Belle II Software  release-08-01-10
KalmanFitterInfo.cc
1 /* Copyright 2008-2013, Technische Universitaet Muenchen, Ludwig-Maximilians-Universität München
2  Authors: Christian Hoeppner & Sebastian Neubert & Johannes Rauch & Tobias Schlüter
3 
4  This file is part of GENFIT.
5 
6  GENFIT is free software: you can redistribute it and/or modify
7  it under the terms of the GNU Lesser General Public License as published
8  by the Free Software Foundation, either version 3 of the License, or
9  (at your option) any later version.
10 
11  GENFIT is distributed in the hope that it will be useful,
12  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  GNU Lesser General Public License for more details.
15 
16  You should have received a copy of the GNU Lesser General Public License
17  along with GENFIT. If not, see <http://www.gnu.org/licenses/>.
18 */
19 
20 #include "KalmanFitterInfo.h"
21 
22 #include <cassert>
23 #include <TBuffer.h>
24 
25 #include "IO.h"
26 #include "Exception.h"
27 #include "FitStatus.h"
28 #include "Tools.h"
29 #include "Track.h"
30 #include "TrackPoint.h"
31 
32 //#define DEBUG
33 
34 
35 namespace genfit {
36 
37 KalmanFitterInfo::KalmanFitterInfo() :
38  AbsFitterInfo(), fixWeights_(false)
39 {
40  ;
41 }
42 
43 KalmanFitterInfo::KalmanFitterInfo(const TrackPoint* trackPoint, const AbsTrackRep* rep) :
44  AbsFitterInfo(trackPoint, rep), fixWeights_(false)
45 {
46  ;
47 }
48 
49 KalmanFitterInfo::~KalmanFitterInfo() {
50  deleteMeasurementInfo();
51 }
52 
53 
54 KalmanFitterInfo* KalmanFitterInfo::clone() const {
55  KalmanFitterInfo* retVal = new KalmanFitterInfo(this->getTrackPoint(), this->getRep());
56  if (hasReferenceState())
57  retVal->setReferenceState(new ReferenceStateOnPlane(*getReferenceState()));
58  if (hasForwardPrediction())
59  retVal->setForwardPrediction(new MeasuredStateOnPlane(*getForwardPrediction()));
60  if (hasForwardUpdate())
61  retVal->setForwardUpdate(new KalmanFittedStateOnPlane(*getForwardUpdate()));
62  if (hasBackwardPrediction())
63  retVal->setBackwardPrediction(new MeasuredStateOnPlane(*getBackwardPrediction()));
64  if (hasBackwardUpdate())
65  retVal->setBackwardUpdate(new KalmanFittedStateOnPlane(*getBackwardUpdate()));
66 
67  retVal->measurementsOnPlane_.reserve(getNumMeasurements());
68  for (std::vector<MeasurementOnPlane*>::const_iterator it = this->measurementsOnPlane_.begin(); it != this->measurementsOnPlane_.end(); ++it) {
69  retVal->addMeasurementOnPlane(new MeasurementOnPlane(**it));
70  }
71 
72  retVal->fixWeights_ = this->fixWeights_;
73 
74  return retVal;
75 }
76 
77 
78 MeasurementOnPlane KalmanFitterInfo::getAvgWeightedMeasurementOnPlane(bool ignoreWeights) const {
79 
80  MeasurementOnPlane retVal(*(measurementsOnPlane_[0]));
81 
82  if(measurementsOnPlane_.size() == 1) {
83  if (ignoreWeights) {
84  retVal.setWeight(1.);
85  }
86  else {
87  double weight = (measurementsOnPlane_[0])->getWeight();
88  if (weight != 1.) {
89  retVal.getCov() *= 1. / weight;
90  }
91  retVal.setWeight(weight);
92  }
93  return retVal;
94  }
95 
96  // more than one hit
97 
98  // cppcheck-suppress unreadVariable
99  double sumOfWeights(0), weight(0);
100 
101  retVal.getState().Zero();
102  retVal.getCov().Zero();
103 
104  TMatrixDSym covInv;
105 
106  for(unsigned int i=0; i<measurementsOnPlane_.size(); ++i) {
107 
108  if (i>0) {
109  // make sure we have compatible measurement types
110  // TODO: replace with Exceptions!
