Belle II Software  release-08-01-10
Python.cc
1 /**************************************************************************
2  * basf2 (Belle II Analysis Software Framework) *
3  * Author: The Belle II Collaboration *
4  * *
5  * See git log for contributors and copyright holders. *
6  * This file is licensed under LGPL-3.0, see LICENSE.md. *
7  **************************************************************************/
8 
9 #include <mva/methods/Python.h>
10 
11 #include <boost/filesystem/convenience.hpp>
12 #include <numpy/npy_common.h>
13 #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
14 #include <numpy/arrayobject.h>
15 
16 #include <framework/logging/Logger.h>
17 #include <framework/utilities/FileSystem.h>
18 #include <framework/utilities/TRandomWrapper.h>
19 
20 #include <fstream>
21 #include <numeric>
22 
23 namespace Belle2 {
28  namespace MVA {
29 
30  void PythonOptions::load(const boost::property_tree::ptree& pt)
31  {
32  int version = pt.get<int>("Python_version");
33  if (version < 1 or version > 2) {
34  B2ERROR("Unknown weightfile version " << std::to_string(version));
35  throw std::runtime_error("Unknown weightfile version " + std::to_string(version));
36  }
37  m_framework = pt.get<std::string>("Python_framework");
38  m_steering_file = pt.get<std::string>("Python_steering_file");
39  m_mini_batch_size = pt.get<unsigned int>("Python_mini_batch_size");
40  m_nIterations = pt.get<unsigned int>("Python_n_iterations");
41  m_config = pt.get<std::string>("Python_config");
42  m_training_fraction = pt.get<double>("Python_training_fraction");
43  if (version == 2) {
44  m_normalize = pt.get<bool>("Python_normalize");
45  } else {
46  m_normalize = false;
47  }
48 
49  }
50 
51  void PythonOptions::save(boost::property_tree::ptree& pt) const
52  {
53  pt.put("Python_version", 2);
54  pt.put("Python_framework", m_framework);
55  pt.put("Python_steering_file", m_steering_file);
56  pt.put("Python_mini_batch_size", m_mini_batch_size);
57  pt.put("Python_n_iterations", m_nIterations);
58  pt.put("Python_config", m_config);
59  pt.put("Python_training_fraction", m_training_fraction);
60  pt.put("Python_normalize", m_normalize);
61  }
62 
63  po::options_description PythonOptions::getDescription()
64  {
65  po::options_description description("Python options");
66  description.add_options()
67  ("framework", po::value<std::string>(&m_framework),
68  "Framework which should be used. Currently supported are sklearn, tensorflow and theano")
69  ("steering_file", po::value<std::string>(&m_steering_file), "Steering file which describes")
70  ("mini_batch_size", po::value<unsigned int>(&m_mini_batch_size), "Size of the mini batch given to partial_fit function")
71  ("nIterations", po::value<unsigned int>(&m_nIterations), "Number of iterations")
72  ("normalize", po::value<bool>(&m_normalize), "Normalize input data (shift mean to 0 and std to 1)")
73  ("training_fraction", po::value<double>(&m_training_fraction),
74  "Training fraction used to split up dataset in training and validation sample.")
