false`")
490 .add_property("logging", make_function(&Module::getLogConfig, return_value_policy<reference_existing_object>()),
@ c_GE
Greater or equal than: ">=".
@ c_SE
Smaller or equal than: "<=".
@ c_GT
Greater than: ">"
@ c_NE
Not equal: "!=".
@ c_EQ
Equal: "=" or "=="
@ c_ST
Smaller than: "<"
Base class for Modules.
Definition: Module.h:72
LogConfig & getLogConfig()
Returns the log system configuration.
Definition: Module.h:225
void if_value(const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
Add a condition to the module.
Definition: Module.cc:79
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
Definition: Module.cc:208
void if_true(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to set the condition of the module.
Definition: Module.cc:90
void setReturnValue(int value)
Sets the return value for this module as integer.
Definition: Module.cc:220
void setLogConfig(const LogConfig &logConfig)
Set the log system configuration.
Definition: Module.h:230
const std::string & getDescription() const
Returns the description of the module.
Definition: Module.h:202
void if_false(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to add a condition to the module.
Definition: Module.cc:85
bool hasCondition() const
Returns true if at least one condition was set for the module.
Definition: Module.h:311
const std::string & getPackage() const
Returns the package this module is in.
Definition: Module.h:197
void setName(const std::string &name)
Set the name of the module.
Definition: Module.h:214
bool hasProperties(unsigned int propertyFlags) const
Returns true if all specified property flags are available in this module.
Definition: Module.cc:160
std::string getPathString() const override
return the module name.
Definition: Module.cc:192

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 133 of file Module.cc.

134{
135 if (m_conditions.empty()) return EAfterConditionPath::c_End;
136
137 //okay, a condition was set for this Module...
138 if (!m_hasReturnValue) {
139 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
140 }
141
142 for (const auto& condition : m_conditions) {
143 if (condition.evaluate(m_returnValue)) {
144 return condition.getAfterConditionPath();
145 }
146 }
147
148 return EAfterConditionPath::c_End;
149}

◆ getAllConditionPaths()

std::vector< std::shared_ptr< Path > > getAllConditionPaths ( ) const
inherited

Return all condition paths currently set (no matter if the condition is true or not).

Definition at line 150 of file Module.cc.

151{
152 std::vector<std::shared_ptr<Path>> allConditionPaths;
153 for (const auto& condition : m_conditions) {
154 allConditionPaths.push_back(condition.getPath());
155 }
156
157 return allConditionPaths;
158}

◆ getAllConditions()

const std::vector< ModuleCondition > & getAllConditions ( ) const
inlineinherited

Return all set conditions for this module.

Definition at line 324 of file Module.h.

325 {
326 return m_conditions;
327 }

◆ getCondition()

const ModuleCondition * getCondition ( ) const
inlineinherited

Return a pointer to the first condition (or nullptr, if none was set)

Definition at line 314 of file Module.h.

315 {
316 if (m_conditions.empty()) {
317 return nullptr;
318 } else {
319 return &m_conditions.front();
320 }
321 }

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 113 of file Module.cc.

114{
115 PathPtr p;
116 if (m_conditions.empty()) return p;
117
118 //okay, a condition was set for this Module...
119 if (!m_hasReturnValue) {
120 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
121 }
122
123 for (const auto& condition : m_conditions) {
124 if (condition.evaluate(m_returnValue)) {
125 return condition.getPath();
126 }
127 }
128
129 // if none of the conditions were true, return a null pointer.
130 return p;
131}
std::shared_ptr< Path > PathPtr
Defines a pointer to a path object as a boost shared pointer.
Definition: Path.h:35

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Returns the description of the module.

Definition at line 202 of file Module.h.

202{return m_description;}
std::string m_description
The description of the module.
Definition: Module.h:511

◆ getDetectorWeight()

double getDetectorWeight ( const Particle iParticle,
const std::string &  detName 
) const
private

Get the PID weight, $w_{d} \in [-1, 0]$, for this particle and detector reading it from the payload, if selected.

Otherwise return a default weight of -1.

Definition at line 347 of file TrackIsoCalculatorModule.cc.

