Belle II Software  release-08-01-10
eclMuMuEAlgorithm.cc
1 /**************************************************************************
2  * basf2 (Belle II Analysis Software Framework) *
3  * Author: The Belle II Collaboration *
4  * *
5  * See git log for contributors and copyright holders. *
6  * This file is licensed under LGPL-3.0, see LICENSE.md. *
7  **************************************************************************/
8 
9 /* Own header. */
10 #include <ecl/calibration/eclMuMuEAlgorithm.h>
11 
12 /* ECL headers. */
13 #include <ecl/dataobjects/ECLElementNumbers.h>
14 #include <ecl/dbobjects/ECLCrystalCalib.h>
15 
16 /* ROOT headers. */
17 #include <TF1.h>
18 #include <TFile.h>
19 #include <TH2F.h>
20 #include <TMath.h>
21 #include <TROOT.h>
22 
23 using namespace std;
24 using namespace Belle2;
25 using namespace ECL;
26 
28 // cppcheck-suppress constParameter ; TF1 fit functions cannot have const parameters
29 double eclNovoConst(double* x, double* par)
30 {
31  double qc = 0;
32 
33  double peak = par[1];
34  double width = par[2];
35  double sln4 = sqrt(log(4));
36  double y = par[3] * sln4;
37  double tail = -log(y + sqrt(1 + y * y)) / sln4;
38 
39  if (TMath::Abs(tail) < 1.e-7) {
40  qc = 0.5 * TMath::Power(((x[0] - peak) / width), 2);
41  } else {
42  double qa = tail * sqrt(log(4.));
43  double qb = sinh(qa) / qa;
44  double qx = (x[0] - peak) / width * qb;
45  double qy = 1. + tail * qx;
46 
47  if (qy > 1.E-7)
48  qc = 0.5 * (TMath::Power((log(qy) / tail), 2) + tail * tail);
49  else
50  qc = 15.0;
51  }
52  return par[0] * exp(-qc) + par[4];
53 }
54 
55 
56 eclMuMuEAlgorithm::eclMuMuEAlgorithm(): CalibrationAlgorithm("eclMuMuECollector"), cellIDLo(1),
57  cellIDHi(ECLElementNumbers::c_NCrystals), minEntries(150),
58  nToRebin(1000), tRatioMin(0.05), tRatioMax(0.40), lowerEdgeThresh(0.10), performFits(true), findExpValues(false), storeConst(0)
59 {
61  "Perform energy calibration of ecl crystals by fitting a Novosibirsk function to energy deposited by muons"
62  );
63 }
64 
66 {
69  double limitTol = 0.0005; /*< tolerance for checking if a parameter is at the limit */
70  double minFitLimit = 1e-25; /*< cut off for labeling a fit as poor */
71  double peakMin(0.4), peakMax(2.2); /*< range for peak of normalized energy distribution */
72  double peakTol = limitTol * (peakMax - peakMin); /*< fit is at limit if it is within peakTol of min or max */
73  double effSigMin(0.02), effSigMax(0.2); /*< range for effective sigma of normalized energy distribution */
74  double effSigTol = limitTol * (effSigMax - effSigMin); /*< fit is at limit if it is within effSigTol of min or max */
75  double etaNom(-0.41); /*< Nominal tail parameter; fixed to this value for low statistics fits */
76  double etaMin(-1.), etaMax(0.); /*< Novosibirsk tail parameter range */
77  double etaTol = limitTol * (etaMax - etaMin); /*< fit is at limit if it is within etaTol of min or max */
78 
80  gROOT->SetBatch();
81 
84  B2INFO("eclMuMuEAlgorithm parameters:");
85  B2INFO("cellIDLo = " << cellIDLo);
86  B2INFO("cellIDHi = " << cellIDHi);
87  B2INFO("minEntries = " << minEntries);
88  B2INFO("tRatioMin = " << tRatioMin);
89  B2INFO("tRatioMax = " << tRatioMax);
90  B2INFO("lowerEdgeThresh = " << lowerEdgeThresh);
91  B2INFO("performFits = " << performFits);
92  B2INFO("findExpValues = " << findExpValues);
93  B2INFO("storeConst = " << storeConst);
94 