75  ("config", po::value<std::string>(&m_config), "Json encoded python object passed to begin_fit function");
76  return description;
77  }
78 
84 
85  public:
90 
95 
96  private:
101  {
102  if (not Py_IsInitialized()) {
103  Py_Initialize();
104  // wchar_t* bla[] = {L""};
105  wchar_t** bla = nullptr;
106  PySys_SetArgvEx(0, bla, 0);
107  m_initialized_python = true;
108  }
109 
110  if (PyArray_API == nullptr) {
111  init_numpy();
112  }
113  }
114 
119  {
120  if (m_initialized_python) {
121  if (Py_IsInitialized()) {
122  // We don't finalize Python because this call only frees some memory,
123  // but can cause crashes in loaded python-modules like Theano
124  // https://docs.python.org/3/c-api/init.html
125  // Py_Finalize();
126  }
127  }
128  }
129 
135  void* init_numpy()
136  {
137  // Import array is a macro which returns NUMPY_IMPORT_ARRAY_RETVAL
138  import_array();
139  return nullptr;
140  }
141 
142  bool m_initialized_python = false;
143  };
144 
146  {
147  static PythonInitializerSingleton singleton;
148  return singleton;
149  }
150 
151 
153  const PythonOptions& specific_options) : Teacher(general_options),
154  m_specific_options(specific_options)
155  {
157  }
158 
159 
161  {
162 
163  Weightfile weightfile;
164  std::string custom_weightfile = weightfile.generateFileName();
165  std::string custom_steeringfile = weightfile.generateFileName();
166 
167  uint64_t numberOfFeatures = training_data.getNumberOfFeatures();
168  uint64_t numberOfSpectators = training_data.getNumberOfSpectators();
169  uint64_t numberOfEvents = training_data.getNumberOfEvents();
170 
171  auto numberOfValidationEvents = static_cast<uint64_t>(numberOfEvents * (1 - m_specific_options.m_training_fraction));
172  auto numberOfTrainingEvents = static_cast<uint64_t>(numberOfEvents * m_specific_options.m_training_fraction);
173 
174  uint64_t batch_size = m_specific_options.m_mini_batch_size;
175  if (batch_size == 0) {
176  batch_size = numberOfTrainingEvents;
177  }
178 
179  if (batch_size > numberOfTrainingEvents) {
180  B2WARNING("Mini batch size (" << batch_size << ") is larger than the number of training events (" << numberOfTrainingEvents << ")"\
181  " The batch size has been set equal to the number of training events.");
182  batch_size = numberOfTrainingEvents;
183  };
184 
186  B2ERROR("Please provide a positive training fraction");
187  throw std::runtime_error("Please provide a training fraction between (0.0,1.0]");
188  }
189 
190  auto X = std::unique_ptr<float[]>(new float[batch_size * numberOfFeatures]);
191  auto S = std::unique_ptr<float[]>(new float[batch_size * numberOfSpectators]);
192  auto y = std::unique_ptr<float[]>(new float[batch_size]);
193  auto w = std::unique_ptr<float[]>(new float[batch_size]);
194  npy_intp dimensions_X[2] = {static_cast<npy_intp>(batch_size), static_cast<npy_intp>(numberOfFeatures)};
195  npy_intp dimensions_S[2] = {static_cast<npy_intp>(batch_size), static_cast<npy_intp>(numberOfSpectators)};
196  npy_intp dimensions_y[2] = {static_cast<npy_intp>(batch_size), 1};
197  npy_intp dimensions_w[2] = {static_cast<npy_intp>(batch_size), 1};
198 
199  auto X_v = std::unique_ptr<float[]>(new float[numberOfValidationEvents * numberOfFeatures]);
200  auto S_v = std::unique_ptr<float[]>(new float[numberOfValidationEvents * numberOfSpectators]);
201  auto y_v = std::unique_ptr<float[]>(new float[numberOfValidationEvents]);
202  auto w_v = std::unique_ptr<float[]>(new float[numberOfValidationEvents]);
203  npy_intp dimensions_X_v[2] = {static_cast<npy_intp>(numberOfValidationEvents), static_cast<npy_intp>(numberOfFeatures)};
204  npy_intp dimensions_S_v[2] = {static_cast<npy_intp>(numberOfValidationEvents), static_cast<npy_intp>(numberOfSpectators)};
205  npy_intp dimensions_y_v[2] = {static_cast<npy_intp>(numberOfValidationEvents), 1};
