9#include "cdc/modules/cdcCalibrationCollector/CDCCalibrationCollector.h"
10#include <cdc/translators/RealisticTDCCountTranslator.h>
11#include <framework/datastore/RelationArray.h>
13#include <tracking/trackFindingCDC/eventdata/hits/CDCWireHit.h>
14#include <tracking/trackFindingCDC/topology/CDCWireTopology.h>
16#include <genfit/TrackPoint.h>
17#include <genfit/KalmanFitterInfo.h>
18#include <genfit/MeasurementOnPlane.h>
19#include <genfit/MeasuredStateOnPlane.h>
21#include <Math/ProbFuncMathCore.h>
23#include <cdc/dataobjects/WireID.h>
24#include <cdc/geometry/CDCGeometryPar.h>
31using namespace genfit;
32using namespace TrackFindingCDC;
43 addParam(
"bField",
m_bField,
"If true -> #Params ==5 else #params ==4 for calculate P-Val",
false);
48 addParam(
"minimumPt",
m_minimumPt,
"Tracks with tranverse momentum smaller than this value will not used", 0.15);
49 addParam(
"minimumNDF",
m_minimumNDF,
"Discard tracks whose degree-of-freedom below this value", 5.);
51 addParam(
"effStudy",
m_effStudy,
"When true module collects info only necessary for wire eff study",
false);
70 auto m_tree =
new TTree(
m_treeName.c_str(),
"tree for cdc calibration");
71 m_tree->Branch<Float_t>(
"x_mea", &
x_mea);
72 m_tree->Branch<Float_t>(
"x_u", &
x_u);
73 m_tree->Branch<Float_t>(
"x_b", &
x_b);
74 m_tree->Branch<Float_t>(
"alpha", &
alpha);
75 m_tree->Branch<Float_t>(
"theta", &
theta);
76 m_tree->Branch<Float_t>(
"t", &
t);
77 m_tree->Branch<UShort_t>(
"adc", &
adc);
79 m_tree->Branch<UChar_t>(
"lay", &
lay);
80 m_tree->Branch<Float_t>(
"weight", &
weight);
81 m_tree->Branch<UShort_t>(
"IWire", &
IWire);
82 m_tree->Branch<Float_t>(
"Pval", &
Pval);
83 m_tree->Branch<Float_t>(
"ndf", &
ndf);
85 m_tree->Branch<Float_t>(
"d0", &
d0);
86 m_tree->Branch<Float_t>(
"z0", &
z0);
87 m_tree->Branch<Float_t>(
"phi0", &
phi0);
88 m_tree->Branch<Float_t>(
"tanL", &
tanL);
89 m_tree->Branch<Float_t>(
"omega", &
omega);
93 m_tree->Branch<Float_t>(
"t_fit", &
t_fit);
96 registerObject<TTree>(
"tree", m_tree);
99 auto m_efftree =
new TTree(
m_effTreeName.c_str(),
"tree for wire efficiency");
100 m_efftree->Branch<
unsigned short>(
"layerID", &
layerID);
101 m_efftree->Branch<
unsigned short>(
"wireID", &
wireID);
102 m_efftree->Branch<
float>(
"z", &
z);
103 m_efftree->Branch<
bool>(
"isFound", &
isFound);
105 registerObject<TTree>(
"efftree", m_efftree);
108 auto m_hNDF =
new TH1F(
"hNDF",
"NDF of fitted track;NDF;Tracks", 71, -1, 70);
109 auto m_hPval =
new TH1F(
"hPval",
"p-values of tracks;pVal;Tracks", 1000, 0, 1);
110 auto m_hEventT0 =
new TH1F(
"hEventT0",
"Event T0", 1000, -100, 100);
111 auto m_hNTracks =
new TH1F(
"hNTracks",
"Number of tracks", 50, 0, 10);
112 auto m_hOccupancy =
new TH1F(
"hOccupancy",
"occupancy", 100, 0, 1.0);
114 registerObject<TH1F>(
"hNDF", m_hNDF);
115 registerObject<TH1F>(
"hPval", m_hPval);
116 registerObject<TH1F>(
"hEventT0", m_hEventT0);
117 registerObject<TH1F>(
"hNTracks", m_hNTracks);
118 registerObject<TH1F>(
"hOccupancy", m_hOccupancy);