111  assert(measurementsOnPlane_[i]->getPlane() == measurementsOnPlane_[0]->getPlane());
112  assert(*(measurementsOnPlane_[i]->getHMatrix()) == *(measurementsOnPlane_[0]->getHMatrix()));
113  }
114 
115  tools::invertMatrix(measurementsOnPlane_[i]->getCov(), covInv); // invert cov
116  if (ignoreWeights) {
117  sumOfWeights += 1.;
118  }
119  else {
120  weight = measurementsOnPlane_[i]->getWeight();
121  sumOfWeights += weight;
122  covInv *= weight; // weigh cov
123  }
124  retVal.getCov() += covInv; // covInv is already inverted and weighted
125 
126  retVal.getState() += covInv * measurementsOnPlane_[i]->getState();
127  }
128 
129  // invert Cov
130  tools::invertMatrix(retVal.getCov());
131 
132  retVal.getState() *= retVal.getCov();
133 
134  retVal.setWeight(sumOfWeights);
135 
136  return retVal;
137 }
138 
139 
140 MeasurementOnPlane* KalmanFitterInfo::getClosestMeasurementOnPlane(const StateOnPlane* sop) const {
141  if(measurementsOnPlane_.size() == 0)
142  return nullptr;
143 
144  if(measurementsOnPlane_.size() == 1)
145  return getMeasurementOnPlane(0);
146 
147  double normMin(9.99E99);
148  unsigned int iMin(0);
149  const AbsHMatrix* H = measurementsOnPlane_[0]->getHMatrix();
150  for (unsigned int i=0; i<getNumMeasurements(); ++i) {
151  if (*(measurementsOnPlane_[i]->getHMatrix()) != *H){
152  Exception e("KalmanFitterInfo::getClosestMeasurementOnPlane: Cannot compare measurements with different H-Matrices. Maybe you have to select a different multipleMeasurementHandling.", __LINE__,__FILE__);
153  e.setFatal();
154  throw e;
155  }
156 
157  TVectorD res = measurementsOnPlane_[i]->getState() - H->Hv(sop->getState());
158  double norm = sqrt(res.Norm2Sqr());
159  if (norm < normMin) {
160  normMin = norm;
161  iMin = i;
162  }
163  }
164 
165  return getMeasurementOnPlane(iMin);
166 }
167 
168 
169 std::vector<double> KalmanFitterInfo::getWeights() const {
170  std::vector<double> retVal(getNumMeasurements());
171 
172  for (unsigned int i=0; i<getNumMeasurements(); ++i) {
173  retVal[i] = getMeasurementOnPlane(i)->getWeight();
174  }
175 
176  return retVal;
177 }
178 
179 
180 const MeasuredStateOnPlane& KalmanFitterInfo::getFittedState(bool biased) const {
181 
182  // check if we can use cached states
183  if (biased && fittedStateBiased_)
184  return *fittedStateBiased_;
185  if (!biased && fittedStateUnbiased_)
186  return *fittedStateUnbiased_;
187 
188 
189  const TrackPoint* tp = this->getTrackPoint();
190  const Track* tr = tp->getTrack();
191  const AbsTrackRep* rep = this->getRep();
192 
193  bool first(false), last(false);
194  PruneFlags& flag = tr->getFitStatus(rep)->getPruneFlags();
195  // if Track is pruned so that only one TrackPoint remains, see if it was the first or last one
196  #ifdef DEBUG
197  if (flag.isPruned()) {
198  debugOut << "KalmanFitterInfo::getFittedState - Track is pruned and has " << tr->getNumPoints() << " TrackPoints \n";
199  flag.Print();
200  }
201  #endif
202  if (flag.isPruned() && tr->getNumPoints() == 1) {
203  if (flag.hasFlags("F")) {
204  first = true;
205  #ifdef DEBUG
206  debugOut << "KalmanFitterInfo::getFittedState - has flag F \n";
207  #endif
208  }
209  else if (flag.hasFlags("L")) {
210  last = true;
211  #ifdef DEBUG
212  debugOut << "KalmanFitterInfo::getFittedState - has flag L \n";
213  #endif
214  }
215  }
216  else { // otherwise check against TrackPoint order
217  first = tr->getPointWithFitterInfo(0, rep) == tp;
218  last = tr->getPointWithFitterInfo(-1, rep) == tp;
219  }
220 
221  #ifdef DEBUG
222  debugOut << "KalmanFitterInfo::getFittedState first " << first << ", last " << last << "\n";
223  debugOut << "KalmanFitterInfo::getFittedState forwardPrediction_ " << forwardPrediction_.get() << ", forwardUpdate_ " << forwardUpdate_.get() << "\n";
224  debugOut << "KalmanFitterInfo::getFittedState backwardPrediction_ " << backwardPrediction_.get() << ", backwardUpdate_ " << backwardUpdate_.get() << "\n";
225  #endif
226 
227  /*
228  if both needed forward prediction/update and backward prediction are available,
229  use them to calculate smoothed state.
230  Otherwise, if one is missing (i.e. has been pruned) and we are at first or last hit,
231  use only backward or forward prediction (unbiased) of update (biased).