348{
349
351 return -1.;
352 }
353
354 auto hypo = Const::ChargedStable(std::abs(iParticle->getPDGCode()));
355 auto p = iParticle->getP();
356 auto theta = iParticle->getMomentum().Theta();
357 auto det = this->getDetEnum(detName);
358
359 auto detWeight = (*m_DBWeights.get())->getWeight(hypo, det, p, theta);
360 // If w > 0, the detector has detrimental impact on PID:
361 // the value is reset to zero to prevent the detector from contributing to the score.
362 // NB: NaN should stay NaN.
363 detWeight = (detWeight < 0 || std::isnan(detWeight)) ? detWeight : 0.0;
364
365 return detWeight;
366
367}
Provides a type-safe way to pass members of the chargedStableSet set.
Definition: Const.h:589
int getPDGCode(void) const
Returns PDG code.
Definition: Particle.h:454
ROOT::Math::XYZVector getMomentum() const
Returns momentum vector.
Definition: Particle.h:560
double getP() const
Returns momentum magnitude (same as getMomentumMagnitude but with shorter name)
Definition: Particle.h:578
std::unique_ptr< DBObjPtr< PIDDetectorWeights > > m_DBWeights
Interface to get the database payload with the PID detector weights.
Const::EDetector getDetEnum(const std::string &detName) const
Get the enum type for this detector name.

◆ getDetEnum()

Const::EDetector getDetEnum ( const std::string &  detName) const
inlineprivate

Get the enum type for this detector name.

Definition at line 249 of file TrackIsoCalculatorModule.h.

250 {
251
252 if (detName == "CDC") return Const::CDC;
253 else if (detName == "TOP") return Const::TOP;
254 else if (detName == "ARICH") return Const::ARICH;
255 else if (detName == "ECL") return Const::ECL;
256 else if (detName == "KLM") return Const::KLM;
257 else B2FATAL("Unknown detector component: " << detName);
258
259 };

◆ getDistAtDetSurface()

double getDistAtDetSurface ( const Particle iParticle,
const Particle jParticle,
const std::string &  detLayerName 
) const
private

Calculate the distance between the points where the two input extrapolated track helices cross the given detector layer's cylindrical surface.

Definition at line 432 of file TrackIsoCalculatorModule.cc.