134 getObjectPtr<TH1F>(
"hEventT0")->Fill(
evtT0);
141 std::vector<unsigned short> wiresInCDCTrack;
145 unsigned short eWireID = cdcHit.getWire().getEWire();
146 wiresInCDCTrack.push_back(eWireID);
151 const int nTr =
m_Tracks.getEntries();
154 for (
int i = 0; i < nTr; ++i) {
157 if (!fitresult)
continue;
160 if (fabs(charge) > 0) {
168 getObjectPtr<TH1F>(
"hNTracks")->Fill(nCTracks);
171 const int nHits =
m_CDCHits.getEntries();
172 const int nWires = 14336;
173 float oc =
static_cast<float>(nHits) /
static_cast<float>(nWires);
174 getObjectPtr<TH1F>(
"hOccupancy")->Fill(oc);
176 for (
int i = 0; i < nTr; ++i) {
180 B2WARNING(
"No track fit result found.");
186 B2WARNING(
"Can not access RecoTrack of this Belle2::Track");
196 getObjectPtr<TH1F>(
"hPval")->Fill(
Pval);
197 getObjectPtr<TH1F>(
"hNDF")->Fill(
ndf);
198 B2DEBUG(99,
"ndf = " <<
ndf);
199 B2DEBUG(99,
"Pval = " <<
Pval);
202 double Chi2 = fs->getChi2();
203 Pval = std::max(0., ROOT::Math::chisquared_cdf_c(Chi2,
ndf));
221 }
catch (
const genfit::Exception& e) {
222 B2ERROR(
"Exception when harvest information from recotrack: " << e.what());
227 if (fitresult->
getD0() > 2 || fitresult->
getZ0() > 5)
continue;
241 B2DEBUG(99,
"start collect hit");
246 const genfit::TrackPoint* tp = track->getCreatedTrackPoint(track->getRecoHitInformation(hit));
248 lay = hit->getICLayer();
249 IWire = hit->getIWire();
250 adc = hit->getADCCount();
251 unsigned short tdc = hit->getTDCCount();
253 const genfit::KalmanFitterInfo* kfi = tp->getKalmanFitterInfo();
254 if (!kfi) {B2DEBUG(199,
"No Fitter Info: Layer " << hit->getICLayer());
continue;}
255 for (
unsigned int iMeas = 0; iMeas < kfi->getNumMeasurements(); ++iMeas) {
256 if ((kfi->getWeights().at(iMeas)) > 0.5) {
258 const genfit::MeasuredStateOnPlane& mop = kfi->getFittedState();
259 const TVector3 pocaOnWire = mop.getPlane()->getO();
260 const TVector3 pocaOnTrack = mop.getPlane()->getU();
261 const TVector3 pocaMom = mop.getMom();
264 x_mea = kfi->getMeasurementOnPlane(iMeas)->getState()(0);
265 x_b = kfi->getFittedState(
true).getState()(3);
266 x_u = kfi->getFittedState(
false).getState()(3);
267 weight = kfi->getWeights().at(iMeas);
274 if (fabs(
alpha) > M_PI / 2) {
283 B2DEBUG(99,
"x_unbiased " <<
x_u <<
" |left_right " << lr);
288 t = tdcTrans->
getDriftTime(tdc, wireid, mop.getTime(), pocaOnWire.Z(),
adc);
289 getObjectPtr<TTree>(
"tree")->Fill();
297 const Helix& helixFit)
const
303 const CDCWire& oneWire = layer.getWire(1);
305 double arcLength = helixFit.getArcLength2DAtCylindricalR(newR);
306 ROOT::Math::XYZVector xyzOnWire =
B2Vector3D(helixFit.getPositionAtArcLength2D(arcLength));
310 const CDCWire& wire = layer.getClosestWire(crosspoint);
319 const double radiusofLayer = wireLayer.getRefCylindricalR();
321 const double arcLength = helixFit.getArcLength2DAtCylindricalR(radiusofLayer);
322 const ROOT::Math::XYZVector xyz =
B2Vector3D(helixFit.getPositionAtArcLength2D(arcLength));
323 if (!xyz.X())
continue;
325 unsigned short crossedWire = wireIntersected.
