Belle II Software  release-08-01-10
FullSimModule.cc
1 /**************************************************************************
2  * basf2 (Belle II Analysis Software Framework) *
3  * Author: The Belle II Collaboration *
4  * *
5  * See git log for contributors and copyright holders. *
6  * This file is licensed under LGPL-3.0, see LICENSE.md. *
7  **************************************************************************/
8 
9 #include <simulation/modules/fullsim/FullSimModule.h>
10 #include <simulation/kernel/RunManager.h>
11 #include <simulation/kernel/DetectorConstruction.h>
12 //- #include <simulation/kernel/PhysicsList.h>
13 #include <simulation/physicslist/Belle2PhysicsList.h>
14 #include <simulation/kernel/ExtPhysicsConstructor.h>
15 #include <simulation/kernel/MagneticField.h>
16 #include <simulation/kernel/PrimaryGeneratorAction.h>
17 #include <simulation/kernel/EventAction.h>
18 #include <simulation/kernel/TrackingAction.h>
19 #include <simulation/kernel/SteppingAction.h>
20 #include <simulation/kernel/StackingAction.h>
21 
22 #include <mdst/dataobjects/MCParticle.h>
23 #include <framework/datastore/StoreObjPtr.h>
24 #include <framework/datastore/StoreArray.h>
25 #include <framework/dataobjects/EventMetaData.h>
26 #include <framework/gearbox/Unit.h>
27 
28 #include <CLHEP/Units/SystemOfUnits.h>
29 
30 #include <simulation/monopoles/G4MonopolePhysics.h>
31 #include <simulation/longlivedneutral/G4LongLivedNeutralPhysics.h>
32 
33 #include <G4FieldManager.hh>
34 #include <G4TransportationManager.hh>
35 #include <G4Transportation.hh>
36 #include <G4PhysListFactory.hh>
37 #include <G4ProcessVector.hh>
38 #include <G4OpticalPhysics.hh>
39 #include <G4ParticleDefinition.hh>
40 #include <G4ParticleTable.hh>
41 #include <G4EventManager.hh>
42 #include <G4RunManager.hh>
43 #include <G4UImanager.hh>
44 #include <G4VisExecutive.hh>
45 #include <G4StepLimiter.hh>
46 #include <G4EmParameters.hh>
47 #include <G4HadronicProcessStore.hh>
48 #include <G4InuclParticleNames.hh>
49 
50 #include <G4Mag_UsualEqRhs.hh>
51 #include <G4NystromRK4.hh>
52 #include <G4HelixExplicitEuler.hh>
53 #include <G4HelixSimpleRunge.hh>
54 #include <G4CachedMagneticField.hh>
55 #include <G4ChordFinder.hh>
56 
57 using namespace std;
58 using namespace Belle2;
59 using namespace Belle2::Simulation;
60 using namespace Belle2::Monopoles;
61 using namespace G4InuclParticleNames;
62 
63 //-----------------------------------------------------------------
64 // Register the Module
65 //-----------------------------------------------------------------
66 REG_MODULE(FullSim);
67 
68 //-----------------------------------------------------------------
69 // Implementation
70 //-----------------------------------------------------------------
71 
72 FullSimModule::FullSimModule() : Module(), m_useNativeGeant4(true)
73 {
74  //Set module properties and the description
75  setDescription("Performs the full Geant4 detector simulation. Requires a valid geometry in memory.");
77 
78  //Parameter definition
79  addParam("InputMCParticleCollection", m_mcParticleInputColName, "The name of the input MCParticle collection.", string(""));
80  addParam("ThresholdImportantEnergy", m_thresholdImportantEnergy,
81  "[GeV] A particle which got 'stuck' and has less than this energy will be killed after 'ThresholdTrials' trials.", 0.250);
82  addParam("ThresholdTrials", m_thresholdTrials,
83  "Geant4 will try 'ThresholdTrials' times to move a particle which got 'stuck' and has an energy less than 'ThresholdImportantEnergy'.",
84  10);
85  addParam("RunEventVerbosity", m_runEventVerbosity, "Geant4 run/event verbosity: 0=silent; 1=info level; 2=debug level", 0);
86  addParam("TrackingVerbosity", m_trackingVerbosity,
87  "Tracking verbosity: 0=Silent; 1=Min info per step; 2=sec particles; 3=pre/post step info; 4=like 3 but more info; 5=proposed step length info.",
