12 #include <Eigen/Dense>
40 Eigen::VectorXd
generate(
double x0)
const;
Class implementing n-dimensional random number generator from Gaussian distribution where the first c...
Eigen::VectorXd getMu() const
get the vector including central values of the distribution
double getX0spread() const
get the spread of first component which can be used by external generator
Eigen::VectorXd generate(double x0) const
generate random vector based on the provided first component x0
Eigen::VectorXd m_mu
central values of the distribution
Eigen::MatrixXd m_vBaseMat
transformation matrix between eigen-system of m_covMat and nominal system
std::vector< Eigen::VectorXd > m_cOrt
array of vectors describing free degrees of freedom of random generator
ConditionalGaussGenerator(const Eigen::VectorXd &mu, const Eigen::MatrixXd &covMat)
constructor which takes vector of central values and covariance matrix as input
Eigen::VectorXd m_v0norm
vector which scales with dx0
Eigen::MatrixXd getCovMat() const
get the covariance matrix describing n-dimensional Gaussian distribution
ConditionalGaussGenerator()
dummy constructor without arguments
Eigen::MatrixXd m_covMat
covariance matrix of the distribution
double sqrt(double a)
sqrt for double
Abstract base class for different kinds of events.