206  npy_intp dimensions_w_v[2] = {static_cast<npy_intp>(numberOfValidationEvents), 1};
207 
208  std::string steering_file_source_code;
211  std::ifstream steering_file(filename);
212  if (not steering_file) {
213  throw std::runtime_error(std::string("Couldn't open file ") + filename);
214  }
215  steering_file.seekg(0, std::ios::end);
216  steering_file_source_code.resize(steering_file.tellg());
217  steering_file.seekg(0, std::ios::beg);
218  steering_file.read(&steering_file_source_code[0], steering_file_source_code.size());
219  }
220 
221  std::vector<float> means(numberOfFeatures, 0.0);
222  std::vector<float> stds(numberOfFeatures, 0.0);
223 
225  // Stable calculation of mean and variance with weights
226  // see https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
227  auto weights = training_data.getWeights();
228  for (uint64_t iFeature = 0; iFeature < numberOfFeatures; ++iFeature) {
229  double wSum = 0.0;
230  double mean = 0.0;
231  double running_std = 0.0;
232  auto feature = training_data.getFeature(iFeature);
233  for (uint64_t i = 0; i < weights.size(); ++i) {
234  wSum += weights[i];
235  double meanOld = mean;
236  mean += (weights[i] / wSum) * (feature[i] - meanOld);
237  running_std += weights[i] * (feature[i] - meanOld) * (feature[i] - mean);
238  }
239  means[iFeature] = mean;
240  stds[iFeature] = std::sqrt(running_std / (wSum - 1));
241  }
242  }
243 
244  try {
245  // Load python modules
246  auto json = boost::python::import("json");
247  auto builtins = boost::python::import("builtins");
248  auto inspect = boost::python::import("inspect");
249 
250  // Load framework
251  auto framework = boost::python::import((std::string("basf2_mva_python_interface.") + m_specific_options.m_framework).c_str());
252  // Overwrite framework with user-defined code from the steering file
253  builtins.attr("exec")(steering_file_source_code.c_str(), boost::python::object(framework.attr("__dict__")));
254 
255  // Call get_model with the parameters provided by the user
256  auto parameters = json.attr("loads")(m_specific_options.m_config.c_str());
257  auto model = framework.attr("get_model")(numberOfFeatures, numberOfSpectators,
258  numberOfEvents, m_specific_options.m_training_fraction, parameters);
259 
260  // Call begin_fit with validation sample
261  for (uint64_t iEvent = 0; iEvent < numberOfValidationEvents; ++iEvent) {
262  training_data.loadEvent(iEvent);
264  for (uint64_t iFeature = 0; iFeature < numberOfFeatures; ++iFeature)
265  X_v[iEvent * numberOfFeatures + iFeature] = (training_data.m_input[iFeature] - means[iFeature]) / stds[iFeature];
266  } else {
267  for (uint64_t iFeature = 0; iFeature < numberOfFeatures; ++iFeature)
268  X_v[iEvent * numberOfFeatures + iFeature] = training_data.m_input[iFeature];
269  }
270  for (uint64_t iSpectator = 0; iSpectator < numberOfSpectators; ++iSpectator)
271  S_v[iEvent * numberOfSpectators + iSpectator] = training_data.m_spectators[iSpectator];
272  y_v[iEvent] = training_data.m_target;
273  w_v[iEvent] = training_data.m_weight;
274  }
275 
276  auto ndarray_X_v = boost::python::handle<>(PyArray_SimpleNewFromData(2, dimensions_X_v, NPY_FLOAT32, X_v.get()));
277  auto ndarray_S_v = boost::python::handle<>(PyArray_SimpleNewFromData(2, dimensions_S_v, NPY_FLOAT32, S_v.get()));
278  auto ndarray_y_v = boost::python::handle<>(PyArray_SimpleNewFromData(2, dimensions_y_v, NPY_FLOAT32, y_v.get()));
279  auto ndarray_w_v = boost::python::handle<>(PyArray_SimpleNewFromData(2, dimensions_w_v, NPY_FLOAT32, w_v.get()));
280 
281  uint64_t nBatches = std::floor(numberOfTrainingEvents / batch_size);
282 
283  auto state = framework.attr("begin_fit")(model, ndarray_X_v, ndarray_S_v, ndarray_y_v, ndarray_w_v, nBatches);
284 
285  bool continue_loop = true;
286 