232  */
233 
234  if (biased) {
235  // last measurement and no backward prediction -> use forward update
236  if (last && !backwardPrediction_) {
237  if(!forwardUpdate_) {
238  Exception e("KalmanFitterInfo::getFittedState: Needed updates/predictions not available in this FitterInfo.", __LINE__,__FILE__);
239  e.setFatal();
240  throw e;
241  }
242  #ifdef DEBUG
243  debugOut << "KalmanFitterInfo::getFittedState - biased at last measurement = forwardUpdate_ \n";
244  #endif
245  return *forwardUpdate_;
246  }
247 
248  // first measurement and no forward update -> use backward update
249  if (first && (!forwardUpdate_ || (backwardUpdate_ && !forwardPrediction_) ) ) {
250  if(!backwardUpdate_.get()) {
251  Exception e("KalmanFitterInfo::getFittedState: Needed updates/predictions not available in this FitterInfo.", __LINE__,__FILE__);
252  e.setFatal();
253  throw e;
254  }
255  #ifdef DEBUG
256  debugOut << "KalmanFitterInfo::getFittedState - biased at first measurement = backwardUpdate_ \n";
257  //backwardUpdate_->Print();
258  #endif
259  return *backwardUpdate_;
260  }
261 
262  if(!forwardUpdate_ || !backwardPrediction_) {
263  Exception e("KalmanFitterInfo::getFittedState: Needed updates/predictions not available in this FitterInfo.", __LINE__,__FILE__);
264  e.setFatal();
265  throw e;
266  }
267  #ifdef DEBUG
268  debugOut << "KalmanFitterInfo::getFittedState - biased = mean(forwardUpdate_, backwardPrediction_) \n";
269  #endif
270  fittedStateBiased_.reset(new MeasuredStateOnPlane(calcAverageState(*forwardUpdate_, *backwardPrediction_)));
271  return *fittedStateBiased_;
272  }
273 
274  // unbiased
275 
276  // last measurement and no backward prediction -> use forward prediction
277  if (last && !backwardPrediction_) {
278  if(!forwardPrediction_) {
279  Exception e("KalmanFitterInfo::getFittedState: Needed updates/predictions not available in this FitterInfo.", __LINE__,__FILE__);
280  e.setFatal();
281  throw e;
282  }
283  #ifdef DEBUG
284  debugOut << "KalmanFitterInfo::getFittedState - unbiased at last measurement = forwardPrediction_ \n";
285  #endif
286  return *forwardPrediction_;
287  }
288 
289  // first measurement and no forward prediction -> use backward prediction
290  if (first && !forwardPrediction_) {
291  if(!backwardPrediction_) {
292  Exception e("KalmanFitterInfo::getFittedState: Needed updates/predictions not available in this FitterInfo.", __LINE__,__FILE__);
293  e.setFatal();
294  throw e;
295  }
296  #ifdef DEBUG
297  debugOut << "KalmanFitterInfo::getFittedState - unbiased at first measurement = backwardPrediction_ \n";
298  #endif
299  return *backwardPrediction_;
300  }
301 
302  if(!forwardPrediction_ || !backwardPrediction_) {
303  Exception e("KalmanFitterInfo::getFittedState: Needed updates/predictions not available in this FitterInfo.", __LINE__,__FILE__);
304  e.setFatal();
305  throw e;
306  }
307  #ifdef DEBUG
308  debugOut << "KalmanFitterInfo::getFittedState - unbiased = mean(forwardPrediction_, backwardPrediction_) \n";
309  #endif
310  fittedStateUnbiased_.reset(new MeasuredStateOnPlane(calcAverageState(*forwardPrediction_, *backwardPrediction_)));
311  return *fittedStateUnbiased_;
312 }
313 
314 
315 MeasurementOnPlane KalmanFitterInfo::getResidual(unsigned int iMeasurement, bool biased, bool onlyMeasurementErrors) const {
316 
317  const MeasuredStateOnPlane& smoothedState = getFittedState(biased);
318  const MeasurementOnPlane* measurement = measurementsOnPlane_.at(iMeasurement);
319  const SharedPlanePtr& plane = measurement->getPlane();
320 
321  // check equality of planes and reps
322  if(*(smoothedState.getPlane()) != *plane) {
323  Exception e("KalmanFitterInfo::getResidual: smoothedState and measurement are not defined in the same plane.", __LINE__,__FILE__);
324  throw e;
325  }
326  if(smoothedState.getRep() != measurement->getRep()) {
327  Exception e("KalmanFitterInfo::getResidual: smoothedState and measurement are not defined wrt the same TrackRep.", __LINE__,__FILE__);
328  throw e;
329  }
330 
331  const AbsHMatrix* H = measurement->getHMatrix();
332 
333  //TODO: shouldn't the definition be (smoothed - measured) ?