97  TH1F* dummy;
98  dummy = (TH1F*)gROOT->FindObject("IntegralVsCrysID");
99  if (dummy) {delete dummy;}
100  dummy = (TH1F*)gROOT->FindObject("AverageExpECrys");
101  if (dummy) {delete dummy;}
102  dummy = (TH1F*)gROOT->FindObject("AverageElecCalib");
103  if (dummy) {delete dummy;}
104  dummy = (TH1F*)gROOT->FindObject("AverageInitCalib");
105  if (dummy) {delete dummy;}
106 
109  auto TrkPerCrysID = getObjectPtr<TH1F>("TrkPerCrysID");
110  auto EnVsCrysID = getObjectPtr<TH2F>("EnVsCrysID");
111  auto ExpEvsCrys = getObjectPtr<TH1F>("ExpEvsCrys");
112  auto ElecCalibvsCrys = getObjectPtr<TH1F>("ElecCalibvsCrys");
113  auto InitialCalibvsCrys = getObjectPtr<TH1F>("InitialCalibvsCrys");
114  auto CalibEntriesvsCrys = getObjectPtr<TH1F>("CalibEntriesvsCrys");
115  auto RawDigitAmpvsCrys = getObjectPtr<TH2F>("RawDigitAmpvsCrys");
116  auto RawDigitTimevsCrys = getObjectPtr<TH2F>("RawDigitTimevsCrys");
117  auto hitCrysVsExtrapolatedCrys = getObjectPtr<TH2F>("hitCrysVsExtrapolatedCrys");
118 
122  TH1F* IntegralVsCrysID = new TH1F("IntegralVsCrysID", "Integral of EnVsCrysID for each crystal;crystal ID;Entries",
124  TH1F* AverageExpECrys = new TH1F("AverageExpECrys", "Average expected E per crys from collector;Crystal ID;Energy (GeV)",
127  TH1F* AverageElecCalib = new TH1F("AverageElecCalib", "Average electronics calib const vs crystal;Crystal ID;Calibration constant",
129  TH1F* AverageInitCalib = new TH1F("AverageInitCalib", "Average initial calib const vs crystal;Crystal ID;Calibration constant",
131 
132  for (int crysID = 0; crysID < ECLElementNumbers::c_NCrystals; crysID++) {
133  TH1D* hEnergy = EnVsCrysID->ProjectionY("hEnergy", crysID + 1, crysID + 1);
134  int Integral = hEnergy->Integral();
135  IntegralVsCrysID->SetBinContent(crysID + 1, Integral);
136 
137  double TotEntries = CalibEntriesvsCrys->GetBinContent(crysID + 1);
138 
139  double expectedE = 0.;
140  if (TotEntries > 0.) {expectedE = ExpEvsCrys->GetBinContent(crysID + 1) / TotEntries;}
141  AverageExpECrys->SetBinContent(crysID + 1, expectedE);
142 
143  double calibconst = 0.;
144  if (TotEntries > 0.) {calibconst = ElecCalibvsCrys->GetBinContent(crysID + 1) / TotEntries;}
145  AverageElecCalib->SetBinContent(crysID + 1, calibconst);
146 
147  calibconst = 0.;
148  if (TotEntries > 0.) {calibconst = InitialCalibvsCrys->GetBinContent(crysID + 1) / TotEntries;}
149  AverageInitCalib->SetBinContent(crysID + 1, calibconst);
150  }
151 
154  TFile* histfile = new TFile("eclMuMuEAlgorithm.root", "recreate");
155  TrkPerCrysID->Write();
156  EnVsCrysID->Write();
157  IntegralVsCrysID->Write();
158  AverageExpECrys->Write();
159  AverageElecCalib->Write();
160  AverageInitCalib->Write();
161  RawDigitAmpvsCrys->Write();
162  RawDigitTimevsCrys->Write();
163  hitCrysVsExtrapolatedCrys->Write();
164 
167  if (!performFits) {
168  B2RESULT("eclMuMuEAlgorithm has not been asked to perform fits; copying input histograms and quitting");
169  histfile->Close();
170  return c_NotEnoughData;
171  }
172 
175  bool sufficientData = true;
176  for (int crysID = cellIDLo - 1; crysID < cellIDHi; crysID++) {
177  if (IntegralVsCrysID->GetBinContent(crysID + 1) < minEntries) {
178  if (storeConst == 1) {B2RESULT("eclMuMuEAlgorithm: crystal " << crysID << " has insufficient statistics: " << IntegralVsCrysID->GetBinContent(crysID + 1) << ". Requirement is " << minEntries);}
179  sufficientData = false;