435{
436
437 // Radius and z boundaries of the cylinder describing this detector's surface.
438 const auto rho = DetectorSurface::detLayerToSurfBoundaries.at(detLayerName).m_rho;
439 const auto zfwd = DetectorSurface::detLayerToSurfBoundaries.at(detLayerName).m_zfwd;
440 const auto zbwd = DetectorSurface::detLayerToSurfBoundaries.at(detLayerName).m_zbwd;
441 // Polar angle boundaries between barrel and endcaps.
442 const auto th_fwd = DetectorSurface::detLayerToSurfBoundaries.at(detLayerName).m_th_fwd;
443 const auto th_fwd_brl = DetectorSurface::detLayerToSurfBoundaries.at(detLayerName).m_th_fwd_brl;
444 const auto th_bwd_brl = DetectorSurface::detLayerToSurfBoundaries.at(detLayerName).m_th_bwd_brl;
445 const auto th_bwd = DetectorSurface::detLayerToSurfBoundaries.at(detLayerName).m_th_bwd;
446
447 std::string nameExtTheta = "helixExtTheta(" + std::to_string(rho) + "," + std::to_string(zfwd) + "," + std::to_string(zbwd) + ")";
449 nameExtTheta.replace(nameExtTheta.size() - 1, 1, ", 1)");
450 }
451 const auto iExtTheta = std::get<double>(Variable::Manager::Instance().getVariable(nameExtTheta)->function(iParticle));
452 const auto jExtTheta = std::get<double>(Variable::Manager::Instance().getVariable(nameExtTheta)->function(jParticle));
453
454 std::string nameExtPhi = "helixExtPhi(" + std::to_string(rho) + "," + std::to_string(zfwd) + "," + std::to_string(zbwd) + ")";
456 nameExtPhi.replace(nameExtPhi.size() - 1, 1, ", 1)");
457 }
458 const auto iExtPhi = std::get<double>(Variable::Manager::Instance().getVariable(nameExtPhi)->function(iParticle));
459 const auto jExtPhi = std::get<double>(Variable::Manager::Instance().getVariable(nameExtPhi)->function(jParticle));
460
461 const auto iExtInBarrel = (iExtTheta >= th_fwd_brl && iExtTheta < th_bwd_brl);
462 const auto jExtInBarrel = (jExtTheta >= th_fwd_brl && jExtTheta < th_bwd_brl);
463
464 const auto iExtInFWDEndcap = (iExtTheta >= th_fwd && iExtTheta < th_fwd_brl);
465 const auto jExtInFWDEndcap = (jExtTheta >= th_fwd && jExtTheta < th_fwd_brl);
466
467 const auto iExtInBWDEndcap = (iExtTheta >= th_bwd_brl && iExtTheta < th_bwd);
468 const auto jExtInBWDEndcap = (jExtTheta >= th_bwd_brl && jExtTheta < th_bwd);
469
470 if (boost::contains(detLayerName, "CDC") || boost::contains(detLayerName, "TOP")) {
471
472 // If any of the two extrapolated tracks is not in the barrel region of the CDC/TOP, the distance is undefined.
473 if (!iExtInBarrel || !jExtInBarrel) {
474 return std::numeric_limits<double>::quiet_NaN();
475 }
476
477 // For CDC and TOP, we calculate the distance between the points where the two input
478 // extrapolated track helices cross the input detector's cylindrical surface
479 // on the (rho, phi) plane. Namely, this is the cord length of the arc
480 // that subtends deltaPhi.
481 auto diffPhi = jExtPhi - iExtPhi;
482 if (std::abs(diffPhi) > M_PI) {
483 diffPhi = (diffPhi > M_PI) ? diffPhi - 2 * M_PI : 2 * M_PI + diffPhi;
484 }
485
486 return 2.0 * rho * sin(std::abs(diffPhi) / 2.0);
487
488 } else {
489
490 if (boost::contains(detLayerName, "ARICH")) {
491 // If any of the two tracks is not in the ARICH theta acceptance, the distance is undefined.
492 if (!iExtInFWDEndcap || !jExtInFWDEndcap) {
493 return std::numeric_limits<double>::quiet_NaN();
494 }
495 }
496 if (boost::contains(detLayerName, "ECL") || boost::contains(detLayerName, "KLM")) {
497
498 // For ECL and KLM, we require track pairs to be both in the barrel,
499 // both in the FWD endcap, or both in the FWD endcap. Otherwise, the distance is undefined.
500 if (
501 !(iExtInBarrel && jExtInBarrel) &&
502 !(iExtInFWDEndcap && jExtInFWDEndcap) &&
503 !(iExtInBWDEndcap && jExtInBWDEndcap)
504 ) {
505 return std::numeric_limits<double>::quiet_NaN();
506 }
507 }
508
509 // Ok, we know theta and phi.
510 // Let's extract (spherical) R by using the transformation:
511 //
512 // 1. rho = r * sin(theta)
513 // 2. phi = phi
514 // 3. z = r * cos(theta)
515 //
516 // The formula to be inverted depends on where each extrapolated track's theta is found:
517 // if in barrel, use 1. (rho is known), if in fwd/bwd endcap, use 3. (zfwd/zbwd is known).
518
519 const auto iExtR = (iExtTheta >= th_fwd_brl && iExtTheta < th_bwd_brl) ? rho / sin(iExtTheta) : ((iExtTheta >= th_fwd
520 && iExtTheta < th_fwd_brl) ? zfwd / cos(iExtTheta) : zbwd / cos(iExtTheta));
521 const auto jExtR = (jExtTheta >= th_fwd_brl && jExtTheta < th_bwd_brl) ? rho / sin(jExtTheta) : ((jExtTheta >= th_fwd
522 && jExtTheta < th_fwd_brl) ? zfwd / cos(jExtTheta) : zbwd / cos(jExtTheta));
523
524 return sqrt((iExtR * iExtR) + (jExtR * jExtR) - 2 * iExtR * jExtR * (sin(iExtTheta) * sin(jExtTheta) * cos(iExtPhi - jExtPhi)
525 + cos(iExtTheta) * cos(jExtTheta)));
526
527 }
528
529 return std::numeric_limits<double>::quiet_NaN();
530
531}
static Manager & Instance()
get singleton instance.
Definition: Manager.cc:25
static const std::unordered_map< std::string, DetSurfCylBoundaries > detLayerToSurfBoundaries
Map that associates to each detector layer its valid cylindrical surface's boundaries.

◆ getDistThreshold()

double getDistThreshold ( Const::EDetector  det,
int  layer 
) const
inlineprivate

Get the threshold value per detector layer for the distance to closest ext.

helix that is used to define locally isolated particles at that layer.

Parameters
detthe input PID detector.
layerthe input detector layer.

Definition at line 235 of file TrackIsoCalculatorModule.h.

236 {
237 auto detAndLayer = std::make_pair(Const::parseDetectors(det), layer);
238 return m_distThreshPerDetLayer.at(detAndLayer);
239 };
static std::string parseDetectors(EDetector det)
Converts Const::EDetector object to string.
Definition: UnitConst.cc:162
std::map< std::pair< std::string, int >, double > m_distThreshPerDetLayer
Threshold values for the distance (in [cm]) to closest ext.

◆ getFileNames()

virtual std::vector< std::string > getFileNames ( bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Reimplemented in RootInputModule, and RootOutputModule.

Definition at line 134 of file Module.h.