334  // res = -(H*smoothedState - measuredState)
335  TVectorD res(H->Hv(smoothedState.getState()));
336  res -= measurement->getState();
337  res *= -1;
338 
339  if (onlyMeasurementErrors) {
340  return MeasurementOnPlane(res, measurement->getCov(), plane, smoothedState.getRep(), H->clone(), measurement->getWeight());
341  }
342 
343  TMatrixDSym cov(smoothedState.getCov());
344  H->HMHt(cov);
345  cov += measurement->getCov();
346 
347  return MeasurementOnPlane(res, cov, plane, smoothedState.getRep(), H->clone(), measurement->getWeight());
348 }
349 
350 
351 double KalmanFitterInfo::getSmoothedChi2(unsigned int iMeasurement) const {
352  const MeasurementOnPlane& res = getResidual(iMeasurement, true, false);
353 
354  TMatrixDSym Rinv;
355  tools::invertMatrix(res.getCov(), Rinv);
356  return Rinv.Similarity(res.getState());
357 }
358 
359 
360 void KalmanFitterInfo::setReferenceState(ReferenceStateOnPlane* referenceState) {
361  referenceState_.reset(referenceState);
362  if (referenceState_)
363  setPlane(referenceState_->getPlane());
364 
365  // if plane has changed, delete outdated info
366  /*if (forwardPrediction_ && forwardPrediction_->getPlane() != getPlane())
367  setForwardPrediction(0);
368 
369  if (forwardUpdate_ && forwardUpdate_->getPlane() != getPlane())
370  setForwardUpdate(0);
371 
372  if (backwardPrediction_ && backwardPrediction_->getPlane() != getPlane())
373  setBackwardPrediction(0);
374 
375  if (backwardUpdate_ && backwardUpdate_->getPlane() != getPlane())
376  setBackwardUpdate(0);
377 
378  if (measurementsOnPlane_.size() > 0 && measurementsOnPlane_[0]->getPlane() != getPlane())
379  deleteMeasurementInfo();
380  */
381 }
382 
383 
384 void KalmanFitterInfo::setForwardPrediction(MeasuredStateOnPlane* forwardPrediction) {
385  forwardPrediction_.reset(forwardPrediction);
386  fittedStateUnbiased_.reset();
387  fittedStateBiased_.reset();
388  if (forwardPrediction_)
389  setPlane(forwardPrediction_->getPlane());
390 }
391 
392 void KalmanFitterInfo::setBackwardPrediction(MeasuredStateOnPlane* backwardPrediction) {
393  backwardPrediction_.reset(backwardPrediction);
394  fittedStateUnbiased_.reset();
395  fittedStateBiased_.reset();
396  if (backwardPrediction_)
397  setPlane(backwardPrediction_->getPlane());
398 }
399 
400 void KalmanFitterInfo::setForwardUpdate(KalmanFittedStateOnPlane* forwardUpdate) {
401  forwardUpdate_.reset(forwardUpdate);
402  fittedStateUnbiased_.reset();
403  fittedStateBiased_.reset();
404  if (forwardUpdate_)
405  setPlane(forwardUpdate_->getPlane());
406 }
407 
408 void KalmanFitterInfo::setBackwardUpdate(KalmanFittedStateOnPlane* backwardUpdate) {
409  backwardUpdate_.reset(backwardUpdate);
410  fittedStateUnbiased_.reset();
411  fittedStateBiased_.reset();
412  if (backwardUpdate_)
413  setPlane(backwardUpdate_->getPlane());
414 }
415 
416 
417 void KalmanFitterInfo::setMeasurementsOnPlane(const std::vector< genfit::MeasurementOnPlane* >& measurementsOnPlane) {
418  deleteMeasurementInfo();
419 
420  for (std::vector<MeasurementOnPlane*>::const_iterator m = measurementsOnPlane.begin(), mend = measurementsOnPlane.end(); m < mend; ++m) {
421  addMeasurementOnPlane(*m);
422  }
423 }
424 
425 
426 void KalmanFitterInfo::addMeasurementOnPlane(MeasurementOnPlane* measurementOnPlane) {
427  if (measurementsOnPlane_.size() == 0)
428  setPlane(measurementOnPlane->getPlane());
429 
430  measurementsOnPlane_.push_back(measurementOnPlane);
431 }
432 
433 void KalmanFitterInfo::addMeasurementsOnPlane(const std::vector< genfit::MeasurementOnPlane* >& measurementsOnPlane) {
434  for (std::vector<MeasurementOnPlane*>::const_iterator m = measurementsOnPlane.begin(), mend = measurementsOnPlane.end(); m < mend; ++m) {
435  addMeasurementOnPlane(*m);
436  }
437 }
438 
439 
440 void KalmanFitterInfo::setRep(const AbsTrackRep* rep) {
441  rep_ = rep;
442 
443  if (referenceState_)
444  referenceState_->setRep(rep);
445 
446  if (forwardPrediction_)
447  forwardPrediction_->setRep(rep);
448 
449  if (forwardUpdate_)
450  forwardUpdate_->setRep(rep);
451 
452  if (backwardPrediction_)
453  backwardPrediction_->setRep(rep);
454 
455  if (backwardUpdate_)