getEWire();
326 unsigned short crossedCWire = wireIntersected.
getNeighborCW()->getEWire();
327 unsigned short crossedCCWire = wireIntersected.
getNeighborCCW()->getEWire();
329 if (find(wireHits.begin(), wireHits.end(), crossedWire) != wireHits.end()
330 || find(wireHits.begin(), wireHits.end(), crossedCWire) != wireHits.end()
331 || find(wireHits.begin(), wireHits.end(), crossedCCWire) != wireHits.end())
339 getObjectPtr<TTree>(
"efftree")->Fill();
Class containing the result of the unpacker in raw data and the result of the digitizer in simulation...
StoreObjPtr< EventT0 > m_eventTimeStoreObject
Event t0 object.
std::string m_recoTrackArrayName
Belle2::RecoTrack StoreArray nam.e.
bool m_calExpectedDriftTime
Calculate expected drift time from x_fit or not.
Float_t phi0
Track Parameter, phi0.
Float_t tanL
Track Parameter, tanL.
double m_minimumNDF
minimum NDF required for track
std::string m_effTreeName
Name of efficiency tree for the output file.
std::string m_cdcTrackVectorName
Belle2::CDCTrack vectorpointer name.
bool m_storeTrackParams
Store Track parameter or not.
Float_t weight
Weight of hit.
TrackFindingCDC::StoreWrappedObjPtr< std::vector< TrackFindingCDC::CDCTrack > > m_CDCTracks
CDC tracks.
StoreArray< TrackFitResult > m_TrackFitResults
Track fit results.
void harvest(Belle2::RecoTrack *track)
collect hit information of fitted track.
CDCCalibrationCollectorModule()
Constructor.
std::string m_cdcHitArrayName
Belle2::CDCHit StoreArray name.
Float_t theta
Entrance Polar angle of hit (degree).
Float_t x_b
X_fit for biased track fit.
Float_t Pval
P-value of fitted track.
std::string m_relRecoTrackTrackName
Relation between RecoTrack and Belle2:Track.
unsigned short wireID
wireID for hit-level wire monitoring
void collect() override
Event action, collect information for calibration.
bool m_isCosmic
true when we process cosmic events, else false (collision).
Float_t t_fit
Drift time calculated from x_fit.
virtual ~CDCCalibrationCollectorModule()
Destructor.
Float_t omega
Track Parameter, omega.
bool m_eventT0Extraction
use Event T0 extract t0 or not.
void buildEfficiencies(std::vector< unsigned short > wireHits, const Helix helixFit)
fills efficiency objects
bool m_bField
fit incase no magnetic Field of not, if false, NDF=4 in cal P-value
std::string m_trackArrayName
Belle2::Track StoreArray name.
void prepare() override
Initializes the Module.
Float_t z0
Track Parameter, z0.
Float_t t
Measurement Drift time.
Float_t x_u
X_fit for unbiased track fit.
void finish() override
Termination action.
Float_t ndf
degree of freedom.
std::string m_trackFitResultArrayName
Belle2::TrackFitResult StoreArray name.
Float_t d0
Track Parameter, d0.
unsigned short layerID
layerID for hit-level wire monitoring
Float_t x_mea
measure drift length (signed by left right).
const TrackFindingCDC::CDCWire & getIntersectingWire(const ROOT::Math::XYZVector &xyz, const TrackFindingCDC::CDCWireLayer &layer, const Helix &helixFit) const
extrapolates the helix fit to a given layer and finds the wire which it would be hitting
std::string m_treeName
Name of tree for the output file.
StoreArray< RecoTrack > m_RecoTracks
Tracks.
StoreArray< Track > m_Tracks
Tracks.
Float_t alpha
Entrance Azimuthal angle of hit (degree).
double m_minimumPt
minimum pt required for track
bool m_effStudy
When true module collects info only necessary for wire eff study.
float z
z of hit fot hit-level wire monitoring
bool isFound
flag for a hit that has been found near a track as expected by extrapolation
StoreArray< CDCHit > m_CDCHits
CDC hits.