287  std::vector<uint64_t> iteration_index_vector(numberOfTrainingEvents);
288  std::iota(std::begin(iteration_index_vector), std::end(iteration_index_vector), 0);
289 
290  for (uint64_t iIteration = 0; (iIteration < m_specific_options.m_nIterations or m_specific_options.m_nIterations == 0)
291  and continue_loop; ++iIteration) {
292 
293  // shuffle the indices on each iteration to get randomised batches
294  if (iIteration > 0) std::shuffle(std::begin(iteration_index_vector), std::end(iteration_index_vector), TRandomWrapper());
295 
296  for (uint64_t iBatch = 0; iBatch < nBatches and continue_loop; ++iBatch) {
297 
298  // Release Global Interpreter Lock in python to allow multithreading while reading root files
299  // also see: https://docs.python.org/3.5/c-api/init.html
300  PyThreadState* m_thread_state = PyEval_SaveThread();
301  for (uint64_t iEvent = 0; iEvent < batch_size; ++iEvent) {
302  training_data.loadEvent(iteration_index_vector.at(iEvent + iBatch * batch_size) + numberOfValidationEvents);
304  for (uint64_t iFeature = 0; iFeature < numberOfFeatures; ++iFeature)
305  X[iEvent * numberOfFeatures + iFeature] = (training_data.m_input[iFeature] - means[iFeature]) / stds[iFeature];
306  } else {
307  for (uint64_t iFeature = 0; iFeature < numberOfFeatures; ++iFeature)
308  X[iEvent * numberOfFeatures + iFeature] = training_data.m_input[iFeature];
309  }
310  for (uint64_t iSpectator = 0; iSpectator < numberOfSpectators; ++iSpectator)
311  S[iEvent * numberOfSpectators + iSpectator] = training_data.m_spectators[iSpectator];
312  y[iEvent] = training_data.m_target;
313  w[iEvent] = training_data.m_weight;
314  }
315 
316  // Maybe slow, create ndarrays outside of loop?
317  auto ndarray_X = boost::python::handle<>(PyArray_SimpleNewFromData(2, dimensions_X, NPY_FLOAT32, X.get()));
318  auto ndarray_S = boost::python::handle<>(PyArray_SimpleNewFromData(2, dimensions_S, NPY_FLOAT32, S.get()));
319  auto ndarray_y = boost::python::handle<>(PyArray_SimpleNewFromData(2, dimensions_y, NPY_FLOAT32, y.get()));
320  auto ndarray_w = boost::python::handle<>(PyArray_SimpleNewFromData(2, dimensions_w, NPY_FLOAT32, w.get()));
321 
322  // Reactivate Global Interpreter Lock to safely execute python code
323  PyEval_RestoreThread(m_thread_state);
324  auto r = framework.attr("partial_fit")(state, ndarray_X, ndarray_S, ndarray_y,
325  ndarray_w, iIteration, iBatch);
326  boost::python::extract<bool> proxy(r);
327  if (proxy.check())
328  continue_loop = static_cast<bool>(proxy);
329  }
330  }
331 
332  auto result = framework.attr("end_fit")(state);
333 
334  auto pickle = boost::python::import("pickle");
335  auto file = builtins.attr("open")(custom_weightfile.c_str(), "wb");
336  pickle.attr("dump")(result, file);
337 
338  auto steeringfile = builtins.attr("open")(custom_steeringfile.c_str(), "wb");
339  pickle.attr("dump")(steering_file_source_code.c_str(), steeringfile);
340 
341  auto importances = framework.attr("feature_importance")(state);
342  if (len(importances) == 0) {
343  B2INFO("Python method returned empty feature importance. There won't be any information about the feature importance in the weightfile.");
344  } else if (numberOfFeatures != static_cast<uint64_t>(len(importances))) {
345  B2WARNING("Python method didn't return the correct number of importance value. I ignore the importances");
346  } else {
347  std::map<std::string, float> feature_importances;
348  for (uint64_t iFeature = 0; iFeature < numberOfFeatures; ++iFeature) {
349  boost::python::extract<float> proxy(importances[iFeature]);
350  if (proxy.check()) {
351  feature_importances[m_general_options.m_variables[iFeature]] = static_cast<float>(proxy);
352  } else {
353  B2WARNING("Failed to convert importance output of the method to a float, using 0 instead");