456  backwardUpdate_->setRep(rep);
457 
458  for (std::vector<MeasurementOnPlane*>::iterator it = measurementsOnPlane_.begin(); it != measurementsOnPlane_.end(); ++it) {
459  (*it)->setRep(rep);
460  }
461 }
462 
463 
464 void KalmanFitterInfo::setWeights(const std::vector<double>& weights) {
465 
466  if (weights.size() != getNumMeasurements()) {
467  Exception e("KalmanFitterInfo::setWeights: weights do not have the same size as measurementsOnPlane", __LINE__,__FILE__);
468  throw e;
469  }
470 
471  if (fixWeights_) {
472  errorOut << "KalmanFitterInfo::setWeights - WARNING: setting weights even though weights are fixed!" << std::endl;
473  }
474 
475  for (unsigned int i=0; i<getNumMeasurements(); ++i) {
476  getMeasurementOnPlane(i)->setWeight(weights[i]);
477  }
478 }
479 
480 
481 void KalmanFitterInfo::deleteForwardInfo() {
482  setForwardPrediction(nullptr);
483  setForwardUpdate(nullptr);
484  fittedStateUnbiased_.reset();
485  fittedStateBiased_.reset();
486 }
487 
488 void KalmanFitterInfo::deleteBackwardInfo() {
489  setBackwardPrediction(nullptr);
490  setBackwardUpdate(nullptr);
491  fittedStateUnbiased_.reset();
492  fittedStateBiased_.reset();
493 }
494 
495 void KalmanFitterInfo::deletePredictions() {
496  setForwardPrediction(nullptr);
497  setBackwardPrediction(nullptr);
498  fittedStateUnbiased_.reset();
499  fittedStateBiased_.reset();
500 }
501 
502 void KalmanFitterInfo::deleteMeasurementInfo() {
503  // FIXME: need smart pointers / smart containers here
504  for (size_t i = 0; i < measurementsOnPlane_.size(); ++i)
505  delete measurementsOnPlane_[i];
506 
507  measurementsOnPlane_.clear();
508 }
509 
510 
511 void KalmanFitterInfo::Print(const Option_t*) const {
512  printOut << "genfit::KalmanFitterInfo. Belongs to TrackPoint " << trackPoint_ << "; TrackRep " << rep_ << "\n";
513 
514  if (fixWeights_)
515  printOut << "Weights are fixed.\n";
516 
517  for (unsigned int i=0; i<measurementsOnPlane_.size(); ++i) {
518  printOut << "MeasurementOnPlane Nr " << i <<": "; measurementsOnPlane_[i]->Print();
519  }
520 
521  if (referenceState_) {
522  printOut << "Reference state: "; referenceState_->Print();
523  }
524  if (forwardPrediction_) {
525  printOut << "Forward prediction_: "; forwardPrediction_->Print();
526  }
527  if (forwardUpdate_) {
528  printOut << "Forward update: "; forwardUpdate_->Print();
529  }
530  if (backwardPrediction_) {
531  printOut << "Backward prediction_: "; backwardPrediction_->Print();
532  }
533  if (backwardUpdate_) {
534  printOut << "Backward update: "; backwardUpdate_->Print();
535  }
536 
537 }
538 
539 
540 bool KalmanFitterInfo::checkConsistency(const genfit::PruneFlags* flags) const {
541 
542  bool retVal(true);
543 
544  // check if in a TrackPoint
545  if (!trackPoint_) {
546  errorOut << "KalmanFitterInfo::checkConsistency(): trackPoint_ is nullptr" << std::endl;
547  retVal = false;
548  }
549 
550  // check if there is a reference state
551  /*if (!referenceState_) {
552  errorOut << "KalmanFitterInfo::checkConsistency(): referenceState_ is nullptr" << std::endl;
553  retVal = false;
554  }*/
555 
556  SharedPlanePtr plane = getPlane();
557 
558  if (plane.get() == nullptr) {
559  if (!(referenceState_ || forwardPrediction_ || forwardUpdate_ || backwardPrediction_ || backwardUpdate_ || measurementsOnPlane_.size() > 0))
560  return true;
561  errorOut << "KalmanFitterInfo::checkConsistency(): plane is nullptr" << std::endl;
562  retVal = false;
563  }
564 
565  // cppcheck-suppress unreadVariable
566  TVector3 oTest = plane->getO(); // see if the plane object is there
567  // cppcheck-suppress unreadVariable
568  oTest *= 47.11;
569 
570  // if more than one measurement, check if they have the same dimensionality
571  if (measurementsOnPlane_.size() > 1) {
572  int dim = measurementsOnPlane_[0]->getState().GetNrows();
573  for (unsigned int i = 1; i<measurementsOnPlane_.size(); ++i) {
574  if(measurementsOnPlane_[i]->getState().GetNrows() != dim) {
575  errorOut << "KalmanFitterInfo::checkConsistency(): measurementsOnPlane_ do not all have the same dimensionality" << std::endl;
576  retVal = false;
577  }
578  }
579  if (dim == 0) {