The Class for CDC Geometry Parameters.
double getTheta(const B2Vector3D &momentum) const
Returns track incident angle (theta in rad.).
double getAlpha(const B2Vector3D &posOnWire, const B2Vector3D &momentum) const
Returns track incident angle in rphi plane (alpha in rad.).
double getOutgoingAlpha(const double alpha) const
Converts incoming- to outgoing-alpha.
unsigned short getOutgoingLR(const unsigned short lr, const double alpha) const
Converts incoming-lr to outgoing-lr.
double getOutgoingTheta(const double alpha, const double theta) const
Converts incoming- to outgoing-theta.
double getDriftTime(double dist, unsigned short layer, unsigned short lr, double alpha, double theta) const
Return the drift time to the sense wire.
static CDCGeometryPar & Instance(const CDCGeometry *=nullptr)
Static method to get a reference to the CDCGeometryPar instance.
Translator mirroring the realistic Digitization.
double getDriftTime(unsigned short tdcCount, const WireID &wireID, double timeOfFlightEstimator, double z, unsigned short adcCount) override
Get Drift time.
Calibration collector module base class.
static const ChargedStable muon
muon particle
void setDescription(const std::string &description)
Sets the description of the module.
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
This is the Reconstruction Event-Data Model Track.
const genfit::FitStatus * getTrackFitStatus(const genfit::AbsTrackRep *representation=nullptr) const
Return the track fit status for the given representation or for the cardinal one. You are not allowed...
Low-level class to create/modify relations between StoreArrays.
TO * getRelatedTo(const std::string &name="", const std::string &namedRelation="") const
Get the object to which this object has a relation.
const std::string & getName() const
Return name under which the object is saved in the DataStore.
bool isRequired(const std::string &name="")
Ensure this array/object has been registered previously.
Class representing a three dimensional reconstructed hit.
Class representing a sequence of three dimensional reconstructed hits.
Class representing a sense wire layer in the central drift chamber.
Class representing the sense wire arrangement in the whole of the central drift chamber.
const std::vector< Belle2::TrackFindingCDC::CDCWireLayer > & getWireLayers() const
Getter for the underlying storing layer vector.
static CDCWireTopology & getInstance()
Getter for the singleton instance of the wire topology.
Class representing a sense wire in the central drift chamber.
Vector2D getWirePos2DAtZ(const double z) const
Gives the xy projected position of the wire at the given z coordinate.
MayBePtr< const CDCWire > getNeighborCCW() const
Gives the closest neighbor in the counterclockwise direction - always exists.
IWire getIWire() const
Getter for the wire id within its layer.
unsigned short getEWire() const
Getter for the encoded wire number.
ILayer getICLayer() const
Getter for the continuous layer id ranging from 0 - 55.
MayBePtr< const CDCWire > getNeighborCW() const
Gives the closest neighbor in the clockwise direction - always exists.
double norm() const
Calculates the length of the vector.
Values of the result of a track fit with a given particle hypothesis.
Helix getHelix() const
Conversion to framework Helix (without covariance).
short getChargeSign() const
Return track charge (1 or -1).
double getOmega() const
Getter for omega.
double getD0() const
Getter for d0.
double getTransverseMomentum() const
Getter for the absolute value of the transverse momentum at the perigee.
double getTanLambda() const
Getter for tanLambda.
double getZ0() const
Getter for z0.
double getPhi0() const
Getter for phi0.
Class that bundles various TrackFitResults.
const TrackFitResult * getTrackFitResultWithClosestMass(const Const::ChargedStable &requestedType) const
Return the track fit for a fit hypothesis with the closest mass.
Class to identify a wire inside the CDC.
void addParam(const std::string &name, T ¶mVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
#define REG_MODULE(moduleName)
Register the given module (without 'Module' suffix) with the framework.
B2Vector3< double > B2Vector3D
typedef for common usage with double
HepGeom::Vector3D< double > Vector3D
3D Vector
Abstract base class for different kinds of events.