180  break;
181  }
182  }
183 
185  if (!sufficientData && storeConst == 1) {
186  histfile->Close();
187  return c_NotEnoughData;
188  }
189 
194  TH1F* CalibVsCrysID = new TH1F("CalibVsCrysID", "Calibration constant vs crystal ID;crystal ID;counts per GeV",
196  TH1F* ExpEnergyperCrys = new TH1F("ExpEnergyperCrys", "Expected energy per crystal;Crystal ID;Peak energy (GeV)",
198 
200  TH1F* PeakVsCrysID = new TH1F("PeakVsCrysID", "Peak of Novo fit vs crystal ID;crystal ID;Peak normalized energy",
203  TH1F* EdgeVsCrysID = new TH1F("EdgeVsCrysID", "Lower edge of Novo fit vs crystal ID;crystal ID", ECLElementNumbers::c_NCrystals, 0,
205  TH1F* effSigVsCrysID = new TH1F("effSigVsCrysID", "effSigma vs crystal ID;crystal ID;sigma)", ECLElementNumbers::c_NCrystals, 0,
207  TH1F* etaVsCrysID = new TH1F("etaVsCrysID", "eta vs crystal ID;crystal ID;Novo eta parameter", ECLElementNumbers::c_NCrystals, 0,
209  TH1F* normVsCrysID = new TH1F("normVsCrysID", "Novosibirsk normalization vs crystal ID;crystal ID;normalization",
211  TH1F* lowerLimitVsCrysID = new TH1F("lowerLimitVsCrysID", "fit range lower limit vs crystal ID;crystal ID;lower fit limit",
214  TH1F* fitLimitVsCrysID = new TH1F("fitLimitVsCrysID", "fit range upper limit vs crystal ID;crystal ID;upper fit limit",
217  TH1F* StatusVsCrysID = new TH1F("StatusVsCrysID", "Fit status vs crystal ID;crystal ID;Fit status", ECLElementNumbers::c_NCrystals,
219 
221  TH1F* hStatus = new TH1F("hStatus", "Fit status", 25, -5, 20);
222  TH1F* hPeak = new TH1F("hPeak", "Peaks of normalized energy distributions, successful fits;Peak of Novosibirsk fit", 200, 0.8, 1.2);
223  TH1F* fracPeakUnc = new TH1F("fracPeakUnc", "Fractional uncertainty on peak uncertainty, successful fits;Uncertainty on peak", 100,
224  0, 0.1);
225 
226 
229  bool allFitsOK = true;
230  for (int crysID = cellIDLo - 1; crysID < cellIDHi; crysID++) {
231 
233  TString name = "Enormalized";
234  name += crysID;
235  TH1D* hEnergy = EnVsCrysID->ProjectionY(name, crysID + 1, crysID + 1);
236 
238  double histMin = hEnergy->GetXaxis()->GetXmin();
239  double histMax = hEnergy->GetXaxis()->GetXmax();
240  TF1* func = new TF1("eclNovoConst", eclNovoConst, histMin, histMax, 5);
241  func->SetParNames("normalization", "peak", "effSigma", "eta", "const");
242  func->SetParLimits(1, peakMin, peakMax);
243  func->SetParLimits(2, effSigMin, effSigMax);
244  func->SetParLimits(3, etaMin, etaMax);
245 
246  //..Currently not using the constant term
247  double constant = 0.;
248  func->FixParameter(4, constant);
249 
250  //..If low statistics, rebin, and fix eta
251  if (hEnergy->GetEntries() < nToRebin) {
252  hEnergy->Rebin(2);
253  func->FixParameter(3, etaNom);
254  }
255 
257  hEnergy->GetXaxis()->SetRangeUser(peakMin, peakMax);
258  double peak = hEnergy->GetMaximum();
259  int maxBin = hEnergy->GetMaximumBin();
260  double peakE = hEnergy->GetBinLowEdge(maxBin);
261  double peakEUnc = 0.;
262  double normalization = hEnergy->GetMaximum();
263  double normUnc = 0.;
264  double effSigma = hEnergy->GetRMS();
265  double sigmaUnc = 0.;
266  hEnergy->GetXaxis()->SetRangeUser(histMin, histMax);
267  double fitProb = 0.;
268 
270  double eta = etaNom;
271  double etaUnc = 0.;
272 
273  //..Will find the lower edge of normalized energy at the end of the fit
274  double lowerEnEdge = 0.;
275 
276  //..Fit range from set of bins with sufficient entries.