580  errorOut << "KalmanFitterInfo::checkConsistency(): measurementsOnPlane_ have dimension 0" << std::endl;
581  retVal = false;
582  }
583  }
584 
585  // see if everything else is defined wrt this plane and rep_
586  int dim = rep_->getDim(); // check dim
587  if (referenceState_) {
588  if(referenceState_->getPlane() != plane) {
589  errorOut << "KalmanFitterInfo::checkConsistency(): referenceState_ is not defined with the correct plane " << referenceState_->getPlane().get() << " vs. " << plane.get() << std::endl;
590  retVal = false;
591  }
592  if (referenceState_->getRep() != rep_) {
593  errorOut << "KalmanFitterInfo::checkConsistency(): referenceState_ is not defined with the correct TrackRep" << std::endl;
594  retVal = false;
595  }
596  if (referenceState_->getState().GetNrows() != dim) {
597  errorOut << "KalmanFitterInfo::checkConsistency(): referenceState_ does not have the right dimension!" << std::endl;
598  retVal = false;
599  }
600  }
601 
602  if (forwardPrediction_) {
603  if(forwardPrediction_->getPlane() != plane) {
604  errorOut << "KalmanFitterInfo::checkConsistency(): forwardPrediction_ is not defined with the correct plane" << std::endl;
605  retVal = false;
606  }
607  if(forwardPrediction_->getRep() != rep_) {
608  errorOut << "KalmanFitterInfo::checkConsistency(): forwardPrediction_ is not defined with the correct TrackRep" << std::endl;
609  retVal = false;
610  }
611  if (forwardPrediction_->getState().GetNrows() != dim || forwardPrediction_->getCov().GetNrows() != dim) {
612  errorOut << "KalmanFitterInfo::checkConsistency(): forwardPrediction_ does not have the right dimension!" << std::endl;
613  retVal = false;
614  }
615  }
616  if (forwardUpdate_) {
617  if(forwardUpdate_->getPlane() != plane) {
618  errorOut << "KalmanFitterInfo::checkConsistency(): forwardUpdate_ is not defined with the correct plane" << std::endl;
619  retVal = false;
620  }
621  if(forwardUpdate_->getRep() != rep_) {
622  errorOut << "KalmanFitterInfo::checkConsistency(): forwardUpdate_ is not defined with the correct TrackRep" << std::endl;
623  retVal = false;
624  }
625  if (forwardUpdate_->getState().GetNrows() != dim || forwardUpdate_->getCov().GetNrows() != dim) {
626  errorOut << "KalmanFitterInfo::checkConsistency(): forwardUpdate_ does not have the right dimension!" << std::endl;
627  retVal = false;
628  }
629  }
630 
631  if (backwardPrediction_) {
632  if(backwardPrediction_->getPlane() != plane) {
633  errorOut << "KalmanFitterInfo::checkConsistency(): backwardPrediction_ is not defined with the correct plane" << std::endl;
634  retVal = false;
635  }
636  if(backwardPrediction_->getRep() != rep_) {
637  errorOut << "KalmanFitterInfo::checkConsistency(): backwardPrediction_ is not defined with the correct TrackRep" << std::endl;
638  retVal = false;
639  }
640  if (backwardPrediction_->getState().GetNrows() != dim || backwardPrediction_->getCov().GetNrows() != dim) {
641  errorOut << "KalmanFitterInfo::checkConsistency(): backwardPrediction_ does not have the right dimension!" << std::endl;
642  retVal = false;
643  }
644  }
645  if (backwardUpdate_) {
646  if(backwardUpdate_->getPlane() != plane) {
647  errorOut << "KalmanFitterInfo::checkConsistency(): backwardUpdate_ is not defined with the correct plane" << std::endl;
648  retVal = false;
649  }
650  if(backwardUpdate_->getRep() != rep_) {
651  errorOut << "KalmanFitterInfo::checkConsistency(): backwardUpdate_ is not defined with the correct TrackRep" << std::endl;
652  retVal = false;
653  }
654  if (backwardUpdate_->getState().GetNrows() != dim || backwardUpdate_->getCov().GetNrows() != dim) {
655  errorOut << "KalmanFitterInfo::checkConsistency(): backwardUpdate_ does not have the right dimension!" << std::endl;
656  retVal = false;
657  }
658  }
659 
660  for (std::vector<MeasurementOnPlane*>::const_iterator it = measurementsOnPlane_.begin(); it != measurementsOnPlane_.end(); ++it) {
661  if((*it)->getPlane() != plane) {
662  errorOut << "KalmanFitterInfo::checkConsistency(): measurement is not defined with the correct plane" << std::endl;
663  retVal = false;
664  }
665  if((*it)->getRep() != rep_) {