135 {
136 return std::vector<std::string>();
137 }

◆ getLogConfig()

LogConfig & getLogConfig ( )
inlineinherited

Returns the log system configuration.

Definition at line 225 of file Module.h.

225{return m_logConfig;}

◆ getModules()

std::list< ModulePtr > getModules ( ) const
inlineoverrideprivatevirtualinherited

no submodules, return empty list

Implements PathElement.

Definition at line 506 of file Module.h.

506{ return std::list<ModulePtr>(); }

◆ getName()

const std::string & getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 187 of file Module.h.

187{return m_name;}
std::string m_name
The name of the module, saved as a string (user-modifiable)
Definition: Module.h:508

◆ getPackage()

const std::string & getPackage ( ) const
inlineinherited

Returns the package this module is in.

Definition at line 197 of file Module.h.

197{return m_package;}

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 279 of file Module.cc.

280{
282}
std::shared_ptr< boost::python::list > getParamInfoListPython() const
Returns a python list of all parameters.
ModuleParamList m_moduleParamList
List storing and managing all parameter of the module.
Definition: Module.h:516

◆ getParamList()

const ModuleParamList & getParamList ( ) const
inlineinherited

Return module param list.

Definition at line 363 of file Module.h.

363{ return m_moduleParamList; }

◆ getPathString()

std::string getPathString ( ) const
overrideprivatevirtualinherited

return the module name.

Implements PathElement.

Definition at line 192 of file Module.cc.

193{
194
195 std::string output = getName();
196
197 for (const auto& condition : m_conditions) {
198 output += condition.getString();
199 }
200
201 return output;
202}

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 381 of file Module.h.

381{ return m_returnValue; }

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 41 of file Module.cc.

42{
43 if (m_type.empty())
44 B2FATAL("Module type not set for " << getName());
45 return m_type;
46}
std::string m_type
The type of the module, saved as a string.
Definition: Module.h:509

◆ getWeightedSumInvDists()

double getWeightedSumInvDists ( const Particle iParticle,
const std::string &  detName,
const float  detWeight 
) const
private

Get the sum of the inverse (scaled) minimum distances over the given detector $d$ layers, weighted by the PID detector separation score (if requested):

\begin{equation}
  S_{d} = \sum_{d} w_{d} * \frac{D_{d}^{thresh}}{D_{d}}
\end{equation}

The distance $D_{d}$ to the closest track helix extrapolation defined in double getDistAtDetSurface() is used. The scaling at the numerator is the threshold distance for this detector to define close-by tracks. Note that if the PID detector weighting is switched off, $w_{d} = -1$. By construction, $S_{d}$ is a negative number.

Definition at line 408 of file TrackIsoCalculatorModule.cc.

410{
411
412 auto det = this->getDetEnum(detName);
413
414 double sumInvDists(0.);
415 for (const auto& iLayer : DetectorSurface::detToLayers.at(detName)) {
416
417 auto iDetLayer = detName + std::to_string(iLayer);
418 auto distVar = m_detLayerToDistVariable.at(iDetLayer);
419 auto threshDist = this->getDistThreshold(det, iLayer);
420
421 if (iParticle->hasExtraInfo(distVar)) {
422 sumInvDists += threshDist / iParticle->getExtraInfo(distVar);
423 }
424
425 }
426
427 return detWeight * sumInvDists;
428
429}
bool hasExtraInfo(const std::string &name) const
Return whether the extra info with the given name is set.
Definition: Particle.cc:1266
double getExtraInfo(const std::string &name) const
Return given value if set.
Definition: Particle.cc:1289
double getDistThreshold(Const::EDetector det, int layer) const
Get the threshold value per detector layer for the distance to closest ext.

◆ getWeightedSumNonIsoLayers()

double getWeightedSumNonIsoLayers ( const Particle iParticle,
const std::string &  detName,
const float  detWeight 
) const
private

Get the sum of layers with a close-by track, divided by the total number of layers, for the given detector $d$, weighted by the PID detector separation score (if requested):

\begin{equation}
  s_{d} = 1 - \left(-w_{d} \cdot \frac{n_{d}}{N_{d}}\right).
\end{equation}

where $n_{d}$ is the number of layers where a close-enough particle is found, and $w_{d}$ is the weight that each sub-detector has on the PID of the given particle hypothesis (if m_excludePIDDetWeights = true):

The distance to closest track helix extrapolation defined in double getDistAtDetSurface() is used. Note that if the PID detector weighting is switched off, $w_{d} = -1$.

Definition at line 370 of file TrackIsoCalculatorModule.cc.