354  feature_importances[m_general_options.m_variables[iFeature]] = 0.0;
355  }
356  }
357  weightfile.addFeatureImportance(feature_importances);
358  }
359 
360  } catch (...) {
361  PyErr_Print();
362  PyErr_Clear();
363  B2ERROR("Failed calling train in PythonTeacher");
364  throw std::runtime_error(std::string("Failed calling train in PythonTeacher"));
365  }
366 
367  weightfile.addOptions(m_general_options);
368  weightfile.addOptions(m_specific_options);
369  weightfile.addFile("Python_Weightfile", custom_weightfile);
370  weightfile.addFile("Python_Steeringfile", custom_steeringfile);
371  weightfile.addSignalFraction(training_data.getSignalFraction());
373  weightfile.addVector("Python_Means", means);
374  weightfile.addVector("Python_Stds", stds);
375  }
376 
377  return weightfile;
378 
379  }
380 
382  {
384  }
385 
386 
387  void PythonExpert::load(Weightfile& weightfile)
388  {
389 
390  std::string custom_weightfile = weightfile.generateFileName();
391  weightfile.getFile("Python_Weightfile", custom_weightfile);
392  weightfile.getOptions(m_general_options);
393  weightfile.getOptions(m_specific_options);
394 
396  m_means = weightfile.getVector<float>("Python_Means");
397  m_stds = weightfile.getVector<float>("Python_Stds");
398  }
399 
400  try {
401  auto pickle = boost::python::import("pickle");
402  auto builtins = boost::python::import("builtins");
403  m_framework = boost::python::import((std::string("basf2_mva_python_interface.") + m_specific_options.m_framework).c_str());
404 
405  if (weightfile.containsElement("Python_Steeringfile")) {
406  std::string custom_steeringfile = weightfile.generateFileName();
407  weightfile.getFile("Python_Steeringfile", custom_steeringfile);
408  auto steeringfile = builtins.attr("open")(custom_steeringfile.c_str(), "rb");
409  auto source_code = pickle.attr("load")(steeringfile);
410  builtins.attr("exec")(boost::python::object(source_code), boost::python::object(m_framework.attr("__dict__")));
411  }
412 
413  auto file = builtins.attr("open")(custom_weightfile.c_str(), "rb");
414  auto unpickled_fit_object = pickle.attr("load")(file);
415  m_state = m_framework.attr("load")(unpickled_fit_object);
416  } catch (...) {
417  PyErr_Print();
418  PyErr_Clear();
419  B2ERROR("Failed calling load in PythonExpert");
420  throw std::runtime_error("Failed calling load in PythonExpert");
421  }
422 
423  }
424 
425  std::vector<float> PythonExpert::apply(Dataset& test_data) const
426  {
427 
428  uint64_t numberOfFeatures = test_data.getNumberOfFeatures();
429  uint64_t numberOfEvents = test_data.getNumberOfEvents();
430 
431  auto X = std::unique_ptr<float[]>(new float[numberOfEvents * numberOfFeatures]);
432  npy_intp dimensions_X[2] = {static_cast<npy_intp>(numberOfEvents), static_cast<npy_intp>(numberOfFeatures)};
433 
434  for (uint64_t iEvent = 0; iEvent < numberOfEvents; ++iEvent) {
435  test_data.loadEvent(iEvent);
437  for (uint64_t iFeature = 0; iFeature < numberOfFeatures; ++iFeature)
438  X[iEvent * numberOfFeatures + iFeature] = (test_data.m_input[iFeature] - m_means[iFeature]) / m_stds[iFeature];
439  } else {
440  for (uint64_t iFeature = 0; iFeature < numberOfFeatures; ++iFeature)
441  X[iEvent * numberOfFeatures + iFeature] = test_data.m_input[iFeature];
442  }
443  }
444 
445  std::vector<float> probabilities(test_data.getNumberOfEvents(), std::numeric_limits<float>::quiet_NaN());
446 
447  try {
448  auto ndarray_X = boost::python::handle<>(PyArray_SimpleNewFromData(2, dimensions_X, NPY_FLOAT32, X.get()));
449  auto result = m_framework.attr("apply")(m_state, ndarray_X);
450  for (uint64_t iEvent = 0; iEvent < numberOfEvents; ++iEvent) {
451  // We have to do some nasty casting here, because the Python C-Api uses structs which are binary compatible
452  // to a PyObject but do not inherit from it!