666  errorOut << "KalmanFitterInfo::checkConsistency(): measurement is not defined with the correct TrackRep" << std::endl;
667  retVal = false;
668  }
669  if ((*it)->getState().GetNrows() == 0) {
670  errorOut << "KalmanFitterInfo::checkConsistency(): measurement has dimension 0!" << std::endl;
671  retVal = false;
672  }
673  }
674 
675  if (flags == nullptr or !flags->hasFlags("U")) { // if predictions have not been pruned
676  // see if there is an update w/o prediction or measurement
677  if (forwardUpdate_ && !forwardPrediction_) {
678  errorOut << "KalmanFitterInfo::checkConsistency(): forwardUpdate_ w/o forwardPrediction_" << std::endl;
679  retVal = false;
680  }
681 
682 
683  if (backwardUpdate_ && !backwardPrediction_) {
684  errorOut << "KalmanFitterInfo::checkConsistency(): backwardUpdate_ w/o backwardPrediction_" << std::endl;
685  retVal = false;
686  }
687 
688  if (flags == nullptr or !flags->hasFlags("M")) {
689  if (forwardUpdate_ && measurementsOnPlane_.size() == 0) {
690  errorOut << "KalmanFitterInfo::checkConsistency(): forwardUpdate_ w/o measurement" << std::endl;
691  retVal = false;
692  }
693 
694  if (backwardUpdate_ && measurementsOnPlane_.size() == 0) {
695  errorOut << "KalmanFitterInfo::checkConsistency(): backwardUpdate_ w/o measurement" << std::endl;
696  retVal = false;
697  }
698  }
699  }
700 
701 
702  return retVal;
703 }
704 
705 
706 // Modified from auto-generated Streamer to correctly deal with smart pointers.
707 void KalmanFitterInfo::Streamer(TBuffer &R__b)
708 {
709  // Stream an object of class genfit::KalmanFitterInfo.
710 
711  //This works around a msvc bug and should be harmless on other platforms
712  typedef ::genfit::KalmanFitterInfo thisClass;
713  UInt_t R__s, R__c;
714  if (R__b.IsReading()) {
715  Version_t R__v = R__b.ReadVersion(&R__s, &R__c); if (R__v) { }
716  //This works around a msvc bug and should be harmless on other platforms
717  typedef genfit::AbsFitterInfo baseClass0;
718  baseClass0::Streamer(R__b);
719  int flag;
720  R__b >> flag;
721  deleteForwardInfo();
722  deleteBackwardInfo();
723  deleteReferenceInfo();
724  deleteMeasurementInfo();
725  if (flag & 1) {
726  referenceState_.reset(new ReferenceStateOnPlane());
727  referenceState_->Streamer(R__b);
728  referenceState_->setPlane(getPlane());
729  // rep needs to be fixed up
730  }
731  if (flag & (1 << 1)) {
732  forwardPrediction_.reset(new MeasuredStateOnPlane());
733  forwardPrediction_->Streamer(R__b);
734  forwardPrediction_->setPlane(getPlane());
735  // rep needs to be fixed up
736  }
737  if (flag & (1 << 2)) {
738  forwardUpdate_.reset(new KalmanFittedStateOnPlane());
739  forwardUpdate_->Streamer(R__b);
740  forwardUpdate_->setPlane(getPlane());
741  // rep needs to be fixed up
742  }
743  if (flag & (1 << 3)) {
744  backwardPrediction_.reset(new MeasuredStateOnPlane());
745  backwardPrediction_->Streamer(R__b);
746  backwardPrediction_->setPlane(getPlane());
747  // rep needs to be fixed up
748  }
749  if (flag & (1 << 4)) {
750  backwardUpdate_.reset(new KalmanFittedStateOnPlane());
751  backwardUpdate_->Streamer(R__b);
752  backwardUpdate_->setPlane(getPlane());
753  // rep needs to be fixed up
754  }
755  {
756  std::vector<genfit::MeasurementOnPlane*,std::allocator<genfit::MeasurementOnPlane*> > &R__stl = measurementsOnPlane_;
757  TClass *R__tcl1 = TBuffer::GetClass(typeid(genfit::MeasurementOnPlane));
758  if (R__tcl1==0) {
759  Error("measurementsOnPlane_ streamer","Missing the TClass object for genfit::MeasurementOnPlane!");
760  return;
761  }
762  int R__i, R__n;
763  R__b >> R__n;
764  R__stl.reserve(R__n);
765  for (R__i = 0; R__i < R__n; R__i++) {
766  genfit::MeasurementOnPlane* R__t = new MeasurementOnPlane();
767  R__t->Streamer(R__b);
768  R__t->setPlane(getPlane());
769  R__stl.push_back(R__t);
770  }
771  }
772  R__b.CheckByteCount(R__s, R__c, thisClass::IsA());
773  } else {
774  R__c = R__b.WriteVersion(thisClass::IsA(), kTRUE);
775  //This works around a msvc bug and should be harmless on other platforms
776  typedef genfit::AbsFitterInfo baseClass0;
777  baseClass0::Streamer(R__b);
778  // "!!" forces the value to 1 or 0 (pointer != 0 or pointer == 0),
779  // this value is then written as a bitfield.