372{
373
374 auto det = this->getDetEnum(detName);
375 auto nLayers = DetectorSurface::detToLayers.at(detName).size();
376
377 unsigned int n(0);
378 for (const auto& iLayer : DetectorSurface::detToLayers.at(detName)) {
379 auto iDetLayer = detName + std::to_string(iLayer);
380 auto distVar = m_detLayerToDistVariable.at(iDetLayer);
381 auto threshDist = this->getDistThreshold(det, iLayer);
382
383 if (iParticle->hasExtraInfo(distVar)) {
384 if (iParticle->getExtraInfo(distVar) < threshDist) {
385 n++;
386 }
387 }
388
389 }
390
391 if (!n) {
392 B2DEBUG(12, "\nNo close-enough neighbours to this particle in the " << detName << " were found.");
393 }
394
395 if (n > nLayers) {
396 B2FATAL("\nTotal layers in " << detName << ": N=" << nLayers
397 << "\n"
398 << "Layers w/ a close-enough particle: n=" << n
399 << "\n"
400 << "n > N ?? Abort...");
401 }
402
403 return 1. - (-detWeight * (n / nLayers));
404
405}

◆ hasCondition()

bool hasCondition ( ) const
inlineinherited

Returns true if at least one condition was set for the module.

Definition at line 311 of file Module.h.

311{ return not m_conditions.empty(); };

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 160 of file Module.cc.

161{
162 return (propertyFlags & m_propertyFlags) == propertyFlags;
163}

◆ hasReturnValue()

bool hasReturnValue ( ) const
inlineinherited

Return true if this module has a valid return value set.

Definition at line 378 of file Module.h.

378{ return m_hasReturnValue; }

◆ hasUnsetForcedParams()

bool hasUnsetForcedParams ( ) const
inherited

Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.

Definition at line 166 of file Module.cc.

167{
169 std::string allMissing = "";
170 for (const auto& s : missing)
171 allMissing += s + " ";
172 if (!missing.empty())
173 B2ERROR("The following required parameters of Module '" << getName() << "' were not specified: " << allMissing <<
174 "\nPlease add them to your steering file.");
175 return !missing.empty();
176}
std::vector< std::string > getUnsetForcedParams() const
Returns list of unset parameters (if they are required to have a value.

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 85 of file Module.cc.

86{
87 if_value("<1", path, afterConditionPath);
88}

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 90 of file Module.cc.

91{
92 if_value(">=1", path, afterConditionPath);
93}

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://confluence.desy.de/display/BI/Software+ModCondTut or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 79 of file Module.cc.

80{
81 m_conditions.emplace_back(expression, path, afterConditionPath);
82}

◆ initialize()

void initialize ( )
overridevirtual

Use this to initialize resources or memory your module needs.

Also register any outputs of your module (StoreArrays, StoreObjPtrs, relations) here, see the respective class documentation for details.

Reimplemented from Module.

Definition at line 57 of file TrackIsoCalculatorModule.cc.

58{
59 m_event_metadata.isRequired();
60
62 m_DBWeights = std::make_unique<DBObjPtr<PIDDetectorWeights>>(m_payloadName);
63 }
64
66 if (!valid) {
67 B2ERROR("Decay string " << m_decayString << " is invalid.");
68 }
69
71
72 m_pListTarget.isRequired(mother->getFullName());
74
75 if (m_nSelectedDaughters > 1) {
76 B2ERROR("More than one daughter is selected in the decay string " << m_decayString << ".");
77 }
78
80
81 B2INFO("Calculating track-based isolation variables for the decay string: "
83 << " using the reference ParticleList: "
85 << ".");
86
88 B2ERROR("Selected ParticleList in decay string:"
90 << " and/or reference ParticleList: "
92 << " is not that of a valid particle in Const::chargedStableSet!");
93 }
94
96 B2INFO("Will use track fit result for the most probable mass hypothesis in helix extrapolation.");
97 }
98
99 std::string detNamesConcat("");
100
101 for (auto& detName : m_detNames) {
102
103 // Ensure we use uppercase detector labels.
104 boost::to_upper(detName);
105
106 detNamesConcat += "_" + detName;
107
108 // Define the name(s) of the variables for this detector to be stored as extraInfo.
109 for (const auto& iLayer : DetectorSurface::detToLayers.at(detName)) {
110
111
112 auto iDetLayer = detName + std::to_string(iLayer);
113
114 auto distVarName = "distToClosestTrkAt" + iDetLayer + "_VS_" + m_pListReferenceName;
116 distVarName += "__useHighestProbMassForExt";
117 }
118 auto refPartIdxVarName = "idxOfClosestPartAt" + iDetLayer + "In_" + m_pListReferenceName;
119
120 m_detLayerToDistVariable.insert(std::make_pair(iDetLayer, distVarName));
121 m_detLayerToRefPartIdxVariable.insert(std::make_pair(iDetLayer, refPartIdxVarName));
122
123 }
124
125 // Isolation score variable.
126 m_isoScoreVariable = "trkIsoScore" + detNamesConcat + "_VS_" + m_pListReferenceName;
127 m_isoScoreVariableAsWeightedAvg = "trkIsoScoreAsWeightedAvg" + detNamesConcat + "_VS_" + m_pListReferenceName;
129 m_isoScoreVariable += "__useHighestProbMassForExt";
130 m_isoScoreVariableAsWeightedAvg += "__useHighestProbMassForExt";
131 }
132 }
133
134}
Represents a particle in the DecayDescriptor.
std::string getFullName() const
returns the full name of the particle full_name = name:label
bool init(const std::string &str)
Initialise the DecayDescriptor from given string.
std::vector< std::string > getSelectionNames()
Return list of human readable names of selected particles.
const DecayDescriptorParticle * getMother() const
return mother.
bool onlySelectedStdChargedInDecay()
Check whether input particle list and reference list are of a valid charged stable particle.