453  probabilities[iEvent] = static_cast<float>(*static_cast<float*>(PyArray_GETPTR1(reinterpret_cast<PyArrayObject*>(result.ptr()),
454  iEvent)));
455  }
456  } catch (...) {
457  PyErr_Print();
458  PyErr_Clear();
459  B2ERROR("Failed calling applying PythonExpert");
460  throw std::runtime_error("Failed calling applying PythonExpert");
461  }
462 
463  return probabilities;
464  }
465 
466  std::vector<std::vector<float>> PythonExpert::applyMulticlass(Dataset& test_data) const
467  {
468 
469  uint64_t numberOfFeatures = test_data.getNumberOfFeatures();
470  uint64_t numberOfEvents = test_data.getNumberOfEvents();
471 
472  auto X = std::unique_ptr<float[]>(new float[numberOfEvents * numberOfFeatures]);
473  npy_intp dimensions_X[2] = {static_cast<npy_intp>(numberOfEvents), static_cast<npy_intp>(numberOfFeatures)};
474 
475  for (uint64_t iEvent = 0; iEvent < numberOfEvents; ++iEvent) {
476  test_data.loadEvent(iEvent);
478  for (uint64_t iFeature = 0; iFeature < numberOfFeatures; ++iFeature)
479  X[iEvent * numberOfFeatures + iFeature] = (test_data.m_input[iFeature] - m_means[iFeature]) / m_stds[iFeature];
480  } else {
481  for (uint64_t iFeature = 0; iFeature < numberOfFeatures; ++iFeature)
482  X[iEvent * numberOfFeatures + iFeature] = test_data.m_input[iFeature];
483  }
484  }
485 
486  unsigned int nClasses = m_general_options.m_nClasses;
487  std::vector<std::vector<float>> probabilities(test_data.getNumberOfEvents(), std::vector<float>(nClasses,
488  std::numeric_limits<float>::quiet_NaN()));
489 
490  try {
491  auto ndarray_X = boost::python::handle<>(PyArray_SimpleNewFromData(2, dimensions_X, NPY_FLOAT32, X.get()));
492  auto result = m_framework.attr("apply")(m_state, ndarray_X);
493  for (uint64_t iEvent = 0; iEvent < numberOfEvents; ++iEvent) {
494  // We have to do some nasty casting here, because the Python C-Api uses structs which are binary compatible
495  // to a PyObject but do not inherit from it!
496  for (uint64_t iClass = 0; iClass < nClasses; ++iClass) {
497  probabilities[iEvent][iClass] = static_cast<float>(*static_cast<float*>(PyArray_GETPTR2(reinterpret_cast<PyArrayObject*>
498  (result.ptr()),
499  iEvent, iClass)));
500  }
501  }
502  } catch (...) {
503  PyErr_Print();
504  PyErr_Clear();
505  B2ERROR("Failed calling applying PythonExpert");
506  throw std::runtime_error("Failed calling applying PythonExpert");
507  }
508 
509  return probabilities;
510  }
511  }
513 }
static std::string findFile(const std::string &path, bool silent=false)
Search for given file or directory in local or central release directory, and return absolute path if...
Definition: FileSystem.cc:148
Abstract base class of all Datasets given to the MVA interface The current event can always be access...
Definition: Dataset.h:33
GeneralOptions m_general_options
General options loaded from the weightfile.
Definition: Expert.h:70
General options which are shared by all MVA trainings.
Definition: Options.h:62
std::vector< std::string > m_variables
Vector of all variables (branch names) used in the training.
Definition: Options.h:86
unsigned int m_nClasses
Number of classes in a classification problem.
Definition: Options.h:89
PythonExpert()
Constructs a new Python Expert.
Definition: Python.cc:381
boost::python::object m_state
current state object of method
Definition: Python.h:142
std::vector< float > m_stds
Stds of all features for normalization.
Definition: Python.h:144
boost::python::object m_framework
Framework module.
Definition: Python.h:141
virtual std::vector< float > apply(Dataset &test_data) const override
Apply this expert onto a dataset.
Definition: Python.cc:425
PythonOptions m_specific_options
Method specific options.
Definition: Python.h:140
virtual void load(Weightfile &weightfile) override
Load the expert from a Weightfile.
Definition: Python.cc:387
std::vector< float > m_means
Means of all features for normalization.
Definition: Python.h:143
virtual std::vector< std::vector< float > > applyMulticlass(Dataset &test_data) const override
Apply this expert onto a dataset for multiclass problem.