277  double targetY = tRatioMin * peak;
278  int iLow = maxBin;
279  while (hEnergy->GetBinContent(iLow) > targetY) {iLow--;}
280  double fitlow = hEnergy->GetBinLowEdge(iLow);
281 
282  targetY = tRatioMax * peak;
283  int iHigh = maxBin;
284  while (hEnergy->GetBinContent(iHigh) > targetY) {iHigh++;}
285  double fithigh = hEnergy->GetBinLowEdge(iHigh + 1);
286 
289  bool fitHist = IntegralVsCrysID->GetBinContent(crysID + 1) >= minEntries; /* fit only if enough events */
290  if (fitHist) {
291 
293  func->SetParameters(normalization, peakE, effSigma, eta, constant);
294 
296  hEnergy->Fit(func, "LIQ", "", fitlow, fithigh);
297  normalization = func->GetParameter(0);
298  normUnc = func->GetParError(0);
299  peakE = func->GetParameter(1);
300  peakEUnc = func->GetParError(1);
301  effSigma = func->GetParameter(2);
302  sigmaUnc = func->GetParError(2);
303  eta = func->GetParameter(3);
304  etaUnc = func->GetParError(3);
305  fitProb = func->GetProb();
306 
307  //..Lower edge of the fit function is used to find the calibration constant.
308  // Can now use the peak of the fit, instead of the bin content.
309  peak = func->Eval(peakE);
310  targetY = lowerEdgeThresh * peak;
311 
313  iHigh = hEnergy->GetXaxis()->FindBin(peakE) + 1;
314  iLow = hEnergy->GetXaxis()->FindBin(fitlow);
315  int iLast = iHigh;
316  for (int ibin = iHigh; ibin > iLow; ibin--) {
317  double xc = hEnergy->GetBinCenter(ibin);
318  if (func->Eval(xc) > targetY) {iLast = ibin;}
319  }
320  double xHigh = hEnergy->GetBinCenter(iLast);
321  double xLow = hEnergy->GetBinCenter(iLast - 1);
322 
324  if (func->Eval(xLow) < targetY and func->Eval(xHigh) > targetY) {
325  func->SetNpx(1000);
326  lowerEnEdge = func->GetX(targetY, xLow, xHigh);
327  }
328  }
329 
332  int iStatus = fitOK; // success
333 
335  if (lowerEnEdge < 0.01) {iStatus = noLowerEdge;}
336 
338  if (fitProb <= minFitLimit) {iStatus = poorFit;}
339 
341  if ((peakE < peakMin + peakTol) || (peakE > peakMax - peakTol)) {iStatus = atLimit;}
342  if ((effSigma < effSigMin + effSigTol) || (effSigma > effSigMax - effSigTol)) {iStatus = atLimit;}
343  if ((eta < etaMin + etaTol) || (eta > etaMax - etaTol)) {iStatus = atLimit;}
344 
345  //** No fit
346  if (!fitHist) {iStatus = notFit;} // not fit
347 
349  int histbin = crysID + 1;
350  PeakVsCrysID->SetBinContent(histbin, peakE);
351  PeakVsCrysID->SetBinError(histbin, peakEUnc);
352  EdgeVsCrysID->SetBinContent(histbin, lowerEnEdge);
353  EdgeVsCrysID->SetBinError(histbin, peakEUnc); // approximate
354  effSigVsCrysID->SetBinContent(histbin, effSigma);
355  effSigVsCrysID->SetBinError(histbin, sigmaUnc);
356  etaVsCrysID->SetBinContent(histbin, eta);
357  etaVsCrysID->SetBinError(histbin, etaUnc);
358  normVsCrysID->SetBinContent(histbin, normalization);
359  normVsCrysID->SetBinError(histbin, normUnc);
360  lowerLimitVsCrysID->SetBinContent(histbin, fitlow);
361  lowerLimitVsCrysID->SetBinError(histbin, 0);
362  fitLimitVsCrysID->SetBinContent(histbin, fithigh);
363  fitLimitVsCrysID->SetBinError(histbin, 0);
364  StatusVsCrysID->SetBinContent(histbin, iStatus);
365  StatusVsCrysID->SetBinError(histbin, 0);
366 
368  hStatus->Fill(iStatus);