◆ onlySelectedStdChargedInDecay()

bool onlySelectedStdChargedInDecay ( )
private

Check whether input particle list and reference list are of a valid charged stable particle.

Definition at line 533 of file TrackIsoCalculatorModule.cc.

534{
535
536 bool checkPList = false;
537
540 } else {
541 for (int pdgcode : m_decaydescriptor.getSelectionPDGCodes()) {
542 checkPList = Const::chargedStableSet.find(abs(pdgcode)) != Const::invalidParticle;
543 if (!checkPList) {
544 break;
545 }
546 }
547 }
548
550 bool checkPListReference = false;
551 if (dd.init(m_pListReferenceName)) {
552 checkPListReference = Const::chargedStableSet.find(abs(dd.getMother()->getPDGCode())) != Const::invalidParticle;
553 }
554
555 return (checkPList and checkPListReference);
556
557};
const ParticleType & find(int pdg) const
Returns particle in set with given PDG code, or invalidParticle if not found.
Definition: Const.h:571
static const ParticleSet chargedStableSet
set of charged stable particles
Definition: Const.h:618
static const ParticleType invalidParticle
Invalid particle, used internally.
Definition: Const.h:681
int getPDGCode() const
Return PDG code.
The DecayDescriptor stores information about a decay tree or parts of a decay tree.
std::vector< int > getSelectionPDGCodes()
Return list of PDG codes of selected particles.

◆ setAbortLevel()

void setAbortLevel ( int  abortLevel)
inherited

Configure the abort log level.

Definition at line 67 of file Module.cc.

68{
69 m_logConfig.setAbortLevel(static_cast<LogConfig::ELogLevel>(abortLevel));
70}
ELogLevel
Definition of the supported log levels.
Definition: LogConfig.h:26
void setAbortLevel(ELogLevel abortLevel)
Configure the abort level.
Definition: LogConfig.h:112

◆ setDebugLevel()

void setDebugLevel ( int  debugLevel)
inherited

Configure the debug messaging level.

Definition at line 61 of file Module.cc.

62{
63 m_logConfig.setDebugLevel(debugLevel);
64}
void setDebugLevel(int debugLevel)
Configure the debug messaging level.
Definition: LogConfig.h:98

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 214 of file Module.cc.

215{
216 m_description = description;
217}

◆ setLogConfig()

void setLogConfig ( const LogConfig logConfig)
inlineinherited

Set the log system configuration.

Definition at line 230 of file Module.h.

230{m_logConfig = logConfig;}

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 73 of file Module.cc.

74{
75 m_logConfig.setLogInfo(static_cast<LogConfig::ELogLevel>(logLevel), logInfo);
76}
void setLogInfo(ELogLevel logLevel, unsigned int logInfo)
Configure the printed log information for the given level.
Definition: LogConfig.h:127

◆ setLogLevel()

void setLogLevel ( int  logLevel)
inherited

Configure the log level.

Definition at line 55 of file Module.cc.

56{
57 m_logConfig.setLogLevel(static_cast<LogConfig::ELogLevel>(logLevel));
58}
void setLogLevel(ELogLevel logLevel)
Configure the log level.
Definition: LogConfig.cc:25

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 214 of file Module.h.

214{ m_name = name; };

◆ setParamList()

void setParamList ( const ModuleParamList params)
inlineprotectedinherited

Replace existing parameter list.

Definition at line 501 of file Module.h.

501{ m_moduleParamList = params; }

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 234 of file Module.cc.