Definition: Python.cc:466
Singleton class which handles the initialization and finalization of Python and numpy.
Definition: Python.cc:83
void * init_numpy()
Helper function which initializes array system of numpy.
Definition: Python.cc:135
~PythonInitializerSingleton()
Destructor of PythonInitializerSingleton.
Definition: Python.cc:118
bool m_initialized_python
Member which keeps indicate if this class initialized python.
Definition: Python.cc:142
static PythonInitializerSingleton & GetInstance()
Return static instance of PythonInitializerSingleton.
Definition: Python.cc:145
PythonInitializerSingleton()
Constructor of PythonInitializerSingleton.
Definition: Python.cc:100
PythonInitializerSingleton(const PythonInitializerSingleton &)=delete
Forbid copy constructor of PythonInitializerSingleton.
Options for the Python MVA method.
Definition: Python.h:52
unsigned int m_nIterations
Number of iterations through the whole data.
Definition: Python.h:81
std::string m_steering_file
steering file provided by the user to override the functions in the framework
Definition: Python.h:78
std::string m_framework
framework to use e.g.
Definition: Python.h:77
std::string m_config
Config string in json, which is passed to the get model function.
Definition: Python.h:79
virtual po::options_description getDescription() override
Returns a program options description for all available options.
Definition: Python.cc:63
bool m_normalize
Normalize the inputs (shift mean to zero and std to 1)
Definition: Python.h:83
double m_training_fraction
Fraction of data passed as training data, rest is passed as test data.
Definition: Python.h:82
virtual void load(const boost::property_tree::ptree &pt) override
Load mechanism to load Options from a xml tree.
Definition: Python.cc:30
virtual void save(boost::property_tree::ptree &pt) const override
Save mechanism to store Options in a xml tree.
Definition: Python.cc:51
unsigned int m_mini_batch_size
Mini batch size, 0 passes the whole data in one call.
Definition: Python.h:80
PythonTeacher(const GeneralOptions &general_options, const PythonOptions &specific_options)
Constructs a new teacher using the GeneralOptions and specific options of this training.
Definition: Python.cc:152
PythonOptions m_specific_options
Method specific options.
Definition: Python.h:107
virtual Weightfile train(Dataset &training_data) const override
Train a mva method using the given dataset returning a Weightfile.
Definition: Python.cc:160
Abstract base class of all Teachers Each MVA library has its own implementation of this class,...
Definition: Teacher.h:29
GeneralOptions m_general_options
GeneralOptions containing all shared options.
Definition: Teacher.h:49
The Weightfile class serializes all information about a training into an xml tree.
Definition: Weightfile.h:38
void addFile(const std::string &identifier, const std::string &custom_weightfile)
Add a file (mostly a weightfile from a MVA library) to our Weightfile.
Definition: Weightfile.cc:115
bool containsElement(const std::string &identifier) const
Returns true if given element is stored in the property tree.
Definition: Weightfile.h:160
void addOptions(const Options &options)
Add an Option object to the xml tree.
Definition: Weightfile.cc:62
std::vector< T > getVector(const std::string &identifier) const
Returns a stored vector from the xml tree.
Definition: Weightfile.h:181
void getOptions(Options &options) const
Fills an Option object from the xml tree.
Definition: Weightfile.cc:67
void addSignalFraction(float signal_fraction)
Saves the signal fraction in the xml tree.
Definition: Weightfile.cc:95
void addFeatureImportance(const std::map< std::string, float > &importance)
Add variable importance.
Definition: Weightfile.cc:72
void addVector(const std::string &identifier, const std::vector< T > &vector)
Add a vector to the xml tree.
Definition: Weightfile.h:125
std::string generateFileName(const std::string &suffix="")
Returns a temporary filename with the given suffix.
Definition: Weightfile.cc:105
void getFile(const std::string &identifier, const std::string &custom_weightfile)
Creates a file from our weightfile (mostly this will be a weightfile of an MVA library)
Definition: Weightfile.cc:138
double sqrt(double a)
sqrt for double
Definition: beamHelpers.h:28
Abstract base class for different kinds of events.
Wrap TRandom to be useable as a uniform random number generator with STL algorithms like std::shuffle...