369  if (iStatus >= iterations) {
370  hPeak->Fill(peakE);
371  fracPeakUnc->Fill(peakEUnc / peakE);
372  }
373 
375  B2INFO("cellID " << crysID + 1 << " status = " << iStatus << " fit probability = " << fitProb);
376  histfile->cd();
377  hEnergy->Write();
378 
379  } /* end of loop over crystals */
380 
383  for (int crysID = 0; crysID < ECLElementNumbers::c_NCrystals; crysID++) {
384  int histbin = crysID + 1;
385  double fitstatus = StatusVsCrysID->GetBinContent(histbin);
386  double peakE = PeakVsCrysID->GetBinContent(histbin);
387  double edge = EdgeVsCrysID->GetBinContent(histbin);
388  double fracpeakEUnc = PeakVsCrysID->GetBinError(histbin) / peakE;
389 
391  if (fitstatus < iterations) {
392  peakE = -1.;
393  edge = -1.;
394  fracpeakEUnc = 0.;
395  if (histbin >= cellIDLo && histbin <= cellIDHi) {
396  B2RESULT("eclMuMuEAlgorithm: cellID " << histbin << " is not a successful fit. Status = " << fitstatus);
397  allFitsOK = false;
398  }
399  }
400 
402  if (findExpValues) {
403  double inputExpE = abs(AverageExpECrys->GetBinContent(histbin));
404  ExpEnergyperCrys->SetBinContent(histbin, inputExpE * edge);
405  ExpEnergyperCrys->SetBinError(histbin, fracpeakEUnc * inputExpE * peakE);
406  } else {
407 
409  double inputCalib = abs(AverageInitCalib->GetBinContent(histbin));
410  CalibVsCrysID->SetBinContent(histbin, inputCalib / edge);
411  CalibVsCrysID->SetBinError(histbin, fracpeakEUnc * inputCalib / peakE);
412  }
413  }
414 
417  bool DBsuccess = false;
418  if (storeConst == 0 || (storeConst == 1 && allFitsOK)) {
419  DBsuccess = true;
420  if (findExpValues) {
421 
423  std::vector<float> tempE;
424  std::vector<float> tempUnc;
425  for (int crysID = 0; crysID < ECLElementNumbers::c_NCrystals; crysID++) {
426  tempE.push_back(ExpEnergyperCrys->GetBinContent(crysID + 1));
427  tempUnc.push_back(ExpEnergyperCrys->GetBinError(crysID + 1));
428  }
429  ECLCrystalCalib* ExpectedE = new ECLCrystalCalib();
430  ExpectedE->setCalibVector(tempE, tempUnc);
431  saveCalibration(ExpectedE, "ECLExpMuMuE");
432  B2RESULT("eclCosmicEAlgorithm: successfully stored expected energies ECLExpMuMuE");
433 
434  } else {
435 
437  std::vector<float> tempCalib;
438  std::vector<float> tempCalibUnc;
439  for (int crysID = 0; crysID < ECLElementNumbers::c_NCrystals; crysID++) {
440  tempCalib.push_back(CalibVsCrysID->GetBinContent(crysID + 1));
441  tempCalibUnc.push_back(CalibVsCrysID->GetBinError(crysID + 1));
442  }
443  ECLCrystalCalib* MuMuECalib = new ECLCrystalCalib();
444  MuMuECalib->setCalibVector(tempCalib, tempCalibUnc);
445  saveCalibration(MuMuECalib, "ECLCrystalEnergyMuMu");
446  B2RESULT("eclMuMuEAlgorithm: successfully stored ECLCrystalEnergyMuMu calibration constants");
447  }
448  }
449 
453  PeakVsCrysID->Write();
454  EdgeVsCrysID->Write();
455  effSigVsCrysID->Write();
456  etaVsCrysID->Write();
457  normVsCrysID->Write();
458  lowerLimitVsCrysID->Write();
459  fitLimitVsCrysID->Write();
460  StatusVsCrysID->Write();
461  hPeak->Write();
462  fracPeakUnc->Write();
463  hStatus->Write();
464 
466  if (findExpValues) {
467  ExpEnergyperCrys->Write();
468  } else {
469  CalibVsCrysID->Write();
470  }
471  histfile->Close();
472 