780  int flag = ((!!referenceState_)
781  | (!!forwardPrediction_ << 1)
782  | (!!forwardUpdate_ << 2)
783  | (!!backwardPrediction_ << 3)
784  | (!!backwardUpdate_ << 4));
785  R__b << flag;
786  if (flag & 1)
787  referenceState_->Streamer(R__b);
788  if (flag & (1 << 1))
789  forwardPrediction_->Streamer(R__b);
790  if (flag & (1 << 2))
791  forwardUpdate_->Streamer(R__b);
792  if (flag & (1 << 3))
793  backwardPrediction_->Streamer(R__b);
794  if (flag & (1 << 4))
795  backwardUpdate_->Streamer(R__b);
796  {
797  std::vector<genfit::MeasurementOnPlane*,std::allocator<genfit::MeasurementOnPlane*> > &R__stl = measurementsOnPlane_;
798  int R__n=int(R__stl.size());
799  R__b << R__n;
800  if(R__n) {
801  std::vector<genfit::MeasurementOnPlane*,std::allocator<genfit::MeasurementOnPlane*> >::iterator R__k;
802  for (R__k = R__stl.begin(); R__k != R__stl.end(); ++R__k) {
803  (*R__k)->Streamer(R__b);
804  }
805  }
806  }
807  R__b.SetByteCount(R__c, kTRUE);
808  }
809 }
810 
811 
812 } /* End of namespace genfit */
This class collects all information needed and produced by a specific AbsFitter and is specific to on...
Definition: AbsFitterInfo.h:42
HMatrix for projecting from AbsTrackRep parameters to measured parameters in a DetPlane.
Definition: AbsHMatrix.h:37
virtual void HMHt(TMatrixDSym &M) const
similarity: H*M*H^t
Definition: AbsHMatrix.h:56
virtual TVectorD Hv(const TVectorD &v) const
H*v.
Definition: AbsHMatrix.h:49
Abstract base class for a track representation.
Definition: AbsTrackRep.h:66
Exception class for error handling in GENFIT (provides storage for diagnostic information)
Definition: Exception.h:48
#MeasuredStateOnPlane with additional info produced by a Kalman filter or DAF.
Collects information needed and produced by a AbsKalmanFitter implementations and is specific to one ...
std::vector< MeasurementOnPlane * > measurementsOnPlane_
cache
#StateOnPlane with additional covariance matrix.
Measured coordinates on a plane.
#StateOnPlane with linearized transport to that #ReferenceStateOnPlane from previous and next #Refere...
A state with arbitrary dimension defined in a DetPlane.
Definition: StateOnPlane.h:47
Object containing AbsMeasurement and AbsFitterInfo objects.
Definition: TrackPoint.h:46
Collection of TrackPoint objects, AbsTrackRep objects and FitStatus objects.
Definition: Track.h:71
FitStatus * getFitStatus(const AbsTrackRep *rep=nullptr) const
Get FitStatus for a AbsTrackRep. Per default, return FitStatus for cardinalRep.
Definition: Track.h:154
double sqrt(double a)
sqrt for double
Definition: beamHelpers.h:28
Eigen::VectorXd getWeights(int Size)
Get the vector of weights to calculate the integral over the Chebyshev nodes The nodes are by definit...
Definition: nodes.cc:29
Defines for I/O streams used for error and debug printing.
std::ostream debugOut
Default stream for debug output.
std::ostream printOut
Default stream for output of Print calls.
std::shared_ptr< genfit::DetPlane > SharedPlanePtr
Shared Pointer to a DetPlane.
std::ostream errorOut
Default stream for error output.
MeasuredStateOnPlane calcAverageState(const MeasuredStateOnPlane &forwardState, const MeasuredStateOnPlane &backwardState)
Calculate weighted average between two MeasuredStateOnPlanes.
Info which information has been pruned from the Track.
Definition: FitStatus.h:47
bool hasFlags(Option_t *option="CFLWRMIU") const
check if all the given flags are set
Definition: FitStatus.cc:53