9 #include <gtest/gtest.h>
11 #include <tracking/trackFindingVXD/filterTools/DecorrelationMatrix.h>
12 #include <tracking/trackFindingVXD/filterTools/DecorrelationMatrixHelper.h>
14 #include <Eigen/Dense>
25 using TestMatrix = Eigen::Matrix<double, 3, 3, Eigen::RowMajor>;
28 const std::vector<double>
v1 = {
42 const std::vector<double>
v2 = {
56 const std::vector<double>
v3 = {
79 m_testData = {{
v1,
v2,
v3}};
83 tmpMatrix << 3.132492133948475, 0.974827954209597, -0.761264020048923,
84 0.974827954209597, 1.486186070946439, -0.840189849104485,
86 -0.761264020048923, -0.840189849104485, 0.739017883637750;
90 m_covMatrix = (double)(
v3.size() - 1) / (
double)
v3.size() * tmpMatrix;
106 EXPECT_EQ(3, m_testData.size());
107 for (
const auto& vec : m_testData) { EXPECT_EQ(10, vec.size()); }
114 const auto& internalMatrix = matrix.
getMatrix();
116 for (
auto i = 0; i < internalMatrix.outerSize(); ++i) {
117 for (
auto j = 0; j < internalMatrix.innerSize(); ++j) {
118 EXPECT_DOUBLE_EQ(m_identity(i, j), internalMatrix(i, j));
130 std::vector<double> testVec = { m_testData[0][0], m_testData[1][0], m_testData[2][0] };
131 auto outputVec = matrix.decorrelate(testVec);
132 EXPECT_EQ(testVec.size(), outputVec.size());
135 auto outputData = matrix.decorrelate(m_testData);
137 for (
auto i = 0; i < covMat.outerSize(); ++i) {
138 for (
auto j = 0; j < covMat.innerSize(); ++j) {
140 EXPECT_FLOAT_EQ(m_identity(i, j), covMat(i, j));
142 EXPECT_NEAR(m_identity(i, j), covMat(i, j), 1e-15);
155 EXPECT_EQ(covMat.outerSize(), 3);
156 EXPECT_EQ(covMat.innerSize(), 3);
157 for (
auto i = 0; i < covMat.outerSize(); ++i) {
158 for (
auto j = 0; j < covMat.innerSize(); ++j) {
159 EXPECT_DOUBLE_EQ(m_covMatrix(i, j), covMat(i, j));
164 auto badTestData = m_testData;
165 badTestData[0].erase(badTestData[0].begin());
167 EXPECT_EQ(3, badMat.outerSize());
168 EXPECT_EQ(3, badMat.innerSize());
169 EXPECT_TRUE(badMat == m_identity);
177 const char* filename =
"tmp_matrix_testoutput.dat";
179 ofstream ofs(filename);
181 ofs << covMatrix.
print() << std::endl;
184 ifstream ifs(filename);
186 EXPECT_TRUE(inMatrix.readFromStream(ifs));
189 const TestMatrix& inMat = inMatrix.getMatrix();
190 for (
auto i = 0; i < m_covMatrix.outerSize(); ++i) {
191 for (
auto j = 0; j < m_covMatrix.innerSize(); ++j) {
192 EXPECT_DOUBLE_EQ(m_covMatrix(i, j), inMat(i, j));
196 ASSERT_EQ(0, remove(filename));
Class holding a Matrix that can be used to decorrelate input data to Machine Learning classifiers.
const MatrixT & getMatrix() const
get the currently stored matrix
TestMatrix m_covMatrix
covariance matrix of the data as calculated via MATLAB
virtual void SetUp()
Fills the data into the internal data structure that is used for testing.
std::array< std::vector< double >, 3 > m_testData
data that is used in the tests
TEST_F(GlobalLabelTest, LargeNumberOfTimeDependentParameters)
Test large number of time-dep params for registration and retrieval.
const Eigen::Matrix< double, Ndims, Ndims, Eigen::RowMajor > calculateCovMatrix(std::array< std::vector< double >, Ndims > inputData)
calculates the empirical covariance matrix from the inputData.
void calculateDecorrMatrix(std::array< std::vector< double >, Ndims > inputData, bool normalise=true)
calculate the transformation matrix that when applied to the input data yields linearly uncorrelated ...
std::string print() const
print the matrix to a string.
Abstract base class for different kinds of events.
helper struct for testing purposes providing the necessary coordinate accessors NOTE: this is only te...
const std::vector< double > v3
MATLAB generated random vector.
Eigen::Matrix< double, 3, 3, Eigen::RowMajor > TestMatrix
typedef for less typing effort
const std::vector< double > v2
MATLAB generated random vector.
const std::vector< double > v1
MATLAB generated random vector.