235{
236 LogSystem& logSystem = LogSystem::Instance();
237 logSystem.updateModule(&(getLogConfig()), getName());
238 try {
240 } catch (std::runtime_error& e) {
241 throw std::runtime_error("Cannot set parameter '" + name + "' for module '"
242 + m_name + "': " + e.what());
243 }
244
245 logSystem.updateModule(nullptr);
246}
Class for logging debug, info and error messages.
Definition: LogSystem.h:46
void updateModule(const LogConfig *moduleLogConfig=nullptr, const std::string &moduleName="")
Sets the log configuration to the given module log configuration and sets the module name This method...
Definition: LogSystem.h:191
static LogSystem & Instance()
Static method to get a reference to the LogSystem instance.
Definition: LogSystem.cc:31
void setParamPython(const std::string &name, const PythonObject &pyObj)
Implements a method for setting boost::python objects.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 249 of file Module.cc.

250{
251
252 LogSystem& logSystem = LogSystem::Instance();
253 logSystem.updateModule(&(getLogConfig()), getName());
254
255 boost::python::list dictKeys = dictionary.keys();
256 int nKey = boost::python::len(dictKeys);
257
258 //Loop over all keys in the dictionary
259 for (int iKey = 0; iKey < nKey; ++iKey) {
260 boost::python::object currKey = dictKeys[iKey];
261 boost::python::extract<std::string> keyProxy(currKey);
262
263 if (keyProxy.check()) {
264 const boost::python::object& currValue = dictionary[currKey];
265 setParamPython(keyProxy, currValue);
266 } else {
267 B2ERROR("Setting the module parameters from a python dictionary: invalid key in dictionary!");
268 }
269 }
270
271 logSystem.updateModule(nullptr);
272}
void setParamPython(const std::string &name, const boost::python::object &pyObj)
Implements a method for setting boost::python objects.
Definition: Module.cc:234

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 208 of file Module.cc.

209{
210 m_propertyFlags = propertyFlags;
211}

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 227 of file Module.cc.

228{
229 m_hasReturnValue = true;
230 m_returnValue = value;
231}

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 220 of file Module.cc.

221{
222 m_hasReturnValue = true;
223 m_returnValue = value;
224}

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 48 of file Module.cc.

49{
50 if (!m_type.empty())
51 B2FATAL("Trying to change module type from " << m_type << " is not allowed, the value is assumed to be fixed.");
52 m_type = type;
53}

◆ terminate()

Member Data Documentation

◆ m_conditions

std::vector<ModuleCondition> m_conditions
privateinherited

Module condition, only non-null if set.

Definition at line 521 of file Module.h.

◆ m_DBWeights

std::unique_ptr<DBObjPtr<PIDDetectorWeights> > m_DBWeights
private

Interface to get the database payload with the PID detector weights.

Definition at line 183 of file TrackIsoCalculatorModule.h.

◆ m_decaydescriptor

DecayDescriptor m_decaydescriptor
private

< Decay descriptor of decays to look for.

Definition at line 157 of file TrackIsoCalculatorModule.h.

◆ m_decayString

std::string m_decayString
private

The name of the input charged stable particle list, or composite particle w/ charged stable daughters for which distances are to be calculated.

Definition at line 79 of file TrackIsoCalculatorModule.h.

◆ m_description

std::string m_description
privateinherited

The description of the module.

Definition at line 511 of file Module.h.

◆ m_detLayerToDistVariable

std::unordered_map<std::string, std::string> m_detLayerToDistVariable
private

Map that associates to each detector layer (e.g., 'CDC6') the name of the variable representing the distance to the closest particle in the reference list, based on the track helix extrapolation.

Each variable is added as particle extraInfo.

Definition at line 102 of file TrackIsoCalculatorModule.h.

◆ m_detLayerToRefPartIdxVariable

std::unordered_map<std::string, std::string> m_detLayerToRefPartIdxVariable
private

Map that associates to each detector layer (e.g, 'CDC6') the name of the variable representing the mdst array index of the closest particle in the reference list.

Each variable is added as particle extraInfo.

Definition at line 109 of file TrackIsoCalculatorModule.h.

◆ m_detNames

std::vector<std::string> m_detNames
private

The list of names of the detectors at whose inner (cylindrical) surface we extrapolate each track's polar and azimuthal angle.

Definition at line 94 of file TrackIsoCalculatorModule.h.