475  dummy = (TH1F*)gROOT->FindObject("PeakVsCrysID"); delete dummy;
476  dummy = (TH1F*)gROOT->FindObject("EdgeVsCrysID"); delete dummy;
477  dummy = (TH1F*)gROOT->FindObject("effSigVsCrysID"); delete dummy;
478  dummy = (TH1F*)gROOT->FindObject("etaVsCrysID"); delete dummy;
479  dummy = (TH1F*)gROOT->FindObject("normVsCrysID"); delete dummy;
480  dummy = (TH1F*)gROOT->FindObject("lowerLimitVsCrysID"); delete dummy;
481  dummy = (TH1F*)gROOT->FindObject("fitLimitVsCrysID"); delete dummy;
482  dummy = (TH1F*)gROOT->FindObject("StatusVsCrysID"); delete dummy;
483  dummy = (TH1F*)gROOT->FindObject("fitProbSame"); delete dummy;
484  dummy = (TH1F*)gROOT->FindObject("fracPeakUnc"); delete dummy;
485  dummy = (TH1F*)gROOT->FindObject("hStatus"); delete dummy;
486  dummy = (TH1F*)gROOT->FindObject("ExpEnergyperCrys"); delete dummy;
487  dummy = (TH1F*)gROOT->FindObject("CalibVsCrysID"); delete dummy;
488 
489 
492  if (storeConst == -1) {
493  B2RESULT("eclMuMuEAlgorithm performed fits but was not asked to store contants");
494  return c_Failure;
495  } else if (!DBsuccess) {
496  if (findExpValues) { B2RESULT("eclMuMuEAlgorithm: failed to store expected values"); }
497  else { B2RESULT("eclMuMuEAlgorithm: failed to store calibration constants"); }
498  return c_Failure;
499  }
500  return c_OK;
501 }
Base class for calibration algorithms.
void saveCalibration(TClonesArray *data, const std::string &name)
Store DBArray payload with given name with default IOV.
void setDescription(const std::string &description)
Set algorithm description (in constructor)
EResult
The result of calibration.
@ c_OK
Finished successfuly =0 in Python.
@ c_NotEnoughData
Needs more data =2 in Python.
@ c_Failure
Failed =3 in Python.
General DB object to store one calibration number per ECL crystal.
void setCalibVector(const std::vector< float > &CalibConst, const std::vector< float > &CalibConstUnc)
Set vector of constants with uncertainties.
double tRatioMin
entries/peak at low edge of fit must be greater than this
int poorFit
low chi square; fit not useable
int iterations
fit reached max number of iterations, but is useable
int noLowerEdge
could not determine lower edge of fit
int storeConst
controls which values are written to the database.
bool performFits
if false, input histograms are copied to output, but no fits are done.
int cellIDHi
Last cellID to be fit.
double lowerEdgeThresh
Lower edge is where the fit = lowerEdgeThresh * peak value.
int cellIDLo
..Parameters to control Novosibirsk fit to energy deposited in each crystal by mu+mu- events
bool findExpValues
if true, fits are used to find expected energy deposit for each crystal instead of the calibration co...
int minEntries
All crystals to be fit must have at least minEntries events in the fit range.
int nToRebin
If fewer entries than this, rebin and fix eta parameter.
virtual EResult calibrate() override
..Run algorithm on events
int atLimit
a parameter is at the limit; fit not useable
double tRatioMax
entries/peak at high edge of fit must be greater than this
double sqrt(double a)
sqrt for double
Definition: beamHelpers.h:28
const int c_NCrystals
Number of crystals.
Abstract base class for different kinds of events.