88  0);
89  addParam("HadronProcessVerbosity", m_hadronProcessVerbosity, "Hadron Process verbosity: 0=Silent; 1=info level; 2=debug level", 0);
90  addParam("EmProcessVerbosity", m_emProcessVerbosity, "Em Process verbosity: 0=Silent; 1=info level; 2=debug level", 0);
91  addParam("PhysicsList", m_physicsList, "The name of the physics list which is used for the simulation.", string("Belle2"));
92  addParam("StandardEM", m_standardEM, "If true, replaces fast EM physics with standard EM physics.", false);
93  addParam("RegisterOptics", m_optics, "If true, G4OpticalPhysics is registered in Geant4 PhysicsList.", true);
94  addParam("UseHighPrecisionNeutrons", m_HPneutrons, "If true, high precision neutron models used below 20 MeV.", false);
95  addParam("RegisterMonopoles", m_monopoles, "If set to true, G4MonopolePhysics is registered in Geant4 PhysicsList.", false);
96  addParam("MonopoleMagCharge", m_monopoleMagneticCharge, "The value of monopole magnetic charge in units of e+.", 1.0);
97  addParam("ProductionCut", m_productionCut,
98  "[cm] Apply continuous energy loss to primary particle which has no longer enough energy to produce secondaries which travel at least the specified productionCut distance.",
99  0.07);
100  addParam("PXDProductionCut", m_pxdProductionCut, "[cm] Secondary production threshold in PXD envelope.", 0.0);
101  addParam("SVDProductionCut", m_svdProductionCut, "[cm] Secondary production threshold in SVD envelope.", 0.0);
102  addParam("CDCProductionCut", m_cdcProductionCut, "[cm] Secondary production threshold in CDC envelope.", 0.0);
103  addParam("ARICHTOPProductionCut", m_arichtopProductionCut, "[cm] Secondary production threshold in ARICH and TOP envelopes.", 0.02);
104  addParam("ECLProductionCut", m_eclProductionCut, "[cm] Secondary production threshold in ECL envelope.", 0.0);
105  addParam("KLMProductionCut", m_klmProductionCut, "[cm] Secondary production threshold in BKLM and EKLM envelopes.", 0.0);
106  addParam("MaxNumberSteps", m_maxNumberSteps,
107  "The maximum number of steps before the track transportation is stopped and the track is killed.", 100000);
108  addParam("PhotonFraction", m_photonFraction, "The fraction of Cerenkov photons which will be kept and propagated.", 0.5);
109  addParam("EnableVisualization", m_EnableVisualization, "If set to True, the Geant4 visualization support is enabled.", false);
110 
111  addParam("StoreOpticalPhotons", m_storeOpticalPhotons, "If set to True, optical photons are stored in MCParticles.", false);
112  addParam("StoreAllSecondaries", m_storeSecondaries,
113  "If set to True, all secondaries produced by Geant4 over a kinetic energy cut are stored in MCParticles. Otherwise do not store them.",
114  false);
115  addParam("SecondariesEnergyCut", m_secondariesEnergyCut, "[MeV] Kinetic energy cut for storing secondaries", 1.0);
116  addParam("StoreBremsstrahlungPhotons", m_storeBremsstrahlungPhotons,
117  "If set to True, store BremsstrahlungPhotons over a kinetic energy cut in MCParticles. Otherwise do not store them.", false);
118  addParam("BremsstrahlungPhotonsEnergyCut", m_bremsstrahlungPhotonsEnergyCut,
119  "[MeV] Kinetic energy cut for storing bremsstrahlung photons", 10.0);
120  addParam("StorePairConversions", m_storePairConversions,
121  "If set to True, store e+ or e- from pair conversions over a kinetic energy cut in MCParticles. Otherwise do not store them.",
122  false);
123  addParam("PairConversionsEnergyCut", m_pairConversionsEnergyCut,
124  "[MeV] Kinetic energy cut for storing e+ or e- from pair conversions", 10.0);
125 
126  addParam("magneticField", m_magneticFieldName,
127  "Chooses the magnetic field stepper used by Geant4. Possible values are: default, nystrom, expliciteuler, simplerunge",
128  string("default"));
129  addParam("magneticCacheDistance", m_magneticCacheDistance,
130  "Minimum distance for BField lookup in cm. If the next requested point is closer than this distance than return the flast BField value. 0 means no caching",
131  0.0);
132  addParam("deltaChordInMagneticField", m_deltaChordInMagneticField,
133  "[mm] The maximum miss-distance between the trajectory curve and its linear cord(s) approximation", 0.25);
134  vector<string> defaultCommandsAtPreInit;
135  addParam("UICommandsAtPreInit", m_uiCommandsAtPreInit,
136  "A list of Geant4 UI commands that should be applied at PreInit state, before the simulation starts.",
137  defaultCommandsAtPreInit);
138  vector<string> defaultCommandsAtIdle;
139  addParam("UICommandsAtIdle", m_uiCommandsAtIdle,
140  "A list of Geant4 UI commands that should be applied at Idle state, before the simulation starts.",
141  defaultCommandsAtIdle);
142  addParam("trajectoryStore", m_trajectoryStore,
143  "If non-zero save the full trajectory of 1=primary, 2=non-optical or 3=all particles", 0);
144  addParam("trajectoryDistanceTolerance", m_trajectoryDistanceTolerance,
145  "Maximum deviation from the real trajectory points when merging "
146  "segments (in cm)", 5e-4);
147  vector<float> defaultAbsorbers;
148  addParam("AbsorbersRadii", m_absorbers,
149  "Radii (in cm) of absorbers across which tracks will be destroyed.", defaultAbsorbers);
150 
151  //Make sure the instance of the run manager is created now to initialize some stuff we need for geometry
152  RunManager::Instance();
153  m_magneticField = NULL;
154  m_uncachedField = NULL;
155  m_magFldEquation = NULL;
156  m_stepper = NULL;
157  m_chordFinder = NULL;
158  m_visManager = NULL;
159  m_stepLimiter = NULL;
160 }
161 
162 
164 {
165 
166 }
167 
168 
170 {
171  // MCParticles input and output collections can be different.
172  // Output collection is always the default one.
173  // In case we simulate only beam background events using BG mixing or BG overlay
174  // there is no input collection.
175 
176  if (m_mcParticleInputColName.empty()) {
177  // input and output collections are the same
178  // register in datastore because the input collection may not exist (case: only BG)
180  } else {
181  // input and output collections are different
183  StoreArray<MCParticle>().registerInDataStore(); // output collection
184  }
185 
186  //Make sure the EventMetaData already exists.
188 
189  //Get the instance of the run manager.
190  RunManager& runManager = RunManager::Instance();
191 
192  //Add Geometry
193  runManager.SetUserInitialization(new DetectorConstruction());
194 
195  //Create the Physics list
196  //- PhysicsList* physicsList = new PhysicsList(m_physicsList);
197  //- physicsList->setProductionCutValue(m_productionCut);
198  //- if (m_optics) physicsList->registerOpticalPhysicsList();
199  //- runManager.SetUserInitialization(physicsList);
200 
201  if (m_physicsList == "Belle2") {
202  // Use Belle2PhysicsList
204  physicsList->SetVerbosity(m_runEventVerbosity);
205  physicsList->UseStandardEMPhysics(m_standardEM);
206  physicsList->UseOpticalPhysics(m_optics);
215  physicsList->UseLongLivedNeutralParticles();
216 
217  //Apply the Geant4 UI commands in PreInit State - before initialization
218  if (m_uiCommandsAtPreInit.size() > 0) {
219  G4UImanager* uiManager = G4UImanager::GetUIpointer();
220  for (vector<string>::iterator iter = m_uiCommandsAtPreInit.begin(); iter != m_uiCommandsAtPreInit.end(); ++iter) {
221  uiManager->ApplyCommand(*iter);
222  }
223  }
224 
225  runManager.SetUserInitialization(physicsList);
226 
227  } else {
228  G4PhysListFactory physListFactory;
229  physListFactory.SetVerbose(m_runEventVerbosity);
230  G4VModularPhysicsList* physicsList = NULL;
231  if (physListFactory.IsReferencePhysList(m_physicsList)) physicsList = physListFactory.GetReferencePhysList(m_physicsList);
232  if (physicsList == NULL) B2FATAL("Could not load the physics list " << m_physicsList);
233  physicsList->RegisterPhysics(new ExtPhysicsConstructor);
234  if (m_optics) physicsList->RegisterPhysics(new G4OpticalPhysics);
235  if (m_monopoles) {
236  physicsList->RegisterPhysics(new G4MonopolePhysics(m_monopoleMagneticCharge));
237  }
238 
239  physicsList->RegisterPhysics(new G4LongLivedNeutralPhysics());
240 
241  physicsList->SetDefaultCutValue((m_productionCut / Unit::mm) * CLHEP::mm); // default is 0.7 mm
242 
243  //Apply the Geant4 UI commands in PreInit State - before initialization
244  if (m_uiCommandsAtPreInit.size() > 0) {
245  G4UImanager* uiManager = G4UImanager::GetUIpointer();
246  for (vector<string>::iterator iter = m_uiCommandsAtPreInit.begin(); iter != m_uiCommandsAtPreInit.end(); ++iter) {
247  uiManager->ApplyCommand(*iter);
248  }
249  }
250 
251  // // LEP: For geant4e-specific particles, set a big step so that AlongStep computes
252  // // all the energy (as is done in G4ErrorPhysicsList)
253  // G4ParticleTable::G4PTblDicIterator* myParticleIterator = G4ParticleTable::GetParticleTable()->GetIterator();
254  // myParticleIterator->reset();
255  // while ((*myParticleIterator)()) {
256  // G4ParticleDefinition* particle = myParticleIterator->value();
257  // if (particle->GetParticleName().compare(0, 4, "g4e_") == 0) {
258  // physicsList->SetParticleCuts(1.0E+9 * CLHEP::cm, particle);
259  // }
260  // }
261  runManager.SetUserInitialization(physicsList);
262  }
263 
264  //Create the magnetic field for the Geant4 simulation
265  if (m_magneticFieldName != "none") {
267  if (m_magneticCacheDistance > 0) {
269  m_magneticField = new G4CachedMagneticField(m_uncachedField, m_magneticCacheDistance);
270  }
271  G4FieldManager* fieldManager = G4TransportationManager::GetTransportationManager()->GetFieldManager();
272  fieldManager->SetDetectorField(m_magneticField);
273  if (m_magneticFieldName != "default") {
274 
275  //We only use Magnetic field so let's try the specialized steppers
276  m_magFldEquation = new G4Mag_UsualEqRhs(m_magneticField);
277  if (m_magneticFieldName == "nystrom") {
278  m_stepper = new G4NystromRK4(m_magFldEquation);
279  } else if (m_magneticFieldName == "expliciteuler") {
280  m_stepper = new G4HelixExplicitEuler(m_magFldEquation);
281  } else if (m_magneticFieldName == "simplerunge") {
282  m_stepper = new G4HelixSimpleRunge(m_magFldEquation);
283  } else {
284  B2FATAL("Unknown magnetic field option: " << m_magneticFieldName);
285  }
286 
287  //Set a minimum stepsize (stepMinimum): The chordfinder should not attempt to limit
288  //the stepsize to something less than 10µm (which is the default value of Geant4).
289  m_chordFinder = new G4ChordFinder(m_magneticField, 1e-2 * CLHEP::mm, m_stepper);
290  fieldManager->SetChordFinder(m_chordFinder);
291  } else {
292  fieldManager->CreateChordFinder(m_magneticField);
293  }
294 
295  //Change DeltaCord (the max. miss-distance between the trajectory curve and its linear chord(s) approximation, if asked.
296  G4ChordFinder* chordFinder = fieldManager->GetChordFinder();
297  B2DEBUG(1, "Geant4 default deltaChord = " << chordFinder->GetDeltaChord());
298  chordFinder->SetDeltaChord(m_deltaChordInMagneticField * CLHEP::mm);
299  B2DEBUG(1, "DeltaChord after reset = " << chordFinder->GetDeltaChord());
300 
301  //This might be a good place to optimize the Integration parameters (DeltaOneStep, DeltaIntersection, MinEpsilon, MaxEpsilon)
302  }
303 
304  //Create the generator action which takes the MCParticle list and converts it to Geant4 primary vertices.
305  G4VUserPrimaryGeneratorAction* generatorAction = new PrimaryGeneratorAction(m_mcParticleInputColName, m_mcParticleGraph);
306  runManager.SetUserAction(generatorAction);
307 
308  //Add the event action which creates the final MCParticle list and the Relation list.
309  //The output collection name will be always "MCParticles".
310  EventAction* eventAction = new EventAction("", m_mcParticleGraph);
311  runManager.SetUserAction(eventAction);
312 
313  //Add the tracking action which handles the secondary particles created by Geant4.
314  TrackingAction* trackingAction = new TrackingAction(m_mcParticleGraph);
316  trackingAction->setIgnoreSecondaries(!m_storeSecondaries);
322 
323  runManager.SetUserAction(trackingAction);
324 
325  //Add the stepping action which provides additional security checks
326  SteppingAction* steppingAction = new SteppingAction();
327  steppingAction->setMaxNumberSteps(m_maxNumberSteps);
328  steppingAction->setAbsorbersR(m_absorbers);
329  for (auto& rAbsorber : m_absorbers) {
330  B2INFO("An absorber found at R = " << rAbsorber << " cm");
331  }
332  runManager.SetUserAction(steppingAction);
333 
334  //Add the stacking action which provides performance speed ups for the handling of optical photons
335  StackingAction* stackingAction = new StackingAction();
337  runManager.SetUserAction(stackingAction);
338 
339  //Initialize G4 kernel
340  runManager.Initialize();
341 
342  //Set the parameters for the G4Transportation system.
343  //To make sure we really change all G4Transportation classes, we loop over all particles
344  //even if the pointer to the G4Transportation object seems to be the same for all particles.
345  //Only one instance of G4StepLimiter is needed: see G4StepLimiterBuilder(), for example.
346  m_stepLimiter = new G4StepLimiter();
347  G4ParticleTable::G4PTblDicIterator* partIter = G4ParticleTable::GetParticleTable()->GetIterator();
348  partIter->reset();
349  while ((*partIter)()) {
350  G4ParticleDefinition* currParticle = partIter->value();
351  G4ProcessVector& currProcList = *currParticle->GetProcessManager()->GetProcessList();
352  assert(currProcList.size() < INT_MAX);
353  for (int iProcess = 0; iProcess < static_cast<int>(currProcList.size()); ++iProcess) {
354  G4Transportation* transport = dynamic_cast<G4Transportation*>(currProcList[iProcess]);
355  if (transport != nullptr) {
356  //Geant4 energy unit is MeV
357  transport->SetThresholdImportantEnergy(m_thresholdImportantEnergy / Unit::MeV * CLHEP::MeV);
358  transport->SetThresholdTrials(m_thresholdTrials);
359  break;
360  }
361  }
362  // Add StepLimiter process for charged tracks.
363  double zeroChargeTol = 0.01 * Unit::e;
364  if (fabs(currParticle->GetPDGCharge()) > zeroChargeTol) {
365  currParticle->GetProcessManager()->AddDiscreteProcess(m_stepLimiter);
366  B2DEBUG(100, "Added StepLimiter process for " << currParticle->GetParticleName());
367  }
368  }
369 
370  // Inactivate all secondary-generating processes for g4e particles. This comprises
371  // Cerenkov and Scintillation that were inserted by G4OpticalPhysics and the
372  // CaptureAtRest process for g4e anti-deuteron.
373  partIter->reset();
374  while ((*partIter)()) {
375  G4ParticleDefinition* currParticle = partIter->value();
376  if (currParticle->GetParticleName().compare(0, 4, "g4e_") == 0) {
377  G4ProcessManager* processManager = currParticle->GetProcessManager();
378  if (processManager) {
379  G4ProcessVector* processList = processManager->GetProcessList();
380  assert(processList->size() < INT_MAX);
381  for (int i = 0; i < static_cast<int>(processList->size()); ++i) {
382  if (((*processList)[i]->GetProcessName() == "Cerenkov") ||
383  ((*processList)[i]->GetProcessName() == "Scintillation") ||
384  ((*processList)[i]->GetProcessName() == "hFritiofCaptureAtRest")) {
385  processManager->SetProcessActivation(i, false);
386  }
387  }
388  }
389  }
390  }
391 
392  //Set the verbosity level of Geant4 according to the logging settings of the module
393  //int g4VerboseLevel = 0;
394  //switch (LogSystem::Instance().getCurrentLogLevel()) {
395  // case LogConfig::c_Debug : g4VerboseLevel = 2;
396  // break;
397  // case LogConfig::c_Info : g4VerboseLevel = 1;
398  // break;
399  // default: g4VerboseLevel = 0;
400  //}
401  //G4EventManager::GetEventManager()->SetVerboseLevel(g4VerboseLevel);
402  //G4RunManager::GetRunManager()->SetVerboseLevel(g4VerboseLevel);
403  G4EventManager::GetEventManager()->SetVerboseLevel(m_runEventVerbosity);
404  G4RunManager::GetRunManager()->SetVerboseLevel(m_runEventVerbosity);
405  G4EventManager::GetEventManager()->GetTrackingManager()->SetVerboseLevel(
406  m_trackingVerbosity); //turned out to be more useful as a parameter.
407  G4HadronicProcessStore::Instance()->SetVerbose(m_hadronProcessVerbosity);
408  G4EmParameters::Instance()->SetVerbose(m_emProcessVerbosity);
409 
410 
411  if (m_EnableVisualization) {
412  m_visManager = new G4VisExecutive;
413  m_visManager->Initialize();
414  }
415 
416  //Apply the Geant4 UI commands at Idle state - after initilization
417  if (m_uiCommandsAtIdle.size() > 0) {
418  G4UImanager* uiManager = G4UImanager::GetUIpointer();
419  for (vector<string>::iterator iter = m_uiCommandsAtIdle.begin(); iter != m_uiCommandsAtIdle.end(); ++iter) {
420  uiManager->ApplyCommand(*iter);
421  }
422  }
423 
424  //Store Trajectories?
425  if (m_trajectoryStore) {
427  steppingAction->setStoreTrajectories(true);
428  }
429 
430  //Physics tables are build in run initialization. We have run independent
431  //geometry at the moment so there is no need to do this in begin run. Instead
432  //we use one Geant4 run for all Belle2 runs we might encounter. So let's do
433  //run initialization now to save memory when doing parallel processing
434  B2INFO("Perform Geant4 final initialization: Geometry optimization, PhysicsList calculations...");
435  RunManager::Instance().beginRun(0);
436  B2INFO("done, Geant4 ready");
437  //Otherwise we could use a fake run to do this and move RunManager::beginRun
438  //back to beginRun()
439  //runManager.BeamOn(0);
440 }
441 
442 
444 {
445  //Nothing to do: geometry and physics are run independent
446 }
447 
448 
450 {
451  //Get the event meta data
452  StoreObjPtr<EventMetaData> eventMetaDataPtr;
453 
454  //Process the event
455  RunManager::Instance().processEvent(eventMetaDataPtr->getEvent());
456 }
457 
458 
460 {
461  //Nothing to do: geometry and physics are run independent
462 }
463 
465 {
466  //We used one Geant4 run for all Belle2 runs so end the geant4 run here
467  RunManager::Instance().endRun();
468  //And clean up the run manager
469  if (m_visManager != nullptr) delete m_visManager;
470  RunManager::Instance().destroy();
471  // Delete the step limiter process
472  delete m_stepLimiter;
473  // Delete the objects associated with transport in magnetic field
474  if (m_chordFinder) delete m_chordFinder;
475  if (m_stepper) delete m_stepper;
477  if (m_uncachedField) delete m_uncachedField;
478  if (m_magneticField) delete m_magneticField;
479 }
Class responsible to connect to geometry to simulation.
std::vector< float > m_absorbers
The absorbers defined at given radii where tracks across them will be destroyed.
int m_emProcessVerbosity
Loss Table verbosity: 0=Silent; 1=info level; 2=debug level, default=0.
Definition: FullSimModule.h:95
double m_trajectoryDistanceTolerance
Maximum distance to actuall trajectory when merging points.
G4VisManager * m_visManager
Pointer to the visualization manager (if used)
std::vector< std::string > m_uiCommandsAtIdle
A list of Geant4 UI commands that should be applied at Idle state, after the Geant4 initialization an...
double m_monopoleMagneticCharge
The value of monopole magnetic charge in units of e+.
double m_cdcProductionCut
Secondary production threshold in CDC envelope.
double m_photonFraction
The fraction of Cerenkov photons which will be kept and propagated.
bool m_HPneutrons
If true, high precision neutron models used below 20 MeV.
Definition: FullSimModule.h:99
int m_hadronProcessVerbosity
Hadron Process verbosity: 0=Silent; 1=info level; 2=debug level, default=0.
Definition: FullSimModule.h:94
G4Mag_UsualEqRhs * m_magFldEquation
Pointer to the equation of motion in the magnetic field (if not the default)
double m_klmProductionCut
Secondary production threshold in BKLM and EKLM envelopes.
virtual void initialize() override
Initialize the Module.
int m_thresholdTrials
Geant4 will try m_thresholdTrials times to move a particle which got 'stuck' and has an energy less t...
Definition: FullSimModule.h:91
bool m_storePairConversions
controls storing of e+ or e- from pair conversions in MCParticles
double m_pxdProductionCut
Secondary production threshold in PXD envelope.
int m_trackingVerbosity
Tracking verbosity: 0=Silent; 1=Min info per step; 2=sec particles; 3=pre/post step info; 4=like 3 bu...
Definition: FullSimModule.h:93
virtual void event() override
Performs the full Geant4 simulation.
double m_productionCut
Apply continuous energy loss to primary particle which has no longer enough energy to produce seconda...
bool m_storeOpticalPhotons
controls storing of optical photons in MCParticles
bool m_standardEM
If set to true, replaces fast EM physics with standard EM physics.
Definition: FullSimModule.h:97
G4MagIntegratorStepper * m_stepper
Pointer to the equation-of-motion stepper (if not the default)
virtual void endRun() override
Called when run has ended.
double m_svdProductionCut
Secondary production threshold in SVD envelope.
virtual void terminate() override
Terminates the module.
double m_arichtopProductionCut
Secondary production threshold in ARICH and TOP envelopes.
bool m_optics
If set to true, registers the optical physics list.
Definition: FullSimModule.h:98
double m_pairConversionsEnergyCut
kinetic energy cut for the stored e+ or e- from pair conversions
std::vector< std::string > m_uiCommandsAtPreInit
A list of Geant4 UI commands that should be applied at PreInit state, before the Geant4 initializatio...
bool m_storeBremsstrahlungPhotons
controls storing of bremsstrahlung photons in MCParticles
std::string m_mcParticleInputColName
The parameter variable for the name of the input MCParticle collection.
Definition: FullSimModule.h:89
virtual void beginRun() override
Called when a new run is started.
double m_thresholdImportantEnergy
A particle which got 'stuck' and has less than this energy will be killed after m_thresholdTrials tri...
Definition: FullSimModule.h:90
std::string m_physicsList
The name of the physics list which is used for the simulation.
Definition: FullSimModule.h:96
int m_runEventVerbosity
Geant4 run/event verbosity: 0=Silent; 1=info level; 2=debug level, default=0.
Definition: FullSimModule.h:92
double m_magneticCacheDistance
minimal distance for magnetic field lookup.
double m_eclProductionCut
Secondary production threshold in ECL envelopes.
bool m_EnableVisualization
If set to true the Geant4 visualization support is enabled.
double m_secondariesEnergyCut
kinetic energy cut for the stored Geant secondaries
std::string m_magneticFieldName
magnetic field stepper to use
G4MagneticField * m_magneticField
Pointer to the (un)cached magnetic field.
G4MagneticField * m_uncachedField
Pointer to the uncached magnetic field (might be superseded by its cached version)
int m_maxNumberSteps
The maximum number of steps before the track transportation is stopped and the track is killed.
double m_deltaChordInMagneticField
The maximum miss-distance between the trajectory curve and its linear chord(s) approximation.
G4ChordFinder * m_chordFinder
Pointer to the equation-of-motion chord finder (if not the default)
MCParticleGraph m_mcParticleGraph
The MCParticle Graph used to manage the MCParticles before and after the simulation.
virtual ~FullSimModule()
Destructor of the module.
bool m_monopoles
If set to true, G4MonopolePhysics is registered in Geant4 PhysicsList.
double m_bremsstrahlungPhotonsEnergyCut
kinetic energy cut for the stored bremsstrahlung photons
int m_trajectoryStore
If true, store the trajectories of all primary particles.
bool m_storeSecondaries
controls storing of Geant secondaries in MCParticles
G4StepLimiter * m_stepLimiter
Pointer to the step limiter.
LongLivedNeutral physics Class – to be registered in the physics list.
Base class for Modules.
Definition: Module.h:72
void setDescription(const std::string &description)
Sets the description of the module.
Definition: Module.cc:214
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
Definition: Module.cc:208
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
Definition: Module.h:80
@ c_TerminateInAllProcesses
When using parallel processing, call this module's terminate() function in all processes().
Definition: Module.h:83
Monopole physics class to register on the physics list.
Custom Geant4 physics list for Belle II with options to add optical physics, standard EM physics and ...
void SetSVDProductionCutValue(G4double)
Set cut value for SVD envelope.
void SetProductionCutValue(G4double)
Use parameter to set global cut value.
void SetARICHTOPProductionCutValue(G4double)
Set cut value for ARICH and TOP envelopes.
void SetECLProductionCutValue(G4double)
Set cut value for ECL barrel, forward and backward envelopes.
void UseHighPrecisionNeutrons(G4bool)
Use high precision neutron models below 20 MeV.
void SetPXDProductionCutValue(G4double)
Set cut value for PXD envelope.
void UseLongLivedNeutralParticles()
Simulate neutral long-lived particles with given pdg and mass value.
void UseOpticalPhysics(G4bool)
Add optical photon physics.
void SetVerbosity(G4int verb)
Run/event verbosity level.
void SetCDCProductionCutValue(G4double)
Set cut value for CDC envelope.
void SetKLMProductionCutValue(G4double)
Set cut value for BKLM and EKLM envelopes.
void UseStandardEMPhysics(G4bool)
Use standard EM physics instead of EM option1.
The Event Action class.
Definition: EventAction.h:31
The Class for the Belle2 magnetic field implementation for Geant4.
Definition: MagneticField.h:28
The PrimaryGeneratorAction class inherits from G4VuserPrimaryGeneratorAction and specifies how a prim...
The run manager controls the flow of the Geant4 program and manages the event loop(s) within a run.
Definition: RunManager.h:32
void Initialize()
Initialize the Kernel.
Definition: RunManager.cc:35
The basf2 stacking action.
void setPropagatedPhotonFraction(double fraction)
Set fraction of Cerenkov photons that are actually propagated.
The Class for the stepping action.
void setAbsorbersR(const std::vector< float > &vec)
Sets the radii of absorbers for killing tracks across them.
void setStoreTrajectories(bool store)
Sets the trajectory option to enable storing of the simulated particle trajectories.
void setMaxNumberSteps(int maxSteps)
Sets the maximum number of steps before a track is stopped and killed.
The Tracking Action class.
void setIgnorePairConversions(bool ignore=true)
Set ignore flag for e+ or e- coming from gamma conversions into a pair if set to true,...
void setIgnoreBremsstrahlungPhotons(bool ignore=true)
Set ignore flag for low energy breamsstrahlung photons if set to true, breamsstrahlung photons with k...
void setSecondariesEnergyCut(double cut_MeV)
Set kinetic energy cut for secondaries.
void setStoreTrajectories(int store, double distanceTolerance)
Sets the trajectory option to enable storing of the simulated particle trajectories.
void setBremsstrahlungPhotonsEnergyCut(double cut_MeV)
Set kinetic energy cut for bremsstrahlung photons.
void setPairConversionsEnergyCut(double cut_MeV)
Set kinetic energy cut for e+ e- pair conversions.
void setIgnoreSecondaries(bool ignore=true)
Set ignore flag for low energy Geant-produced secondary particles if set to true, secondaries with ki...
void setIgnoreOpticalPhotons(bool ignore=true)
Set ignore flag for optical photons if set to true, optical photons will not be stored in MCParticles...
bool isRequired(const std::string &name="")
Ensure this array/object has been registered previously.
bool registerInDataStore(DataStore::EStoreFlags storeFlags=DataStore::c_WriteOut)
Register the object/array in the DataStore.
Type-safe access to single objects in the data store.
Definition: StoreObjPtr.h:96
static const double mm
[millimeters]
Definition: Unit.h:70
static const double e
Standard of [electric charge].
Definition: Unit.h:53
static const double MeV
[megaelectronvolt]
Definition: Unit.h:114
void addParam(const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
Definition: Module.h:560
#define REG_MODULE(moduleName)
Register the given module (without 'Module' suffix) with the framework.
Definition: Module.h:650
Abstract base class for different kinds of events.