10 #include <framework/datastore/StoreArray.h>
11 #include <framework/datastore/StoreObjPtr.h>
12 #include <framework/dataobjects/EventMetaData.h>
13 #include <framework/core/ModuleParam.templateDetails.h>
14 #include <framework/gearbox/Unit.h>
15 #include <framework/utilities/FileSystem.h>
16 #include <analysis/utility/PCmsLabTransform.h>
17 #include <trg/ecl/TrgEclMapping.h>
18 #include <trg/ecl/dataobjects/TRGECLCluster.h>
19 #include <trg/grl/dataobjects/GRLMLPData.h>
20 #include <trg/grl/dataobjects/TRGGRLInfo.h>
21 #include "trg/grl/dataobjects/TRGGRLUnpackerStore.h"
22 #include "trg/grl/modules/trggrlneuralnet/GRLNeuroModule.h"
43 "The NeuroTrigger module of the GRL.\n"
44 "Takes CDC track and ECL cluster to prepare input data\n"
45 "for the training of a neural network.\n"
46 "Networks are trained after the event loop and saved."
51 "Name of the StoreArray holding the information of tracks and clusters from cdc ecl klm.",
52 string(
"TRGGRLObjects"));
54 "Name of the root file saving the output histogram.",
57 "Save the output histogram to root file.",
66 "#cdc track of expert MLPs.",
m_parameters.i_cdc_sector);
68 "#ecl cluster of expert MLPs.",
m_parameters.i_ecl_sector);
70 "Number of nodes in each hidden layer for all networks "
71 "or factor to multiply with number of inputs (1 list or nMLP lists). "
72 "The number of layers is derived from the shape.",
75 "If true, multiply nHidden with number of input nodes.",
78 "Output scale for all networks (1 value list or nMLP value lists). "
79 "Output[i] of the MLP is scaled from [-1, 1] "
80 "to [outputScale[2*i], outputScale[2*i+1]]. "
81 "(units: z[cm] / theta[degree])",
84 "Name of the file where the weights of MLPs are saved. "
85 "the default file is $BELLE2_LOCAL_DIR/data/trg/grl/weights.dat",
88 "Name of the file where the biases of MLPs are saved. "
89 "the default file is $BELLE2_LOCAL_DIR/data/trg/grl/bias.dat",
92 "Name of the StoreArray holding the information of trigger ecl clusters ",
93 string(
"TRGECLClusters"));
95 "Cut value applied to the MLP output",
107 B2ERROR(
"NeuroTrigger could not be loaded correctly.");
111 for (
int tc = 1; tc <= 576; tc++) {
118 for (
int tc = 1; tc <= 576; tc++) {
122 ROOT::Math::PxPyPzEVector CellLab;
123 CellLab.SetPx(CellPosition.Unit().Px());
124 CellLab.SetPy(CellPosition.Unit().Py());
125 CellLab.SetPz(CellPosition.Unit().Pz());
134 ROOT::Math::PxPyPzEVector CellCOM = boostrotate.
rotateLabToCms() * CellLab;
135 TCThetaCOM.push_back(CellCOM.Theta()*TMath::RadToDeg());
136 TCPhiCOM.push_back(CellCOM.Phi()*TMath::RadToDeg() + 180.0);
141 h_target.push_back(
new TH1D((
"h_target_" + to_string(isector)).c_str(),
142 (
"h_target_" + to_string(isector)).c_str(), 100, 0.0, 1.0));
154 std::vector<float> MLPinput;
156 MLPinput.assign(19, 0);
167 for (
int ic = 0; ic < necl; ic++) {
168 int TC = eclTrgClusterArray[ic]->getMaxTCId();
169 MLPinput[ic] = eclTrgClusterArray[ic]->getEnergyDep() * 1000.0;
171 MLPinput[ic + 12] =
TCPhiCOM[TC - 1];
178 float LSB_ADC = 1 / 5.0;
179 float LSB_agnle = 1 / 1.40625;
180 std::for_each(MLPinput.begin() + 0, MLPinput.begin() + 6, [LSB_ADC](
float & x) { x = std::ceil(x * LSB_ADC); });
181 std::for_each(MLPinput.begin() + 6, MLPinput.begin() + 12, [LSB_agnle](
float & x) { x = std::ceil(x * LSB_agnle);});
182 std::for_each(MLPinput.begin() + 12, MLPinput.begin() + 18, [LSB_agnle](
float & x) { x = std::ceil(x * LSB_agnle); });
196 trgInfo->setTauNN(
true);
197 }
else trgInfo->setTauNN(
false);
static std::string findFile(const std::string &path, bool silent=false)
Search for given file or directory in local or central release directory, and return absolute path if...
std::vector< float > TCThetaCOM
Polar angle of a given TRGcluster.
std::string m_HistFileName
Name of root file to save the histogram.
virtual void initialize() override
Initialize the module.
std::string m_TrgECLClusterName
Name of the StoreArray containing the ECL clusters.
std::vector< int > TCThetaID
TCID of a given TRGcluster.
GRLNeuro m_GRLNeuro
Instance of the NeuroTrigger.
virtual void event() override
Called once for each event.
GRLNeuro::Parameters m_parameters
Parameters for the NeuroTrigger.
GRLNeuroModule()
Constructor, for setting module description and parameters.
virtual void terminate() override
This method is called at the end of the event processing.
std::vector< std::string > m_weightFileNames
Name of file where network weights etc.
std::string m_TrgGrlInformationName
name of TRG GRL information object
bool m_saveHist
save the output histogram
std::vector< float > TCPhiCOM
Azimuth angle of a given TRGcluster.
std::vector< float > m_nn_thres
cut on MVA to separate signal
std::vector< TH1D * > h_target
Histograms to save the NN classifiers.
std::vector< std::string > m_biasFileNames
Name of file where network bias etc.
Class to represent the GRL Neuro.
void initialize(const Parameters &p)
Set parameters and get some network independent parameters.
bool load(unsigned isector, const std::string &wfilename, const std::string &bfilename)
Load MLPs from file.
float runMLP(unsigned isector, const std::vector< float > &input)
Run an expert MLP.
void setDescription(const std::string &description)
Sets the description of the module.
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
Accessor to arrays stored in the data store.
int getEntries() const
Get the number of objects in the array.
Type-safe access to single objects in the data store.
int getTCThetaIdFromTCId(int)
get [TC Theta ID] from [TC ID]
TVector3 getTCPosition(int)
TC position (cm)
REG_MODULE(arichBtest)
Register the Module.
void addParam(const std::string &name, T ¶mVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
Abstract base class for different kinds of events.
std::vector< std::vector< float > > outputScale
Output scale for all networks.
bool multiplyHidden
If true, multiply nHidden with number of input nodes.
unsigned nMLP
Number of networks.
unsigned n_ecl_sector
Number of ECL sectors.
std::vector< std::vector< float > > nHidden
Number of nodes in each hidden layer for all networks or factor to multiply with number of inputs.
unsigned n_cdc_sector
Number of CDC sectors.