◆ m_distThreshPerDetLayer

std::map<std::pair<std::string, int>, double> m_distThreshPerDetLayer
private
Initial value:
= {
{ {Const::parseDetectors(Const::CDC), 0}, 5.0 },
{ {Const::parseDetectors(Const::CDC), 1}, 5.0 },
{ {Const::parseDetectors(Const::CDC), 2}, 5.0 },
{ {Const::parseDetectors(Const::CDC), 3}, 5.0 },
{ {Const::parseDetectors(Const::CDC), 4}, 5.0 },
{ {Const::parseDetectors(Const::CDC), 5}, 5.0 },
{ {Const::parseDetectors(Const::CDC), 6}, 5.0 },
{ {Const::parseDetectors(Const::CDC), 7}, 5.0 },
{ {Const::parseDetectors(Const::CDC), 8}, 5.0 },
{ {Const::parseDetectors(Const::TOP), 0}, 22.0 },
{ {Const::parseDetectors(Const::ARICH), 0}, 10.0 },
{ {Const::parseDetectors(Const::ECL), 0}, 36.0 },
{ {Const::parseDetectors(Const::ECL), 1}, 36.0 },
{ {Const::parseDetectors(Const::KLM), 0}, 20.0 }
}

Threshold values for the distance (in [cm]) to closest ext.

helix to define isolated particles. One for each detector layer.

Definition at line 127 of file TrackIsoCalculatorModule.h.

◆ m_event_metadata

StoreObjPtr<EventMetaData> m_event_metadata
private

The event information.

Used for debugging purposes.

Definition at line 147 of file TrackIsoCalculatorModule.h.

◆ m_excludePIDDetWeights

bool m_excludePIDDetWeights
private

Exclude the PID detector weights for the isolation score definition.

Definition at line 173 of file TrackIsoCalculatorModule.h.

◆ m_hasReturnValue

bool m_hasReturnValue
privateinherited

True, if the return value is set.

Definition at line 518 of file Module.h.

◆ m_isoScoreVariable

std::string m_isoScoreVariable
private

The name of the variable representing the track isolation score.

Added as particle extraInfo.

Definition at line 115 of file TrackIsoCalculatorModule.h.

◆ m_isoScoreVariableAsWeightedAvg

std::string m_isoScoreVariableAsWeightedAvg
private

The name of the variable representing the track isolation score.

Added as particle extraInfo.

Definition at line 121 of file TrackIsoCalculatorModule.h.

◆ m_logConfig

LogConfig m_logConfig
privateinherited

The log system configuration of the module.

Definition at line 514 of file Module.h.

◆ m_moduleParamList

ModuleParamList m_moduleParamList
privateinherited

List storing and managing all parameter of the module.

Definition at line 516 of file Module.h.

◆ m_name

std::string m_name
privateinherited

The name of the module, saved as a string (user-modifiable)

Definition at line 508 of file Module.h.

◆ m_nSelectedDaughters

unsigned short m_nSelectedDaughters
private

The number of selected daughters in the decay string.

Definition at line 84 of file TrackIsoCalculatorModule.h.

◆ m_package

std::string m_package
privateinherited

Package this module is found in (may be empty).

Definition at line 510 of file Module.h.

◆ m_particles

StoreArray<Particle> m_particles
private

StoreArray of Particles.

Definition at line 74 of file TrackIsoCalculatorModule.h.

◆ m_payloadName

std::string m_payloadName
private

The name of the database payload object with the MVA weights.

Definition at line 178 of file TrackIsoCalculatorModule.h.

◆ m_pListReference

StoreObjPtr<ParticleList> m_pListReference
private

The input ParticleList object of reference tracks.

Definition at line 162 of file TrackIsoCalculatorModule.h.

◆ m_pListReferenceName

std::string m_pListReferenceName
private

The name of the input ParticleList of reference tracks.

Definition at line 89 of file TrackIsoCalculatorModule.h.

◆ m_pListTarget

StoreObjPtr<ParticleList> m_pListTarget
private

The input ParticleList object for which distances are to be calculated.

Definition at line 152 of file TrackIsoCalculatorModule.h.

◆ m_propertyFlags

unsigned int m_propertyFlags
privateinherited

The properties of the module as bitwise or (with |) of EModulePropFlags.

Definition at line 512 of file Module.h.

◆ m_returnValue

int m_returnValue
privateinherited

The return value.

Definition at line 519 of file Module.h.

◆ m_type

std::string m_type
privateinherited

The type of the module, saved as a string.

Definition at line 509 of file Module.h.

◆ m_useHighestProbMassForExt

bool m_useHighestProbMassForExt
private

If this option is set, the helix extrapolation for the target and reference particles will use the track fit result for the most probable mass hypothesis, namely, the one that gives the highest chi2Prob of the fit.

Definition at line 168 of file TrackIsoCalculatorModule.h.


The documentation for this class was generated from the following files: