Belle II Software development
MillepedeCollectorModule.cc
1/**************************************************************************
2 * basf2 (Belle II Analysis Software Framework) *
3 * Author: The Belle II Collaboration *
4 * *
5 * See git log for contributors and copyright holders. *
6 * This file is licensed under LGPL-3.0, see LICENSE.md. *
7 **************************************************************************/
8
9#include <alignment/modules/MillepedeCollector/MillepedeCollectorModule.h>
10
11#include <alignment/dataobjects/MilleData.h>
12#include <alignment/GblMultipleScatteringController.h>
13#include <alignment/GlobalDerivatives.h>
14#include <alignment/GlobalLabel.h>
15#include <alignment/GlobalParam.h>
16#include <alignment/GlobalTimeLine.h>
17#include <alignment/Manager.h>
18#include <alignment/reconstruction/AlignableCDCRecoHit.h>
19#include <alignment/reconstruction/AlignablePXDRecoHit.h>
20#include <alignment/reconstruction/AlignableSVDRecoHit.h>
21#include <alignment/reconstruction/AlignableSVDRecoHit2D.h>
22#include <alignment/reconstruction/AlignableBKLMRecoHit.h>
23#include <alignment/reconstruction/AlignableEKLMRecoHit.h>
24#include <analysis/dataobjects/ParticleList.h>
25#include <analysis/utility/ReferenceFrame.h>
26#include <framework/core/FileCatalog.h>
27#include <framework/database/DBObjPtr.h>
28#include <framework/dataobjects/FileMetaData.h>
29#include <framework/datastore/StoreArray.h>
30#include <framework/dbobjects/BeamParameters.h>
31#include <framework/particledb/EvtGenDatabasePDG.h>
32#include <framework/pcore/ProcHandler.h>
33#include <mdst/dbobjects/BeamSpot.h>
34#include <mdst/dataobjects/Track.h>
35#include <tracking/trackFitting/fitter/base/TrackFitter.h>
36#include <tracking/trackFitting/measurementCreator/adder/MeasurementAdder.h>
37
38#include <genfit/FullMeasurement.h>
39#include <genfit/GblFitter.h>
40#include <genfit/KalmanFitterInfo.h>
41#include <genfit/PlanarMeasurement.h>
42#include <genfit/Track.h>
43
44#include <TMath.h>
45#include <TH1F.h>
46#include <TTree.h>
47#include <TDecompSVD.h>
48
49using namespace std;
50using namespace Belle2;
51using namespace alignment;
52
53//-----------------------------------------------------------------
54// Register the Module
55//-----------------------------------------------------------------
56REG_MODULE(MillepedeCollector);
57
58//-----------------------------------------------------------------
59// Implementation
60//-----------------------------------------------------------------
61
63{
65 setDescription("Calibration data collector for Millepede Algorithm");
66
67 // Configure input sample types
68 addParam("tracks", m_tracks, "Names of collections of RecoTracks (already fitted with DAF) for calibration", vector<string>({""}));
69 addParam("particles", m_particles, "Names of particle list of single particles", vector<string>());
70 addParam("vertices", m_vertices,
71 "Name of particle list of (mother) particles with daughters for calibration using vertex constraint", vector<string>());
72 addParam("primaryVertices", m_primaryVertices,
73 "Name of particle list of (mother) particles with daughters for calibration using vertex + IP profile constraint",
74 vector<string>());
75 addParam("twoBodyDecays", m_twoBodyDecays,
76 "Name of particle list of (mother) particles with daughters for calibration using vertex + mass constraint",
77 vector<string>());
78 addParam("primaryTwoBodyDecays", m_primaryTwoBodyDecays,
79 "Name of particle list of (mother) particles with daughters for calibration using vertex + IP profile + kinematics constraint",
80 vector<string>());
81 addParam("primaryMassTwoBodyDecays", m_primaryMassTwoBodyDecays,
82 "Name of particle list of (mother) particles with daughters for calibration using vertex + mass constraint",
83 vector<string>());
84 addParam("primaryMassVertexTwoBodyDecays", m_primaryMassVertexTwoBodyDecays,
85 "Name of particle list of (mother) particles with daughters for calibration using vertex + IP profile + mass constraint",
86 vector<string>());
87
88 addParam("stableParticleWidth", m_stableParticleWidth,
89 "Width (in GeV/c/c) to use for invariant mass constraint for 'stable' particles (like K short). Temporary until proper solution is found.",
90 double(0.002));
91 // Configure output
92 addParam("doublePrecision", m_doublePrecision, "Use double (=true) or single/float (=false) precision for writing binary files",
93 bool(false));
94 addParam("useGblTree", m_useGblTree, "Store GBL trajectories in a tree instead of output to binary files",
95 bool(true));
96 addParam("absFilePaths", m_absFilePaths, "Use absolute paths to remember binary files. Only applies if useGblTree=False",
97 bool(false));
98
99 // Configure global parameters
100 addParam("components", m_components,
101 "Specify which DB objects are calibrated, like ['BeamSpot', 'CDCTimeWalks'] or leave empty to use all components available.",
103 addParam("calibrateVertex", m_calibrateVertex,
104 "For primary vertices / two body decays, beam spot vertex calibration derivatives are added",
105 bool(true));
106 addParam("calibrateKinematics", m_calibrateKinematics,
107 "For primary two body decays, beam spot kinematics calibration derivatives are added",
108 bool(true));
109
110 //Configure GBL fit of individual tracks
111 addParam("externalIterations", m_externalIterations, "Number of external iterations of GBL fitter",
112 int(0));
113 addParam("internalIterations", m_internalIterations, "String defining internal GBL iterations for outlier down-weighting",
114 string(""));
115 addParam("recalcJacobians", m_recalcJacobians, "Up to which external iteration propagation Jacobians should be re-calculated",
116 int(0));
117
118 addParam("minPValue", m_minPValue, "Minimum p-value to write out a (combined) trajectory. Set <0 to write out all.",
119 double(-1.));
120
121 // Configure CDC specific options
122 addParam("fitTrackT0", m_fitTrackT0, "Add local parameter for track T0 fit in GBL",
123 bool(true));
124 addParam("updateCDCWeights", m_updateCDCWeights, "Update L/R weights from previous DAF fit result",
125 bool(true));
126 addParam("minCDCHitWeight", m_minCDCHitWeight, "Minimum (DAF) CDC hit weight for usage by GBL",
127 double(1.0E-6));
128 addParam("minUsedCDCHitFraction", m_minUsedCDCHitFraction, "Minimum used CDC hit fraction to write out a trajectory",
129 double(0.85));
130
131 addParam("hierarchyType", m_hierarchyType, "Type of (VXD only now) hierarchy: 0 = None, 1 = Flat, 2 = Half-Shells, 3 = Full",
132 int(3));
133 addParam("enablePXDHierarchy", m_enablePXDHierarchy, "Enable PXD in hierarchy (flat or full)",
134 bool(true));
135 addParam("enableSVDHierarchy", m_enableSVDHierarchy, "Enable SVD in hierarchy (flat or full)",
136 bool(true));
137
138 addParam("enableWireByWireAlignment", m_enableWireByWireAlignment, "Enable global derivatives for wire-by-wire alignment",
139 bool(false));
140 addParam("enableWireSagging", m_enableWireSagging, "Enable global derivatives for wire sagging",
141 bool(false));
142
143 // Time dependence
144 addParam("events", m_eventNumbers,
145 "List of (event, run, exp) with event numbers at which payloads can change for timedep calibration.",
147 // Time dependence config
148 addParam("timedepConfig", m_timedepConfig,
149 "list{ {list{param1, param2, ...}, list{(ev1, run1, exp1), ...}}, ... }.",
151
152 // Custom mass+width config
153 addParam("customMassConfig", m_customMassConfig,
154 "dict{ list_name: (mass, width), ... } with custom mass and width to use as external measurement.",
156}
157
159{
160 m_eventT0.isOptional();
161
162 if (m_tracks.empty() &&
163 m_particles.empty() &&
164 m_vertices.empty() &&
165 m_primaryVertices.empty() &&
166 m_twoBodyDecays.empty() &&
167 m_primaryTwoBodyDecays.empty() &&
170 B2ERROR("You have to specify either arrays of single tracks or particle lists of single single particles or mothers with vertex constrained daughters.");
171
172 if (!m_tracks.empty()) {
173 for (auto arrayName : m_tracks)
174 continue;
175 // StoreArray<RecoTrack>::required(arrayName);
176 }
177
178 if (!m_particles.empty() || !m_vertices.empty() || !m_primaryVertices.empty()) {
179 // StoreArray<RecoTrack> recoTracks;
180 // StoreArray<Track> tracks;
181 // StoreArray<TrackFitResult> trackFitResults;
182
183 //recoTracks.isRequired();
184 //tracks.isRequired();
185 //trackFitResults.isRequired();
186 }
187
188 for (auto listName : m_particles) {
189 StoreObjPtr<ParticleList> list(listName);
190 //list.isRequired();
191 }
192
193 for (auto listName : m_vertices) {
194 StoreObjPtr<ParticleList> list(listName);
195 //list.isRequired();
196 }
197
198 for (auto listName : m_primaryVertices) {
199 StoreObjPtr<ParticleList> list(listName);
200 //list.isRequired();
201 }
202
203 // Register Mille output
204 registerObject<MilleData>("mille", new MilleData(m_doublePrecision, m_absFilePaths));
205
206 auto gblDataTree = new TTree("GblDataTree", "GblDataTree");
207 gblDataTree->Branch<std::vector<gbl::GblData>>("GblData", &m_currentGblData, 32000, 99);
208 registerObject<TTree>("GblDataTree", gblDataTree);
209
210 registerObject<TH1I>("ndf", new TH1I("ndf", "ndf", 200, 0, 200));
211 registerObject<TH1F>("chi2_per_ndf", new TH1F("chi2_per_ndf", "chi2 divided by ndf", 200, 0., 50.));
212 registerObject<TH1F>("pval", new TH1F("pval", "pval", 100, 0., 1.));
213
214 registerObject<TH1F>("cdc_hit_fraction", new TH1F("cdc_hit_fraction", "cdc_hit_fraction", 100, 0., 1.));
215 registerObject<TH1F>("evt0", new TH1F("evt0", "evt0", 400, -100., 100.));
216
217 // Configure the (VXD) hierarchy before being built
218 if (m_hierarchyType == 0)
219 Belle2::alignment::VXDGlobalParamInterface::s_hierarchyType = VXDGlobalParamInterface::c_None;
220 else if (m_hierarchyType == 1)
221 Belle2::alignment::VXDGlobalParamInterface::s_hierarchyType = VXDGlobalParamInterface::c_Flat;
222 else if (m_hierarchyType == 2)
223 Belle2::alignment::VXDGlobalParamInterface::s_hierarchyType = VXDGlobalParamInterface::c_HalfShells;
224 else if (m_hierarchyType == 3)
225 Belle2::alignment::VXDGlobalParamInterface::s_hierarchyType = VXDGlobalParamInterface::c_Full;
226
229
230 std::vector<EventMetaData> events;
231 for (auto& ev_run_exp : m_eventNumbers) {
232 events.push_back(EventMetaData(std::get<0>(ev_run_exp), std::get<1>(ev_run_exp), std::get<2>(ev_run_exp)));
233 }
234
235 // This will also build the hierarchy for the first time:
236 if (!m_timedepConfig.empty() && m_eventNumbers.empty()) {
237 auto autoEvents = Belle2::alignment::timeline::setupTimedepGlobalLabels(m_timedepConfig);
239 } else if (m_timedepConfig.empty() && !m_eventNumbers.empty()) {
241 } else if (m_timedepConfig.empty() && m_eventNumbers.empty()) {
243 } else {
244 B2ERROR("Cannot set both, event list and timedep config.");
245 }
246
247// Belle2::alignment::GlobalCalibrationManager::getInstance().writeConstraints("constraints.txt");
248
252}
253
255{
257
258 if (!m_useGblTree) {
259 // Open new file on request (at start or after being closed)
260 auto mille = getObjectPtr<MilleData>("mille");
261 if (!mille->isOpen())
262 mille->open(getUniqueMilleName());
263 }
264
265 std::shared_ptr<genfit::GblFitter> gbl(new genfit::GblFitter());
266 double chi2 = -1.;
267 double lostWeight = -1.;
268 int ndf = -1;
269 float evt0 = -9999.;
270
271 for (auto arrayName : m_tracks) {
272 StoreArray<RecoTrack> recoTracks(arrayName);
273 if (!recoTracks.isValid())
274 continue;
275
276 for (auto& recoTrack : recoTracks) {
277
278 if (!fitRecoTrack(recoTrack))
279 continue;
280
281 auto& track = RecoTrackGenfitAccess::getGenfitTrack(recoTrack);
282 if (!track.hasFitStatus())
283 continue;
284 genfit::GblFitStatus* fs = dynamic_cast<genfit::GblFitStatus*>(track.getFitStatus());
285 if (!fs)
286 continue;
287
288 if (!fs->isFittedWithReferenceTrack())
289 continue;
290
291 using namespace gbl;
292 GblTrajectory trajectory(gbl->collectGblPoints(&track, track.getCardinalRep()), fs->hasCurvature());
293
294 trajectory.fit(chi2, ndf, lostWeight);
295 getObjectPtr<TH1I>("ndf")->Fill(ndf);
296 getObjectPtr<TH1F>("chi2_per_ndf")->Fill(chi2 / double(ndf));
297 getObjectPtr<TH1F>("pval")->Fill(TMath::Prob(chi2, ndf));
298 if (m_eventT0.isValid() && m_eventT0->hasEventT0()) {
299 evt0 = m_eventT0->getEventT0();
300 getObjectPtr<TH1F>("evt0")->Fill(evt0);
301 }
302
303 if (TMath::Prob(chi2, ndf) > m_minPValue) storeTrajectory(trajectory);
304
305 }
306
307 }
308
309 for (auto listName : m_particles) {
310 StoreObjPtr<ParticleList> list(listName);
311 if (!list.isValid())
312 continue;
313
314 for (unsigned int iParticle = 0; iParticle < list->getListSize(); ++iParticle) {
315 for (auto& track : getParticlesTracks({list->getParticle(iParticle)}, false)) {
316 auto gblfs = dynamic_cast<genfit::GblFitStatus*>(track->getFitStatus());
317
318 gbl::GblTrajectory trajectory(gbl->collectGblPoints(track, track->getCardinalRep()), gblfs->hasCurvature());
319
320 trajectory.fit(chi2, ndf, lostWeight);
321 getObjectPtr<TH1I>("ndf")->Fill(ndf);
322 getObjectPtr<TH1F>("chi2_per_ndf")->Fill(chi2 / double(ndf));
323 getObjectPtr<TH1F>("pval")->Fill(TMath::Prob(chi2, ndf));
324 if (m_eventT0.isValid() && m_eventT0->hasEventT0()) {
325 evt0 = m_eventT0->getEventT0();
326 getObjectPtr<TH1F>("evt0")->Fill(evt0);
327 }
328
329 if (TMath::Prob(chi2, ndf) > m_minPValue) storeTrajectory(trajectory);
330
331 }
332 }
333 }
334
335 for (auto listName : m_vertices) {
336 StoreObjPtr<ParticleList> list(listName);
337 if (!list.isValid())
338 continue;
339
340 for (unsigned int iParticle = 0; iParticle < list->getListSize(); ++iParticle) {
341 auto mother = list->getParticle(iParticle);
342 std::vector<std::pair<std::vector<gbl::GblPoint>, TMatrixD> > daughters;
343
344 for (auto& track : getParticlesTracks(mother->getDaughters()))
345 daughters.push_back({
346 gbl->collectGblPoints(track, track->getCardinalRep()),
347 getGlobalToLocalTransform(track->getFittedState()).GetSub(0, 4, 0, 2)
348 });
349
350 if (daughters.size() > 1) {
351 gbl::GblTrajectory combined(daughters);
352
353 combined.fit(chi2, ndf, lostWeight);
354 getObjectPtr<TH1I>("ndf")->Fill(ndf);
355 getObjectPtr<TH1F>("chi2_per_ndf")->Fill(chi2 / double(ndf));
356 getObjectPtr<TH1F>("pval")->Fill(TMath::Prob(chi2, ndf));
357 if (m_eventT0.isValid() && m_eventT0->hasEventT0()) {
358 evt0 = m_eventT0->getEventT0();
359 getObjectPtr<TH1F>("evt0")->Fill(evt0);
360 }
361
362
363 if (TMath::Prob(chi2, ndf) > m_minPValue) storeTrajectory(combined);
364
365 B2RESULT("Vertex-constrained fit NDF = " << ndf << " Chi2/NDF = " << chi2 / double(ndf));
366
367 }
368 }
369 }
370
371 for (auto listName : m_primaryVertices) {
372 StoreObjPtr<ParticleList> list(listName);
373 if (!list.isValid())
374 continue;
375
376 for (unsigned int iParticle = 0; iParticle < list->getListSize(); ++iParticle) {
377 auto mother = list->getParticle(iParticle);
378 std::vector<std::pair<std::vector<gbl::GblPoint>, TMatrixD> > daughters;
379
380 TMatrixD extProjection(5, 3);
381 TMatrixD locProjection(3, 5);
382
383 bool first(true);
384 for (auto& track : getParticlesTracks(mother->getDaughters())) {
385 if (first) {
386 // For first trajectory only
387 extProjection = getGlobalToLocalTransform(track->getFittedState()).GetSub(0, 4, 0, 2);
388 locProjection = getLocalToGlobalTransform(track->getFittedState()).GetSub(0, 2, 0, 4);
389 first = false;
390 }
391 daughters.push_back({
392 gbl->collectGblPoints(track, track->getCardinalRep()),
393 getGlobalToLocalTransform(track->getFittedState()).GetSub(0, 4, 0, 2)
394 });
395 }
396
397 if (daughters.size() > 1) {
398 auto beam = getPrimaryVertexAndCov();
399
400 TMatrixDSym vertexCov(get<TMatrixDSym>(beam));
401 TMatrixDSym vertexPrec(get<TMatrixDSym>(beam).Invert());
402 B2Vector3D vertexResidual = - (B2Vector3D(mother->getVertex()) - get<B2Vector3D>(beam));
403
404 TVectorD extMeasurements(3);
405 extMeasurements[0] = vertexResidual[0];
406 extMeasurements[1] = vertexResidual[1];
407 extMeasurements[2] = vertexResidual[2];
408
409 TMatrixD extDeriv(3, 3);
410 extDeriv.Zero();
411 // beam vertex constraint
412 extDeriv(0, 0) = 1.;
413 extDeriv(1, 1) = 1.;
414 extDeriv(2, 2) = 1.;
415
416 if (m_calibrateVertex) {
417 TMatrixD derivatives(3, 3);
418 derivatives.Zero();
419 derivatives(0, 0) = 1.;
420 derivatives(1, 1) = 1.;
421 derivatives(2, 2) = 1.;
422
423 std::vector<int> labels;
424 GlobalLabel label = GlobalLabel::construct<BeamSpot>(0, 0);
425 labels.push_back(label.setParameterId(1));
426 labels.push_back(label.setParameterId(2));
427 labels.push_back(label.setParameterId(3));
428
429 // Allow to disable BeamSpot externally
430 alignment::GlobalDerivatives globals(labels, derivatives);
431 // Add derivatives for vertex calibration to first point of first trajectory
432 // NOTE: use GlobalDerivatives operators vector<int> and TMatrixD which filter
433 // the derivatives to not pass those with zero labels (usefull to get rid of some params)
434 std::vector<int> lab(globals); TMatrixD der(globals);
435
436 // Transformation from local system at (vertex) point to global (vx,vy,vz)
437 // of the (decay) vertex
438 //
439 // d(q/p,u',v',u,v)/d(vy,vy,vz) = dLocal_dExt
440 //
441 //
442 // Note its transpose is its "inverse" in the sense that
443 //
444 // dloc/dext * (dloc/dext)^T = diag(0, 0, 0, 0, 1, 1)
445 //
446 //
447 // N.B. typical dLocal_dExt matrix (5x3):
448 //
449 // | 0 | 1 | 2 |
450 // --------------------------------------------
451 // 0 | 0 0 0
452 // 1 | 0 0 0
453 // 2 | 0 0 0
454 // 3 | -0.02614 -0.9997 0
455 // 4 | 0 0 1
456 //
457 // Therefore one can simplify things by only taking the last two rows/columns in vectors/matrices
458 // and vertex measurement can be expressed as standard 2D measurement in GBL.
459 //
460 TMatrixD dLocal_dExt = extProjection;
461 TMatrixD dExt_dLocal = locProjection;
462
463 TVectorD locRes = dLocal_dExt * extMeasurements;
464 // Do not use inverted covariance - seems to have issues with numeric precision
465 TMatrixD locCov = dLocal_dExt * vertexCov * dExt_dLocal;
466 // Invert here only the 2D sub-matrix (rest is zero due to the foŕm of dLocal_dExt)
467 TMatrixD locPrec = locCov.GetSub(3, 4, 3, 4).Invert();
468 TMatrixDSym locPrec2D(2); locPrec2D.Zero();
469 for (int i = 0; i < 2; ++i)
470 for (int j = 0; j < 2; ++j)
471 locPrec2D(i, j) = locPrec(i, j);
472
473 // Take the 2 last components also for residuals and global derivatives
474 // (in local system of vertex point - defined during fitRecoTrack(..., particle) and using
475 // the (hopefully) updated momentum and position seed after vertex fit by modularAnalysis
476 TVectorD locRes2D = locRes.GetSub(3, 4);
477 TMatrixD locDerivs2D = (extProjection * der).GetSub(3, 4, 0, 2);
478
479 // Attach the primary beamspot vertex position as a measurement at 1st point
480 // of first trajectory (and optionaly also the global derivatives for beamspot alignment
481 daughters[0].first[0].addMeasurement(locRes2D, locPrec2D);
482 if (!lab.empty()) {
483 daughters[0].first[0].addGlobals(lab, locDerivs2D);
484 }
485
486 gbl::GblTrajectory combined(daughters);
487 //combined.printTrajectory(100);
488 //combined.printPoints(100);
489
490 combined.fit(chi2, ndf, lostWeight);
491 getObjectPtr<TH1I>("ndf")->Fill(ndf);
492 getObjectPtr<TH1F>("chi2_per_ndf")->Fill(chi2 / double(ndf));
493 getObjectPtr<TH1F>("pval")->Fill(TMath::Prob(chi2, ndf));
494 if (m_eventT0.isValid() && m_eventT0->hasEventT0()) {
495 evt0 = m_eventT0->getEventT0();
496 getObjectPtr<TH1F>("evt0")->Fill(evt0);
497 }
498
499 if (TMath::Prob(chi2, ndf) > m_minPValue) storeTrajectory(combined);
500 B2RESULT("Beam vertex constrained fit results NDF = " << ndf << " Chi2/NDF = " << chi2 / double(ndf));
501
502 } else {
503
504 gbl::GblTrajectory combined(daughters, extDeriv, extMeasurements, vertexPrec);
505
506 combined.fit(chi2, ndf, lostWeight);
507 getObjectPtr<TH1I>("ndf")->Fill(ndf);
508 getObjectPtr<TH1F>("chi2_per_ndf")->Fill(chi2 / double(ndf));
509 getObjectPtr<TH1F>("pval")->Fill(TMath::Prob(chi2, ndf));
510 if (m_eventT0.isValid() && m_eventT0->hasEventT0()) {
511 evt0 = m_eventT0->getEventT0();
512 getObjectPtr<TH1F>("evt0")->Fill(evt0);
513 }
514
515 if (TMath::Prob(chi2, ndf) > m_minPValue) storeTrajectory(combined);
516
517 B2RESULT("Beam vertex constrained fit results NDF = " << ndf << " Chi2/NDF = " << chi2 / double(ndf));
518
519 }
520 }
521 }
522 }
523
524 for (auto listName : m_twoBodyDecays) {
525 StoreObjPtr<ParticleList> list(listName);
526 if (!list.isValid())
527 continue;
528
529 for (unsigned int iParticle = 0; iParticle < list->getListSize(); ++iParticle) {
530
531 auto mother = list->getParticle(iParticle);
532 auto track12 = getParticlesTracks(mother->getDaughters());
533 if (track12.size() != 2) {
534 B2ERROR("Did not get 2 fitted tracks. Skipping this mother.");
535 continue;
536 }
537
538 auto pdgdb = EvtGenDatabasePDG::Instance();
539 double motherMass = mother->getPDGMass();
540 double motherWidth = pdgdb->GetParticle(mother->getPDGCode())->Width();
541
542 updateMassWidthIfSet(listName, motherMass, motherWidth);
543
544 //TODO: what to take as width for "real" particles? -> make a param for default detector mass resolution??
545 if (motherWidth == 0.) {
546 motherWidth = m_stableParticleWidth * Unit::GeV;
547 B2WARNING("Using artificial width for " << pdgdb->GetParticle(mother->getPDGCode())->GetName() << " : " << motherWidth << " GeV");
548 }
549
550 auto dfdextPlusMinus = getTwoBodyToLocalTransform(*mother, motherMass);
551 std::vector<std::pair<std::vector<gbl::GblPoint>, TMatrixD> > daughters;
552
553 daughters.push_back({gbl->collectGblPoints(track12[0], track12[0]->getCardinalRep()), dfdextPlusMinus.first});
554 daughters.push_back({gbl->collectGblPoints(track12[1], track12[1]->getCardinalRep()), dfdextPlusMinus.second});
555
556 TMatrixDSym massPrec(1); massPrec(0, 0) = 1. / motherWidth / motherWidth;
557 TVectorD massResidual(1); massResidual = - (mother->getMass() - motherMass);
558
559 TVectorD extMeasurements(1);
560 extMeasurements[0] = massResidual[0];
561
562 TMatrixD extDeriv(1, 9);
563 extDeriv.Zero();
564 extDeriv(0, 8) = 1.;
565
566 gbl::GblTrajectory combined(daughters, extDeriv, extMeasurements, massPrec);
567
568 combined.fit(chi2, ndf, lostWeight);
569 //combined.printTrajectory(1000);
570 //combined.printPoints(1000);
571 getObjectPtr<TH1I>("ndf")->Fill(ndf);
572 getObjectPtr<TH1F>("chi2_per_ndf")->Fill(chi2 / double(ndf));
573 getObjectPtr<TH1F>("pval")->Fill(TMath::Prob(chi2, ndf));
574 if (m_eventT0.isValid() && m_eventT0->hasEventT0()) {
575 evt0 = m_eventT0->getEventT0();
576 getObjectPtr<TH1F>("evt0")->Fill(evt0);
577 }
578
579
580 B2RESULT("Mass(PDG) + vertex constrained fit results NDF = " << ndf << " Chi2/NDF = " << chi2 / double(ndf));
581
582 if (TMath::Prob(chi2, ndf) > m_minPValue) storeTrajectory(combined);
583
584 }
585 }
586
587 for (auto listName : m_primaryMassTwoBodyDecays) {
588 StoreObjPtr<ParticleList> list(listName);
589 if (!list.isValid())
590 continue;
591
593
594 double motherMass = beam->getMass();
595 double motherWidth = sqrt((beam->getCovHER() + beam->getCovLER())(0, 0));
596
597 updateMassWidthIfSet(listName, motherMass, motherWidth);
598
599 for (unsigned int iParticle = 0; iParticle < list->getListSize(); ++iParticle) {
600
601 auto mother = list->getParticle(iParticle);
602 auto track12 = getParticlesTracks(mother->getDaughters());
603 if (track12.size() != 2) {
604 B2ERROR("Did not get 2 fitted tracks. Skipping this mother.");
605 continue;
606 }
607
608 auto dfdextPlusMinus = getTwoBodyToLocalTransform(*mother, motherMass);
609 std::vector<std::pair<std::vector<gbl::GblPoint>, TMatrixD> > daughters;
610
611 daughters.push_back({gbl->collectGblPoints(track12[0], track12[0]->getCardinalRep()), dfdextPlusMinus.first});
612 daughters.push_back({gbl->collectGblPoints(track12[1], track12[1]->getCardinalRep()), dfdextPlusMinus.second});
613
614 TMatrixDSym massPrec(1); massPrec(0, 0) = 1. / motherWidth / motherWidth;
615 TVectorD massResidual(1); massResidual = - (mother->getMass() - motherMass);
616
617 TVectorD extMeasurements(1);
618 extMeasurements[0] = massResidual[0];
619
620 TMatrixD extDeriv(1, 9);
621 extDeriv.Zero();
622 extDeriv(0, 8) = 1.;
623
624 gbl::GblTrajectory combined(daughters, extDeriv, extMeasurements, massPrec);
625
626 combined.fit(chi2, ndf, lostWeight);
627 getObjectPtr<TH1I>("ndf")->Fill(ndf);
628 getObjectPtr<TH1F>("chi2_per_ndf")->Fill(chi2 / double(ndf));
629 getObjectPtr<TH1F>("pval")->Fill(TMath::Prob(chi2, ndf));
630 if (m_eventT0.isValid() && m_eventT0->hasEventT0()) {
631 evt0 = m_eventT0->getEventT0();
632 getObjectPtr<TH1F>("evt0")->Fill(evt0);
633 }
634
635
636 B2RESULT("Mass constrained fit results NDF = " << ndf << " Chi2/NDF = " << chi2 / double(ndf));
637
638 if (TMath::Prob(chi2, ndf) > m_minPValue) storeTrajectory(combined);
639
640 }
641 }
642
643 for (auto listName : m_primaryMassVertexTwoBodyDecays) {
644 StoreObjPtr<ParticleList> list(listName);
645 if (!list.isValid())
646 continue;
647
649
650 double motherMass = beam->getMass();
651 double motherWidth = sqrt((beam->getCovHER() + beam->getCovLER())(0, 0));
652
653 updateMassWidthIfSet(listName, motherMass, motherWidth);
654
655 for (unsigned int iParticle = 0; iParticle < list->getListSize(); ++iParticle) {
656
657 auto mother = list->getParticle(iParticle);
658 auto track12 = getParticlesTracks(mother->getDaughters());
659 if (track12.size() != 2) {
660 B2ERROR("Did not get 2 fitted tracks. Skipping this mother.");
661 continue;
662 }
663
664 auto dfdextPlusMinus = getTwoBodyToLocalTransform(*mother, motherMass);
665 std::vector<std::pair<std::vector<gbl::GblPoint>, TMatrixD> > daughters;
666
667 daughters.push_back({gbl->collectGblPoints(track12[0], track12[0]->getCardinalRep()), dfdextPlusMinus.first});
668 daughters.push_back({gbl->collectGblPoints(track12[1], track12[1]->getCardinalRep()), dfdextPlusMinus.second});
669
670 TMatrixDSym vertexPrec(get<TMatrixDSym>(getPrimaryVertexAndCov()).Invert());
671 B2Vector3D vertexResidual = - (B2Vector3D(mother->getVertex()) - get<B2Vector3D>(getPrimaryVertexAndCov()));
672
673 TMatrixDSym massPrec(1); massPrec(0, 0) = 1. / motherWidth / motherWidth;
674 TVectorD massResidual(1); massResidual = - (mother->getMass() - motherMass);
675
676 TMatrixDSym extPrec(4); extPrec.Zero();
677 extPrec.SetSub(0, 0, vertexPrec);
678 extPrec(3, 3) = massPrec(0, 0);
679
680 TVectorD extMeasurements(4);
681 extMeasurements[0] = vertexResidual[0];
682 extMeasurements[1] = vertexResidual[1];
683 extMeasurements[2] = vertexResidual[2];
684 extMeasurements[3] = massResidual[0];
685
686 TMatrixD extDeriv(4, 9);
687 extDeriv.Zero();
688 extDeriv(0, 0) = 1.;
689 extDeriv(1, 1) = 1.;
690 extDeriv(2, 2) = 1.;
691 extDeriv(3, 8) = 1.;
692
693 gbl::GblTrajectory combined(daughters, extDeriv, extMeasurements, extPrec);
694
695 combined.fit(chi2, ndf, lostWeight);
696 getObjectPtr<TH1I>("ndf")->Fill(ndf);
697 getObjectPtr<TH1F>("chi2_per_ndf")->Fill(chi2 / double(ndf));
698 getObjectPtr<TH1F>("pval")->Fill(TMath::Prob(chi2, ndf));
699 if (m_eventT0.isValid() && m_eventT0->hasEventT0()) {
700 evt0 = m_eventT0->getEventT0();
701 getObjectPtr<TH1F>("evt0")->Fill(evt0);
702 }
703
704
705 if (TMath::Prob(chi2, ndf) > m_minPValue) storeTrajectory(combined);
706
707 B2RESULT("Mass + vertex constrained fit results NDF = " << ndf << " Chi2/NDF = " << chi2 / double(ndf));
708
709 }
710 }
711
712 for (auto listName : m_primaryTwoBodyDecays) {
713 B2WARNING("This should NOT be used for production of calibration constants for the real detector (yet)!");
714
715 StoreObjPtr<ParticleList> list(listName);
716 if (!list.isValid())
717 continue;
718
720
721 // For the error of invariant mass M = 2 * sqrt(E_HER * E_LER) (for m_e ~ 0)
722 double M = beam->getMass();
723 double E_HER = beam->getHER().E();
724 double E_LER = beam->getLER().E();
725
726 double pz = beam->getHER().Pz() + beam->getLER().Pz();
727 double E = (beam->getHER() + beam->getLER()).E();
728
729 double motherMass = beam->getMass();
730 double motherWidth = sqrt((E_HER / M) * (E_HER / M) * beam->getCovLER()(0, 0) + (E_LER / M) * (E_LER / M) * beam->getCovHER()(0,
731 0));
732
733 updateMassWidthIfSet(listName, motherMass, motherWidth);
734
735 for (unsigned int iParticle = 0; iParticle < list->getListSize(); ++iParticle) {
736
737 B2WARNING("Two body decays with full kinematic constraint not yet correct - need to resolve strange covariance provided by BeamParameters!");
738
739 auto mother = list->getParticle(iParticle);
740
741 auto track12 = getParticlesTracks(mother->getDaughters());
742 if (track12.size() != 2) {
743 B2ERROR("Did not get exactly 2 fitted tracks. Skipping this mother in list " << listName);
744 continue;
745 }
746
747 auto dfdextPlusMinus = getTwoBodyToLocalTransform(*mother, motherMass);
748 std::vector<std::pair<std::vector<gbl::GblPoint>, TMatrixD> > daughters;
749
750 daughters.push_back({gbl->collectGblPoints(track12[0], track12[0]->getCardinalRep()), dfdextPlusMinus.first});
751 daughters.push_back({gbl->collectGblPoints(track12[1], track12[1]->getCardinalRep()), dfdextPlusMinus.second});
752
753 TMatrixDSym extCov(7); extCov.Zero();
754
755 // 3x3 IP vertex covariance
756 extCov.SetSub(0, 0, get<TMatrixDSym>(getPrimaryVertexAndCov()));
757
758 // 3x3 boost vector covariance
759 //NOTE: BeamSpot return covarince in variables (E, theta_x, theta_y)
760 // We need to transform it to our variables (px, py, pz)
761
762 TMatrixD dBoost_dVect(3, 3);
763 dBoost_dVect(0, 0) = 0.; dBoost_dVect(0, 1) = 1. / pz; dBoost_dVect(0, 2) = 0.;
764 dBoost_dVect(1, 0) = 0.; dBoost_dVect(1, 1) = 0.; dBoost_dVect(1, 2) = 1. / pz;
765 dBoost_dVect(2, 0) = pz / E; dBoost_dVect(2, 1) = 0.; dBoost_dVect(2, 2) = 0.;
766
767 TMatrixD dVect_dBoost(3, 3);
768 dVect_dBoost(0, 0) = 0.; dVect_dBoost(0, 1) = 0.; dVect_dBoost(0, 2) = E / pz;
769 dVect_dBoost(1, 0) = pz; dVect_dBoost(1, 1) = 0.; dVect_dBoost(1, 2) = 0.;
770 dVect_dBoost(2, 0) = 0.; dVect_dBoost(2, 1) = pz; dVect_dBoost(2, 2) = 0.;
771
772 TMatrixD covBoost(3, 3);
773 for (int i = 0; i < 3; ++i) {
774 for (int j = i; j < 3; ++j) {
775 covBoost(j, i) = covBoost(i, j) = (beam->getCovHER() + beam->getCovLER())(i, j);
776 }
777 }
778 //TODO: Temporary fix: if theta_x, theta_y covariance is zero, use arbitrary 10mrad^2
779// if (covBoost(1, 1) == 0.) covBoost(1, 1) = 1.;
780// if (covBoost(2, 2) == 0.) covBoost(2, 2) = 1.;
781 if (covBoost(1, 1) == 0.) covBoost(1, 1) = 1.e-4;
782 if (covBoost(2, 2) == 0.) covBoost(2, 2) = 1.e-4;
783
784 TMatrixD covVect = dBoost_dVect * covBoost * dVect_dBoost;
785
786 extCov.SetSub(3, 3, covVect);
787
788 extCov(6, 6) = motherWidth * motherWidth;
789 auto extPrec = extCov; extPrec.Invert();
790
791 TVectorD extMeasurements(7);
792 extMeasurements[0] = - (B2Vector3D(mother->getVertex()) - get<B2Vector3D>(getPrimaryVertexAndCov()))[0];
793 extMeasurements[1] = - (B2Vector3D(mother->getVertex()) - get<B2Vector3D>(getPrimaryVertexAndCov()))[1];
794 extMeasurements[2] = - (B2Vector3D(mother->getVertex()) - get<B2Vector3D>(getPrimaryVertexAndCov()))[2];
795 extMeasurements[3] = - (B2Vector3D(mother->getMomentum()) - (beam->getHER().Vect() + beam->getLER().Vect()))[0];
796 extMeasurements[4] = - (B2Vector3D(mother->getMomentum()) - (beam->getHER().Vect() + beam->getLER().Vect()))[1];
797 extMeasurements[5] = - (B2Vector3D(mother->getMomentum()) - (beam->getHER().Vect() + beam->getLER().Vect()))[2];
798 extMeasurements[6] = - (mother->getMass() - motherMass);
799
800 B2INFO("mother mass = " << mother->getMass() << " and beam mass = " << beam->getMass());
801
802 TMatrixD extDeriv(7, 9);
803 extDeriv.Zero();
804 // beam vertex constraint
805 extDeriv(0, 0) = 1.;
806 extDeriv(1, 1) = 1.;
807 extDeriv(2, 2) = 1.;
808 // beam kinematics constraint
809 extDeriv(3, 3) = 1.;
810 extDeriv(4, 4) = 1.;
811 extDeriv(5, 5) = 1.;
812 // beam inv. mass constraint
813 extDeriv(6, 8) = 1;
814
816 B2WARNING("Primary vertex+kinematics calibration not (yet?) fully implemented!");
817 B2WARNING("This code is highly experimental and has (un)known issues!");
818
819 // up to d(x,y,z,px,py,pz,theta,phi,M)/d(vx,vy,vz,theta_x,theta_y,E)
820 TMatrixD derivatives(9, 6);
821 std::vector<int> labels;
822 derivatives.Zero();
823
824 if (m_calibrateVertex) {
825 derivatives(0, 0) = 1.;
826 derivatives(1, 1) = 1.;
827 derivatives(2, 2) = 1.;
828 GlobalLabel label = GlobalLabel::construct<BeamSpot>(0, 0);
829 labels.push_back(label.setParameterId(1));
830 labels.push_back(label.setParameterId(2));
831 labels.push_back(label.setParameterId(3));
832 } else {
833 labels.push_back(0);
834 labels.push_back(0);
835 labels.push_back(0);
836 }
837
839 derivatives(3, 3) = mother->getMomentumMagnitude();
840 derivatives(4, 4) = mother->getMomentumMagnitude();
841 derivatives(8, 5) = (beam->getLER().E() + beam->getHER().E()) / beam->getMass();
842
843 GlobalLabel label = GlobalLabel::construct<BeamSpot>(0, 0);
844 labels.push_back(label.setParameterId(4)); //theta_x
845 labels.push_back(label.setParameterId(5)); //theta_y
846 labels.push_back(label.setParameterId(6)); //E
847
848 } else {
849 labels.push_back(0);
850 labels.push_back(0);
851 labels.push_back(0);
852 }
853
854 // Allow to disable BeamSpot externally
855 alignment::GlobalDerivatives globals(labels, derivatives);
856
857 // Add derivatives for vertex calibration to first point of first trajectory
858 // NOTE: use GlobalDerivatives operators vector<int> and TMatrixD which filter
859 // the derivatives to not pass those with zero labels (usefull to get rid of some params)
860 std::vector<int> lab(globals); TMatrixD der(globals);
861
862 // I want: dlocal/dext = dlocal/dtwobody * dtwobody/dext = dfdextPlusMinus * dtwobody/dext
863 TMatrixD dTwoBody_dExt(9, 7);
864 dTwoBody_dExt.Zero();
865 // beam vertex constraint
866 dTwoBody_dExt(0, 0) = 1.;
867 dTwoBody_dExt(1, 1) = 1.;
868 dTwoBody_dExt(2, 2) = 1.;
869 // beam kinematics constraint
870 dTwoBody_dExt(3, 3) = 1.;
871 dTwoBody_dExt(4, 4) = 1.;
872 dTwoBody_dExt(5, 5) = 1.;
873 // beam inv. mass constraint
874 dTwoBody_dExt(8, 6) = 1.;
875
876 const TMatrixD dLocal_dExt = dfdextPlusMinus.first * dTwoBody_dExt;
877 TMatrixD dLocal_dExt_T = dLocal_dExt; dLocal_dExt_T.T();
878
879 // The 5x7 transformation matrix d(q/p,u',v',u,v)/d(vx,vy,vz,px,py,pz,M) needs to be "inverted"
880 // to transform the covariance of the beamspot and boost vector of SuperKEKB into the local system
881 // of one GBL point - such that Millepede can align the beamspot (or even beam kinematics) if requested.
882 //
883 // I tested also other methods, but only the Singular Value Decomposition gives nice-enough results,
884 // with almost no code:
885 //
886 TDecompSVD svd(dLocal_dExt_T);
887 TMatrixD dExt_dLocal = svd.Invert().T();
888 //
889 // (dLocal_dExt * dExt_dLocal).Print(); // Check how close we are to unit matrix
890 //
891 // 5x5 matrix is as follows
892 //
893 // | 0 | 1 | 2 | 3 | 4 |
894 // ----------------------------------------------------------------------
895 // 0 | 1 -2.58e-17 6.939e-18 1.571e-17 -1.649e-19
896 // 1 | 1.787e-14 1 5.135e-16 -3.689e-16 -2.316e-18
897 // 2 | -1.776e-15 -7.806e-17 1 5.636e-17 6.193e-18
898 // 3 | -2.453e-15 7.26e-18 2.009e-16 1 -1.14e-16
899 // 4 | -1.689e-14 -9.593e-17 -2.317e-15 -3.396e-17 1
900 //
901 // It took me half a day to find out how to do this with 2 lines of code (3 with the include).
902 // Source: ROOT macro example - actually found at:
903 // <https://root.cern.ch/root/html/tutorials/matrix/solveLinear.C.html>
904 for (int i = 0; i < 7; ++i) {
905 for (int j = 0; j < 5; ++j) {
906 if (fabs(dExt_dLocal(i, j)) < 1.e-6)
907 dExt_dLocal(i, j) = 0.;
908 }
909 }
910 const TVectorD locRes = dLocal_dExt * extMeasurements;
911 const TMatrixD locPrec = dLocal_dExt * extPrec * dExt_dLocal;
912
913 TMatrixDSym locPrecSym(5); locPrecSym.Zero();
914 for (int i = 0; i < 5; ++i) {
915 for (int j = i; j < 5; ++j) {
916 //locPrecSym(j, i) = locPrecSym(i, j) = locPrec(i, j);
917 locPrecSym(j, i) = locPrecSym(i, j) = (fabs(locPrec(i, j)) > 1.e-6) ? locPrec(i, j) : 0.;
918 }
919 }
920
921 daughters[0].first[0].addMeasurement(locRes, locPrecSym);
922 if (!lab.empty())
923 daughters[0].first[0].addGlobals(lab, dfdextPlusMinus.first * der);
924
925 //TODO: Understand this: either find a bug somewhere or improve the parametrization or .... ?
926 // This should be enough, but the parametrization seems to fail for nearly horizontal pairs...
927 //gbl::GblTrajectory combined(daughters);
928 // This should not be needed, it actually seems to make worse Chi2/NDF, but GBL does not fail.
929 // The measurement added just to be able to add the global derivatives (done just above) is redundant
930 // to the external measurement added here:
931 gbl::GblTrajectory combined(daughters, extDeriv, extMeasurements, extPrec);
932 //combined.printTrajectory(1000);
933 //combined.printPoints(1000);
934
935 combined.fit(chi2, ndf, lostWeight);
936 getObjectPtr<TH1I>("ndf")->Fill(ndf);
937 getObjectPtr<TH1F>("chi2_per_ndf")->Fill(chi2 / double(ndf));
938 getObjectPtr<TH1F>("pval")->Fill(TMath::Prob(chi2, ndf));
939 if (m_eventT0.isValid() && m_eventT0->hasEventT0()) {
940 evt0 = m_eventT0->getEventT0();
941 getObjectPtr<TH1F>("evt0")->Fill(evt0);
942 }
943
944
945 B2RESULT("Full kinematic-constrained fit (calibration version) results NDF = " << ndf << " Chi2/NDF = " << chi2 / double(ndf));
946
947 if (TMath::Prob(chi2, ndf) > m_minPValue) storeTrajectory(combined);
948
949 } else {
950
951 gbl::GblTrajectory combined(daughters, extDeriv, extMeasurements, extPrec);
952 //combined.printTrajectory(1000);
953 //combined.printPoints(1000);
954
955 combined.fit(chi2, ndf, lostWeight);
956 getObjectPtr<TH1I>("ndf")->Fill(ndf);
957 getObjectPtr<TH1F>("chi2_per_ndf")->Fill(chi2 / double(ndf));
958 getObjectPtr<TH1F>("pval")->Fill(TMath::Prob(chi2, ndf));
959 if (m_eventT0.isValid() && m_eventT0->hasEventT0()) {
960 evt0 = m_eventT0->getEventT0();
961 getObjectPtr<TH1F>("evt0")->Fill(evt0);
962 }
963
964
965 B2RESULT("Full kinematic-constrained fit results NDF = " << ndf << " Chi2/NDF = " << chi2 / double(ndf));
966
967 if (TMath::Prob(chi2, ndf) > m_minPValue) storeTrajectory(combined);
968 }
969 }
970 }
971}
972
974{
975 // We close the file at end of run, producing
976 // one file per run (and process id) which is more
977 // convenient than one large binary block.
978 auto mille = getObjectPtr<MilleData>("mille");
979 if (mille->isOpen())
980 mille->close();
981}
982
984{
986
988 if (!fileMetaData.isValid()) {
989 B2ERROR("Cannot register binaries in FileCatalog.");
990 return;
991 }
992
993
994 const std::vector<string> parents = {fileMetaData->getLfn()};
995 for (auto binary : getObjectPtr<MilleData>("mille")->getFiles()) {
996 FileMetaData milleMetaData(*fileMetaData);
997 // We reset filename to be set directly by the registerFile procedure
998 milleMetaData.setLfn("");
999 milleMetaData.setParents(parents);
1000 FileCatalog::Instance().registerFile(binary, milleMetaData);
1001 }
1002
1003}
1004
1005void MillepedeCollectorModule::storeTrajectory(gbl::GblTrajectory& trajectory)
1006{
1007 if (m_useGblTree) {
1008 if (trajectory.isValid())
1009 m_currentGblData = trajectory.getData();
1010 else
1011 m_currentGblData.clear();
1012
1013 if (!m_currentGblData.empty())
1014 getObjectPtr<TTree>("GblDataTree")->Fill();
1015 } else {
1016 getObjectPtr<MilleData>("mille")->fill(trajectory);
1017 }
1018}
1019
1021{
1022 string name = getName();
1023
1024 name += "-e" + to_string(m_evtMetaData->getExperiment());
1025 name += "-r" + to_string(m_evtMetaData->getRun());
1026 name += "-ev" + to_string(m_evtMetaData->getEvent());
1027
1029 name += "-pid" + to_string(ProcHandler::EvtProcID());
1030
1031 name += ".mille";
1032
1033 return name;
1034}
1035
1037{
1038 try {
1039 // For already fitted tracks, try to get fitted (DAF) weights for CDC
1040 if (m_updateCDCWeights && recoTrack.getNumberOfCDCHits() && recoTrack.getTrackFitStatus()
1041 && recoTrack.getTrackFitStatus()->isFitted()) {
1042 double sumCDCWeights = recoTrack.getNumberOfCDCHits(); // start with full weights
1043 // Do the hits synchronisation
1044 auto relatedRecoHitInformation =
1046
1047 for (RecoHitInformation& recoHitInformation : relatedRecoHitInformation) {
1048
1049 if (recoHitInformation.getFlag() == RecoHitInformation::c_pruned) {
1050 B2FATAL("Found pruned point in RecoTrack. Pruned tracks cannot be used in MillepedeCollector.");
1051 }
1052
1053 if (recoHitInformation.getTrackingDetector() != RecoHitInformation::c_CDC) continue;
1054
1055 const genfit::TrackPoint* trackPoint = recoTrack.getCreatedTrackPoint(&recoHitInformation);
1056 if (trackPoint) {
1057 if (not trackPoint->hasFitterInfo(recoTrack.getCardinalRepresentation()))
1058 continue;
1059 auto kalmanFitterInfo = dynamic_cast<genfit::KalmanFitterInfo*>(trackPoint->getFitterInfo());
1060 if (not kalmanFitterInfo) {
1061 continue;
1062 } else {
1063 std::vector<double> weights = kalmanFitterInfo->getWeights();
1064 if (weights.size() == 2) {
1065 if (weights.at(0) > weights.at(1))
1066 recoHitInformation.setRightLeftInformation(RecoHitInformation::c_left);
1067 else if (weights.at(0) < weights.at(1))
1068 recoHitInformation.setRightLeftInformation(RecoHitInformation::c_right);
1069
1070 double weightLR = weights.at(0) + weights.at(1);
1071 if (weightLR < m_minCDCHitWeight) recoHitInformation.setUseInFit(false);
1072 sumCDCWeights += weightLR - 1.; // reduce weight sum if weightLR<1
1073 }
1074 }
1075 }
1076 }
1077
1078 double usedCDCHitFraction = sumCDCWeights / double(recoTrack.getNumberOfCDCHits());
1079 getObjectPtr<TH1F>("cdc_hit_fraction")->Fill(usedCDCHitFraction);
1080 if (usedCDCHitFraction < m_minUsedCDCHitFraction)
1081 return false;
1082 }
1083 } catch (...) {
1084 B2ERROR("Error in checking DAF weights from previous fit to resolve hit ambiguity. Why? Failed fit points in DAF? Skip track to be sure.");
1085 return false;
1086 }
1087
1088 std::shared_ptr<genfit::GblFitter> gbl(new genfit::GblFitter());
1089 gbl->setOptions(m_internalIterations, true, true, m_externalIterations, m_recalcJacobians);
1090 gbl->setTrackSegmentController(new GblMultipleScatteringController);
1091
1092 MeasurementAdder factory("", "", "", "", "");
1093
1094 // We need the store arrays
1100
1101 // Create the genfit::MeasurementFactory
1102 genfit::MeasurementFactory<genfit::AbsMeasurement> genfitMeasurementFactory;
1103
1104 // Add producer for alignable RecoHits to factory
1105 if (pxdHits.isOptional()) {
1106 genfit::MeasurementProducer <RecoHitInformation::UsedPXDHit, AlignablePXDRecoHit>* PXDProducer = new genfit::MeasurementProducer
1108 genfitMeasurementFactory.addProducer(Const::PXD, PXDProducer);
1109 }
1110
1111 if (svdHits.isOptional()) {
1112 genfit::MeasurementProducer <RecoHitInformation::UsedSVDHit, AlignableSVDRecoHit>* SVDProducer = new genfit::MeasurementProducer
1114 genfitMeasurementFactory.addProducer(Const::SVD, SVDProducer);
1115 }
1116
1117 if (cdcHits.isOptional()) {
1118 genfit::MeasurementProducer <RecoHitInformation::UsedCDCHit, AlignableCDCRecoHit>* CDCProducer = new genfit::MeasurementProducer
1120 genfitMeasurementFactory.addProducer(Const::CDC, CDCProducer);
1121 }
1122
1123 if (bklmHits.isOptional()) {
1124 genfit::MeasurementProducer <RecoHitInformation::UsedBKLMHit, AlignableBKLMRecoHit>* BKLMProducer = new genfit::MeasurementProducer
1126 genfitMeasurementFactory.addProducer(Const::BKLM, BKLMProducer);
1127 }
1128
1129 if (eklmHits.isOptional()) {
1130 genfit::MeasurementProducer <RecoHitInformation::UsedEKLMHit, AlignableEKLMRecoHit>* EKLMProducer = new genfit::MeasurementProducer
1132 genfitMeasurementFactory.addProducer(Const::EKLM, EKLMProducer);
1133 }
1134
1135
1136 // Create the measurement creators
1137 std::vector<std::shared_ptr<PXDBaseMeasurementCreator>> pxdMeasurementCreators = { std::shared_ptr<PXDBaseMeasurementCreator>(new PXDCoordinateMeasurementCreator(genfitMeasurementFactory)) };
1138 std::vector<std::shared_ptr<SVDBaseMeasurementCreator>> svdMeasurementCreators = { std::shared_ptr<SVDBaseMeasurementCreator>(new SVDCoordinateMeasurementCreator(genfitMeasurementFactory)) };
1139 // TODO: Create a new MeasurementCreator based on SVDBaseMeasurementCreator (or on SVDCoordinateMeasurementCreator), which does the combination on the fly.
1140
1141 std::vector<std::shared_ptr<CDCBaseMeasurementCreator>> cdcMeasurementCreators = { std::shared_ptr<CDCBaseMeasurementCreator>(new CDCCoordinateMeasurementCreator(genfitMeasurementFactory)) };
1142 std::vector<std::shared_ptr<BKLMBaseMeasurementCreator>> bklmMeasurementCreators = { std::shared_ptr<BKLMBaseMeasurementCreator>(new BKLMCoordinateMeasurementCreator(genfitMeasurementFactory)) };
1143 std::vector<std::shared_ptr<EKLMBaseMeasurementCreator>> eklmMeasurementCreators = { std::shared_ptr<EKLMBaseMeasurementCreator>(new EKLMCoordinateMeasurementCreator(genfitMeasurementFactory)) };
1144
1145 // TODO: Or put it in here and leave the svdMeasurementCreators empty.
1146 std::vector<std::shared_ptr<BaseMeasurementCreator>> additionalMeasurementCreators = {};
1147 factory.resetMeasurementCreators(pxdMeasurementCreators, svdMeasurementCreators, cdcMeasurementCreators, bklmMeasurementCreators,
1148 eklmMeasurementCreators, additionalMeasurementCreators);
1149 factory.addMeasurements(recoTrack);
1150
1151 auto& gfTrack = RecoTrackGenfitAccess::getGenfitTrack(recoTrack);
1152
1153 int currentPdgCode = TrackFitter::createCorrectPDGCodeForChargedStable(Const::muon, recoTrack);
1154 if (particle)
1155 currentPdgCode = particle->getPDGCode();
1156
1157 genfit::AbsTrackRep* trackRep = RecoTrackGenfitAccess::createOrReturnRKTrackRep(recoTrack, currentPdgCode);
1158 gfTrack.setCardinalRep(gfTrack.getIdForRep(trackRep));
1159
1160 if (particle) {
1161 B2Vector3D vertexPos = particle->getVertex();
1162 B2Vector3D vertexMom = particle->getMomentum();
1163 gfTrack.setStateSeed(vertexPos, vertexMom);
1164
1165 genfit::StateOnPlane vertexSOP(gfTrack.getCardinalRep());
1166 B2Vector3D vertexRPhiDir(vertexPos[0], vertexPos[1], 0);
1167 B2Vector3D vertexZDir(0, 0, vertexPos[2]);
1168 //FIXME: This causes problem to current GBL version in genfit -> needs update of GBL to re-enable
1169 // genfit::SharedPlanePtr vertexPlane(new genfit::DetPlane(vertexPos, vertexRPhiDir, vertexZDir));
1170 //This works instead fine:
1171 genfit::SharedPlanePtr vertexPlane(new genfit::DetPlane(vertexPos, vertexMom));
1172
1173 vertexSOP.setPlane(vertexPlane);
1174 vertexSOP.setPosMom(vertexPos, vertexMom);
1175 TMatrixDSym vertexCov(5);
1176 vertexCov.UnitMatrix();
1177 // By using negative covariance no measurement is added to GBL. But this first point
1178 // is then used as additional point in trajectory at the assumed point of its fitted vertex
1179 vertexCov *= -1.;
1180 genfit::MeasuredStateOnPlane mop(vertexSOP, vertexCov);
1181 genfit::FullMeasurement* vertex = new genfit::FullMeasurement(mop, Const::IR);
1182 gfTrack.insertMeasurement(vertex, 0);
1183 }
1184
1185 try {
1186 for (unsigned int i = 0; i < gfTrack.getNumPoints() - 1; ++i) {
1187 //if (gfTrack.getPointWithMeasurement(i)->getNumRawMeasurements() != 1)
1188 // continue;
1189 genfit::PlanarMeasurement* planarMeas1 = dynamic_cast<genfit::PlanarMeasurement*>(gfTrack.getPointWithMeasurement(
1190 i)->getRawMeasurement(0));
1191 genfit::PlanarMeasurement* planarMeas2 = dynamic_cast<genfit::PlanarMeasurement*>(gfTrack.getPointWithMeasurement(
1192 i + 1)->getRawMeasurement(0));
1193
1194 if (planarMeas1 != NULL && planarMeas2 != NULL &&
1195 planarMeas1->getDetId() == planarMeas2->getDetId() &&
1196 planarMeas1->getPlaneId() != -1 && // -1 is default plane id
1197 planarMeas1->getPlaneId() == planarMeas2->getPlaneId()) {
1198 Belle2::AlignableSVDRecoHit* hit1 = dynamic_cast<Belle2::AlignableSVDRecoHit*>(planarMeas1);
1199 Belle2::AlignableSVDRecoHit* hit2 = dynamic_cast<Belle2::AlignableSVDRecoHit*>(planarMeas2);
1200 if (hit1 && hit2) {
1201 Belle2::AlignableSVDRecoHit* hitU(NULL);
1202 Belle2::AlignableSVDRecoHit* hitV(NULL);
1203 // We have to decide U/V now (else AlignableSVDRecoHit2D could throw FATAL)
1204 if (hit1->isU() && !hit2->isU()) {
1205 hitU = hit1;
1206 hitV = hit2;
1207 } else if (!hit1->isU() && hit2->isU()) {
1208 hitU = hit2;
1209 hitV = hit1;
1210 } else {
1211 continue;
1212 }
1214 // insert measurement before point i (increases number of currect point to i+1)
1215 gfTrack.insertMeasurement(hit, i);
1216 // now delete current point (at its original place, we have the new 2D recohit)
1217 gfTrack.deletePoint(i + 1);
1218 gfTrack.deletePoint(i + 1);
1219 }
1220 }
1221 }
1222 } catch (std::exception& e) {
1223 B2ERROR(e.what());
1224 B2ERROR("SVD Cluster combination failed. This is symptomatic of pruned tracks. MillepedeCollector cannot process pruned tracks.");
1225 return false;
1226 }
1227
1228 try {
1229 gbl->processTrackWithRep(&gfTrack, gfTrack.getCardinalRep(), true);
1230 } catch (genfit::Exception& e) {
1231 B2ERROR(e.what());
1232 return false;
1233 } catch (...) {
1234 B2ERROR("GBL fit failed.");
1235 return false;
1236 }
1237
1238 return true;
1239}
1240
1241std::vector< genfit::Track* > MillepedeCollectorModule::getParticlesTracks(std::vector<Particle*> particles, bool addVertexPoint)
1242{
1243 std::vector< genfit::Track* > tracks;
1244 for (auto particle : particles) {
1245 auto belle2Track = particle->getTrack();
1246 if (!belle2Track) {
1247 B2WARNING("No Belle2::Track for particle (particle->X");
1248 continue;
1249 }
1250// auto trackFitResult = belle2Track->getTrackFitResult(Const::chargedStableSet.find(abs(particle->getPDGCode())));
1251// if (!trackFitResult) {
1252// B2INFO("No track fit result for track");
1253// continue;
1254// }
1255// auto recoTrack = trackFitResult->getRelatedFrom<RecoTrack>();
1256 auto recoTrack = belle2Track->getRelatedTo<RecoTrack>();
1257
1258 if (!recoTrack) {
1259 B2WARNING("No related RecoTrack for Belle2::Track (particle->Track->X)");
1260 continue;
1261 }
1262
1263 // If any track fails, fail completely
1264 if (!fitRecoTrack(*recoTrack, (addVertexPoint) ? particle : nullptr))
1265 return {};
1266
1267 auto& track = RecoTrackGenfitAccess::getGenfitTrack(*recoTrack);
1268
1269 if (!track.hasFitStatus()) {
1270 B2WARNING("Track has no fit status");
1271 continue;
1272 }
1273 genfit::GblFitStatus* fs = dynamic_cast<genfit::GblFitStatus*>(track.getFitStatus());
1274 if (!fs) {
1275 B2WARNING("Track FitStatus is not GblFitStatus.");
1276 continue;
1277 }
1278 if (!fs->isFittedWithReferenceTrack()) {
1279 B2WARNING("Track is not fitted with reference track.");
1280 continue;
1281 }
1282
1283 tracks.push_back(&track);
1284 }
1285
1286 return tracks;
1287}
1288
1290 double motherMass)
1291{
1292 std::vector<TMatrixD> result;
1293
1294 double px = mother.getPx();
1295 double py = mother.getPy();
1296 double pz = mother.getPz();
1297 double pt = sqrt(px * px + py * py);
1298 double p = mother.getMomentumMagnitude();
1299 double M = motherMass;
1300 double m = mother.getDaughter(0)->getPDGMass();
1301
1302 if (mother.getNDaughters() != 2
1303 || m != mother.getDaughter(1)->getPDGMass()) B2FATAL("Only two same-mass daughters (V0->f+f- decays) allowed.");
1304
1305 // Rotation matrix from mother reference system to lab system
1306 TMatrixD mother2lab(3, 3);
1307 mother2lab(0, 0) = px * pz / pt / p; mother2lab(0, 1) = - py / pt; mother2lab(0, 2) = px / p;
1308 mother2lab(1, 0) = py * pz / pt / p; mother2lab(1, 1) = px / pt; mother2lab(1, 2) = py / p;
1309 mother2lab(2, 0) = - pt / p; mother2lab(2, 1) = 0; mother2lab(2, 2) = pz / p;
1310 ROOT::Math::Rotation3D lab2mother;
1311 lab2mother.SetRotationMatrix(mother2lab); lab2mother.Invert();
1312
1313 // Need to rotate and boost daughters' momenta to know which goes forward (+sign in decay model)
1314 // and to get the angles theta, phi of the decaying daughter system in mothers' reference frame
1315 RestFrame boostedFrame(&mother);
1316 ROOT::Math::PxPyPzEVector fourVector1 = mother.getDaughter(0)->get4Vector();
1317 ROOT::Math::PxPyPzEVector fourVector2 = mother.getDaughter(1)->get4Vector();
1318
1319 auto mom1 = lab2mother * boostedFrame.getMomentum(fourVector1).Vect();
1320 auto mom2 = lab2mother * boostedFrame.getMomentum(fourVector2).Vect();
1321 // One momentum has opposite direction (otherwise should be same in CMS of mother), but which?
1322 double sign = 1.;
1323 auto avgMom = 0.5 * (mom1 - mom2);
1324 if (avgMom.Z() < 0.) {
1325 avgMom *= -1.;
1326 // switch meaning of plus/minus trajectories
1327 sign = -1.;
1328 }
1329
1330 double theta = atan2(avgMom.rho(), avgMom.Z());
1331 double phi = atan2(avgMom.Y(), avgMom.X());
1332 if (phi < 0.) phi += 2. * TMath::Pi();
1333
1334 double alpha = M / 2. / m;
1335 double c1 = m * sqrt(alpha * alpha - 1.);
1336 double c2 = 0.5 * sqrt((alpha * alpha - 1.) / alpha / alpha * (p * p + M * M));
1337
1338 double p3 = p * p * p;
1339 double pt3 = pt * pt * pt;
1340
1341
1342 for (auto& track : getParticlesTracks(mother.getDaughters())) {
1343
1344
1345 TMatrixD R = mother2lab;
1346 B2Vector3D P(sign * c1 * sin(theta) * cos(phi),
1347 sign * c1 * sin(theta) * sin(phi),
1348 p / 2. + sign * c2 * cos(theta));
1349
1350 TMatrixD dRdpx(3, 3);
1351 dRdpx(0, 0) = - pz * (pow(px, 4.) - pow(py, 4.) - py * py * pz * pz) / pt3 / p3;
1352 dRdpx(0, 1) = px * py / pt3;
1353 dRdpx(0, 2) = (py * py + pz * pz) / p3;
1354
1355 dRdpx(1, 0) = - px * py * pz * (2. * px * px + 2. * py * py + pz * pz) / pt3 / p3;
1356 dRdpx(1, 1) = - py * py / pt3;
1357 dRdpx(1, 2) = px * py / p3;
1358
1359 dRdpx(2, 0) = - px * pz * pz / pt / p3;
1360 dRdpx(2, 1) = 0.;
1361 dRdpx(2, 2) = - px * pz / p3;
1362
1363 TMatrixD dRdpy(3, 3);
1364 dRdpy(0, 0) = - px * py * pz * (2. * px * px + 2. * py * py + pz * pz) / pt3 / p3;
1365 dRdpy(0, 1) = - px * px / pt3;
1366 dRdpy(0, 2) = px * pz / p3;
1367
1368 dRdpy(1, 0) = - pz * (- pow(px, 4.) - px * px * pz * pz + pow(py, 4.)) / pt3 / p3;
1369 dRdpy(1, 1) = px * py / pt3;
1370 dRdpy(1, 2) = (px * px + pz * pz) / p3;
1371
1372 dRdpy(2, 0) = - py * pz * pz / pt / p3;
1373 dRdpy(2, 1) = 0.;
1374 dRdpy(2, 2) = - py * pz / p3;
1375
1376 TMatrixD dRdpz(3, 3);
1377 dRdpz(0, 0) = px * pt / p3;
1378 dRdpz(0, 1) = 0.;
1379 dRdpz(0, 2) = - px * pz / p3;
1380
1381 dRdpz(1, 0) = py * pt / p3;
1382 dRdpz(1, 1) = 0.;
1383 dRdpz(1, 2) = py * pz / p3;
1384
1385 dRdpz(2, 0) = pz * pt / p3;
1386 dRdpz(2, 1) = 0.;
1387 dRdpz(2, 2) = (px * px + py * py) / p3;
1388
1389 auto K = 1. / 2. / p + sign * cos(theta) * m * m * (M * M / 4. / m / m - 1.) / M / M / sqrt(m * m * (M * M / 4. / m / m - 1.) *
1390 (M * M + p * p) / M / M);
1391
1392 B2Vector3D dpdpx = dRdpx * P + R * K * px * B2Vector3D(0., 0., 1.);
1393 B2Vector3D dpdpy = dRdpy * P + R * K * py * B2Vector3D(0., 0., 1.);
1394 B2Vector3D dpdpz = dRdpz * P + R * K * pz * B2Vector3D(0., 0., 1.);
1395
1396 B2Vector3D dpdtheta = R * B2Vector3D(sign * c1 * cos(theta) * cos(phi),
1397 sign * c1 * cos(theta) * sin(phi),
1398 sign * c2 * (- sin(theta)));
1399
1400
1401 B2Vector3D dpdphi = R * B2Vector3D(sign * c1 * sin(theta) * (- sin(phi)),
1402 sign * c1 * sin(theta) * cos(phi),
1403 0.);
1404
1405 double dc1dM = m * M / (2. * sqrt(M * M - 4. * m * m));
1406 double dc2dM = M * (4. * m * m * p * p + pow(M, 4)) / (2 * M * M * M * sqrt((M * M - 4. * m * m) * (p * p + M * M)));
1407
1408 B2Vector3D dpdM = R * B2Vector3D(sign * sin(theta) * cos(phi) * dc1dM,
1409 sign * sin(theta) * sin(phi) * dc1dM,
1410 sign * cos(theta) * dc2dM);
1411
1412 TMatrixD dpdz(3, 6);
1413 dpdz(0, 0) = dpdpx(0); dpdz(0, 1) = dpdpy(0); dpdz(0, 2) = dpdpz(0); dpdz(0, 3) = dpdtheta(0); dpdz(0, 4) = dpdphi(0);
1414 dpdz(0, 5) = dpdM(0);
1415 dpdz(1, 0) = dpdpx(1); dpdz(1, 1) = dpdpy(1); dpdz(1, 2) = dpdpz(1); dpdz(1, 3) = dpdtheta(1); dpdz(1, 4) = dpdphi(1);
1416 dpdz(1, 5) = dpdM(1);
1417 dpdz(2, 0) = dpdpx(2); dpdz(2, 1) = dpdpy(2); dpdz(2, 2) = dpdpz(2); dpdz(2, 3) = dpdtheta(2); dpdz(2, 4) = dpdphi(2);
1418 dpdz(2, 5) = dpdM(2);
1419
1420 TMatrixD dqdv = getGlobalToLocalTransform(track->getFittedState()).GetSub(0, 4, 0, 2);
1421 TMatrixD dqdp = getGlobalToLocalTransform(track->getFittedState()).GetSub(0, 4, 3, 5);
1422 TMatrixD dfdvz(5, 9);
1423 dfdvz.SetSub(0, 0, dqdv);
1424 dfdvz.SetSub(0, 3, dqdp * dpdz);
1425
1426 result.push_back(dfdvz);
1427
1428 // switch sign for second trajectory
1429 sign *= -1.;
1430 }
1431
1432 return {result[0], result[1]};
1433}
1434
1435TMatrixD MillepedeCollectorModule::getGlobalToLocalTransform(const genfit::MeasuredStateOnPlane& msop)
1436{
1437 auto state = msop;
1438 const B2Vector3D& U(state.getPlane()->getU());
1439 const B2Vector3D& V(state.getPlane()->getV());
1440 const B2Vector3D& O(state.getPlane()->getO());
1441 const B2Vector3D& W(state.getPlane()->getNormal());
1442
1443 const double* state5 = state.getState().GetMatrixArray();
1444
1445 double spu = 1.;
1446
1447 const TVectorD& auxInfo = state.getAuxInfo();
1448 if (auxInfo.GetNrows() == 2
1449 || auxInfo.GetNrows() == 1) // backwards compatibility with old RKTrackRep
1450 spu = state.getAuxInfo()(0);
1451
1452 TVectorD state7(7);
1453
1454 state7[0] = O.X() + state5[3] * U.X() + state5[4] * V.X(); // x
1455 state7[1] = O.Y() + state5[3] * U.Y() + state5[4] * V.Y(); // y
1456 state7[2] = O.Z() + state5[3] * U.Z() + state5[4] * V.Z(); // z
1457
1458 state7[3] = spu * (W.X() + state5[1] * U.X() + state5[2] * V.X()); // a_x
1459 state7[4] = spu * (W.Y() + state5[1] * U.Y() + state5[2] * V.Y()); // a_y
1460 state7[5] = spu * (W.Z() + state5[1] * U.Z() + state5[2] * V.Z()); // a_z
1461
1462 // normalize dir
1463 double norm = 1. / sqrt(state7[3] * state7[3] + state7[4] * state7[4] + state7[5] * state7[5]);
1464 for (unsigned int i = 3; i < 6; ++i) state7[i] *= norm;
1465
1466 state7[6] = state5[0]; // q/p
1467
1468 const double AtU = state7[3] * U.X() + state7[4] * U.Y() + state7[5] * U.Z();
1469 const double AtV = state7[3] * V.X() + state7[4] * V.Y() + state7[5] * V.Z();
1470 const double AtW = state7[3] * W.X() + state7[4] * W.Y() + state7[5] * W.Z();
1471
1472 // J_Mp matrix is d(q/p,u',v',u,v) / d(x,y,z,px,py,pz) (in is 6x6)
1473
1474 const double qop = state7[6];
1475 const double p = state.getCharge() / qop; // momentum
1476
1477 TMatrixD J_Mp_6x5(6, 5);
1478 J_Mp_6x5.Zero();
1479
1480 //d(u)/d(x,y,z)
1481 J_Mp_6x5(0, 3) = U.X(); // [0][3]
1482 J_Mp_6x5(1, 3) = U.Y(); // [1][3]
1483 J_Mp_6x5(2, 3) = U.Z(); // [2][3]
1484 //d(v)/d(x,y,z)
1485 J_Mp_6x5(0, 4) = V.X(); // [0][4]
1486 J_Mp_6x5(1, 4) = V.Y(); // [1][4]
1487 J_Mp_6x5(2, 4) = V.Z(); // [2][4]
1488
1489 // d(q/p)/d(px,py,pz)
1490 double fact = (-1.) * qop / p;
1491 J_Mp_6x5(3, 0) = fact * state7[3]; // [3][0]
1492 J_Mp_6x5(4, 0) = fact * state7[4]; // [4][0]
1493 J_Mp_6x5(5, 0) = fact * state7[5]; // [5][0]
1494 // d(u')/d(px,py,pz)
1495 fact = 1. / (p * AtW * AtW);
1496 J_Mp_6x5(3, 1) = fact * (U.X() * AtW - W.X() * AtU); // [3][1]
1497 J_Mp_6x5(4, 1) = fact * (U.Y() * AtW - W.Y() * AtU); // [4][1]
1498 J_Mp_6x5(5, 1) = fact * (U.Z() * AtW - W.Z() * AtU); // [5][1]
1499 // d(v')/d(px,py,pz)
1500 J_Mp_6x5(3, 2) = fact * (V.X() * AtW - W.X() * AtV); // [3][2]
1501 J_Mp_6x5(4, 2) = fact * (V.Y() * AtW - W.Y() * AtV); // [4][2]
1502 J_Mp_6x5(5, 2) = fact * (V.Z() * AtW - W.Z() * AtV); // [5][2]
1503
1504 return J_Mp_6x5.T();
1505}
1506
1507TMatrixD MillepedeCollectorModule::getLocalToGlobalTransform(const genfit::MeasuredStateOnPlane& msop)
1508{
1509 auto state = msop;
1510 // get vectors and aux variables
1511 const B2Vector3D& U(state.getPlane()->getU());
1512 const B2Vector3D& V(state.getPlane()->getV());
1513 const B2Vector3D& W(state.getPlane()->getNormal());
1514
1515 const TVectorD& state5(state.getState());
1516 double spu = 1.;
1517
1518 const TVectorD& auxInfo = state.getAuxInfo();
1519 if (auxInfo.GetNrows() == 2
1520 || auxInfo.GetNrows() == 1) // backwards compatibility with old RKTrackRep
1521 spu = state.getAuxInfo()(0);
1522
1523 TVectorD pTilde(3);
1524 pTilde[0] = spu * (W.X() + state5(1) * U.X() + state5(2) * V.X()); // a_x
1525 pTilde[1] = spu * (W.Y() + state5(1) * U.Y() + state5(2) * V.Y()); // a_y
1526 pTilde[2] = spu * (W.Z() + state5(1) * U.Z() + state5(2) * V.Z()); // a_z
1527
1528 const double pTildeMag = sqrt(pTilde[0] * pTilde[0] + pTilde[1] * pTilde[1] + pTilde[2] * pTilde[2]);
1529 const double pTildeMag2 = pTildeMag * pTildeMag;
1530
1531 const double utpTildeOverpTildeMag2 = (U.X() * pTilde[0] + U.Y() * pTilde[1] + U.Z() * pTilde[2]) / pTildeMag2;
1532 const double vtpTildeOverpTildeMag2 = (V.X() * pTilde[0] + V.Y() * pTilde[1] + V.Z() * pTilde[2]) / pTildeMag2;
1533
1534 //J_pM matrix is d(x,y,z,px,py,pz) / d(q/p,u',v',u,v) (out is 6x6)
1535
1536 const double qop = state5(0);
1537 const double p = state.getCharge() / qop; // momentum
1538
1539 TMatrixD J_pM_5x6(5, 6);
1540 J_pM_5x6.Zero();
1541
1542 // d(px,py,pz)/d(q/p)
1543 double fact = -1. * p / (pTildeMag * qop);
1544 J_pM_5x6(0, 3) = fact * pTilde[0]; // [0][3]
1545 J_pM_5x6(0, 4) = fact * pTilde[1]; // [0][4]
1546 J_pM_5x6(0, 5) = fact * pTilde[2]; // [0][5]
1547 // d(px,py,pz)/d(u')
1548 fact = p * spu / pTildeMag;
1549 J_pM_5x6(1, 3) = fact * (U.X() - pTilde[0] * utpTildeOverpTildeMag2); // [1][3]
1550 J_pM_5x6(1, 4) = fact * (U.Y() - pTilde[1] * utpTildeOverpTildeMag2); // [1][4]
1551 J_pM_5x6(1, 5) = fact * (U.Z() - pTilde[2] * utpTildeOverpTildeMag2); // [1][5]
1552 // d(px,py,pz)/d(v')
1553 J_pM_5x6(2, 3) = fact * (V.X() - pTilde[0] * vtpTildeOverpTildeMag2); // [2][3]
1554 J_pM_5x6(2, 4) = fact * (V.Y() - pTilde[1] * vtpTildeOverpTildeMag2); // [2][4]
1555 J_pM_5x6(2, 5) = fact * (V.Z() - pTilde[2] * vtpTildeOverpTildeMag2); // [2][5]
1556 // d(x,y,z)/d(u)
1557 J_pM_5x6(3, 0) = U.X(); // [3][0]
1558 J_pM_5x6(3, 1) = U.Y(); // [3][1]
1559 J_pM_5x6(3, 2) = U.Z(); // [3][2]
1560 // d(x,y,z)/d(v)
1561 J_pM_5x6(4, 0) = V.X(); // [4][0]
1562 J_pM_5x6(4, 1) = V.Y(); // [4][1]
1563 J_pM_5x6(4, 2) = V.Z(); // [4][2]
1564
1565 return J_pM_5x6.T();
1566
1567}
1568
1569tuple<B2Vector3D, TMatrixDSym> MillepedeCollectorModule::getPrimaryVertexAndCov() const
1570{
1571 DBObjPtr<BeamSpot> beam;
1572 return {beam->getIPPosition(), beam->getSizeCovMatrix()};
1573}
1574
1575void MillepedeCollectorModule::updateMassWidthIfSet(string listName, double& mass, double& width)
1576{
1577 if (m_customMassConfig.find(listName) != m_customMassConfig.end()) {
1578 auto massWidth = m_customMassConfig.at(listName);
1579 mass = std::get<0>(massWidth);
1580 width = std::get<1>(massWidth);
1581 }
1582}
1583
R E
internal precision of FFTW codelets
double R
typedef autogenerated by FFTW
#define K(x)
macro autogenerated by FFTW
This class is used to transfer CDC information to the track fit and Millepede.
static bool s_enableWireSaggingGlobalDerivative
Static enabling(true) or disabling(false) addition of global derivative for wire sagging coefficient ...
static bool s_enableWireByWireAlignmentGlobalDerivatives
Static enabling(true) or disabling(false) addition of global derivatives for wire-by-wire alignment.
static bool s_enableTrackT0LocalDerivative
Static enabling(true) or disabling(false) addition of local derivative for track T0.
This class is used to transfer PXD information to the track fit.
This class is used to transfer SVD information to the track fit.
This class is used to transfer SVD information to the track fit.
DataType Z() const
access variable Z (= .at(2) without boundary check)
Definition: B2Vector3.h:435
DataType X() const
access variable X (= .at(0) without boundary check)
Definition: B2Vector3.h:431
DataType Y() const
access variable Y (= .at(1) without boundary check)
Definition: B2Vector3.h:433
Calibration collector module base class.
static const ChargedStable muon
muon particle
Definition: Const.h:660
Class for accessing objects in the database.
Definition: DBObjPtr.h:21
@ c_Persistent
Object is available during entire execution time.
Definition: DataStore.h:60
Store event, run, and experiment numbers.
Definition: EventMetaData.h:33
static EvtGenDatabasePDG * Instance()
Instance method that loads the EvtGen table.
static FileCatalog & Instance()
Static method to get a reference to the FileCatalog instance.
Definition: FileCatalog.cc:23
virtual bool registerFile(const std::string &fileName, FileMetaData &metaData, const std::string &oldLFN="")
Register a file in the (local) file catalog.
Definition: FileCatalog.cc:90
Metadata information about a file.
Definition: FileMetaData.h:29
void setLfn(const std::string &lfn)
Setter for LFN.
Definition: FileMetaData.h:139
void setParents(const std::vector< std::string > &parents)
Parents setter.
Definition: FileMetaData.h:173
TrackSegmentController for use with GblFitter in Belle2.
Class to convert to/from global labels for Millepede II to/from detector & parameter identificators.
Definition: GlobalLabel.h:41
Algorithm class to translate the added detector hits (e.g.
void resetMeasurementCreators(const std::vector< std::shared_ptr< PXDBaseMeasurementCreator > > &pxdMeasurementCreators, const std::vector< std::shared_ptr< SVDBaseMeasurementCreator > > &svdMeasurementCreators, const std::vector< std::shared_ptr< CDCBaseMeasurementCreator > > &cdcMeasurementCreators, const std::vector< std::shared_ptr< BKLMBaseMeasurementCreator > > &bklmMeasurementCreators, const std::vector< std::shared_ptr< EKLMBaseMeasurementCreator > > &eklmMeasurementCreators, const std::vector< std::shared_ptr< BaseMeasurementCreator > > &additionalMeasurementCreators)
If you want to use non-default settings for the store arrays, you can create your own instances of th...
bool addMeasurements(RecoTrack &recoTrack) const
After you have filled the internal storage with measurement creators (either by providing your own or...
Mergeable class holding list of so far opened mille binaries and providing the binaries.
Definition: MilleData.h:24
bool m_updateCDCWeights
Update L/R weights from previous DAF fit result?
std::vector< std::string > m_twoBodyDecays
Name of particle list with mothers of daughters to be used with vertex + mass constraint in calibrati...
TMatrixD getLocalToGlobalTransform(const genfit::MeasuredStateOnPlane &msop)
Compute the transformation matrix d(x,y,z,px,py,pz)/d(q/p,u',v',u,v) from state at first track point ...
std::vector< std::string > m_tracks
Names of arrays with single RecoTracks fitted by GBL.
MillepedeCollectorModule()
Constructor: Sets the description, the properties and the parameters of the module.
StoreObjPtr< EventT0 > m_eventT0
Optional input for EventT0.
std::vector< std::string > m_components
Whether to use VXD alignment hierarchy.
double m_minCDCHitWeight
Minimum CDC hit weight.
std::vector< std::string > m_primaryMassTwoBodyDecays
Name of particle list with mothers of daughters to be used with vertex + IP profile + mass constraint...
double m_minPValue
Minimum p.value for output.
std::string getUniqueMilleName()
Make a name for mille binary (encodes module name + starting exp, run and event + process id)
std::vector< std::tuple< int, int, int > > m_eventNumbers
List of event meta data entries at which payloads can change for timedep calibration.
bool m_absFilePaths
Use absolute path to locate binary files in MilleData.
std::vector< std::string > m_vertices
Name of particle list with mothers of daughters to be used with vertex constraint in calibration.
bool m_fitTrackT0
Add local parameter for track T0 fit in GBL (local derivative)
std::vector< genfit::Track * > getParticlesTracks(std::vector< Particle * > particles, bool addVertexPoint=true)
Get all useable tracks for particles.
std::vector< gbl::GblData > m_currentGblData
Current vector of GBL data from trajectory to be stored in a tree.
bool fitRecoTrack(RecoTrack &recoTrack, Particle *particle=nullptr)
Fit given RecoTrack with GBL.
bool m_enableWireSagging
Enable global derivatives for wire sagging.
TMatrixD getGlobalToLocalTransform(const genfit::MeasuredStateOnPlane &msop)
Compute the transformation matrix d(q/p,u',v',u,v)/d(x,y,z,px,py,pz) from state at first track point ...
std::tuple< B2Vector3D, TMatrixDSym > getPrimaryVertexAndCov() const
Get the primary vertex position estimation and its size from BeamSpot.
std::map< std::string, std::tuple< double, double > > m_customMassConfig
Map of list_name -> (mass, width) for custom mass and width setting.
int m_recalcJacobians
Up to which external iteration propagation Jacobians should be re-calculated.
bool m_useGblTree
Whether to use TTree to accumulate GBL data instead of binary files.
void storeTrajectory(gbl::GblTrajectory &trajectory)
Write down a GBL trajectory (to TTree or binary file)
bool m_doublePrecision
Use double (instead of single/float) precision for binary files.
virtual void collect() override
Data collection.
StoreObjPtr< EventMetaData > m_evtMetaData
Required object pointer to EventMetaData.
std::pair< TMatrixD, TMatrixD > getTwoBodyToLocalTransform(Particle &mother, double motherMass)
Compute the transformation matrices d(q/p,u'v',u,v)/d(vx,vy,vz,px,py,pz,theta,phi,...
bool m_enablePXDHierarchy
enable PXD hierarchy
virtual void closeRun() override
Only for closing mille binaries after each run.
bool m_calibrateKinematics
Add derivatives for beam spot kinematics calibration for primary vertices.
double m_minUsedCDCHitFraction
Minimum CDC used hit fraction.
void updateMassWidthIfSet(std::string listName, double &mass, double &width)
Update mass and width of the particle (mother in list) with user custom-defined values.
virtual void prepare() override
Prepration.
bool m_enableSVDHierarchy
enable SVD hierarchy
std::string m_internalIterations
String defining internal GBL iterations for outlier down-weighting.
std::vector< std::tuple< std::vector< int >, std::vector< std::tuple< int, int, int > > > > m_timedepConfig
Config for time dependence: list( tuple( list( param1, param2, ... ), list( (ev, run,...
std::vector< std::string > m_particles
Names of particle list with single particles.
virtual void finish() override
Register mille binaries in file catalog.
std::vector< std::string > m_primaryVertices
Name of particle list with mothers of daughters to be used with vertex + IP profile (+ optional calib...
int m_externalIterations
Number of external iterations of GBL fitter.
int m_hierarchyType
Type of alignment hierarchy (for VXD only for now): 0 = None, 1 = Flat (only constraints,...
bool m_enableWireByWireAlignment
Enable global derivatives for wire-by-wire alignment.
double m_stableParticleWidth
Width (in GeV/c/c) to use for invariant mass constraint for 'stable' particles (like K short).
std::vector< std::string > m_primaryTwoBodyDecays
Name of particle list with mothers of daughters to be used with vertex + IP profile (+ optional calib...
std::vector< std::string > m_primaryMassVertexTwoBodyDecays
Name of particle list with mothers of daughters to be used with vertex + IP profile + mass constraint...
bool m_calibrateVertex
Add derivatives for beam spot vertex calibration for primary vertices.
void setDescription(const std::string &description)
Sets the description of the module.
Definition: Module.cc:214
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
Definition: Module.cc:208
const std::string & getName() const
Returns the name of the module.
Definition: Module.h:187
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
Definition: Module.h:80
Class to store reconstructed particles.
Definition: Particle.h:75
double getPx() const
Returns x component of momentum.
Definition: Particle.h:587
double getPz() const
Returns z component of momentum.
Definition: Particle.h:605
double getPy() const
Returns y component of momentum.
Definition: Particle.h:596
unsigned getNDaughters(void) const
Returns number of daughter particles.
Definition: Particle.h:727
std::vector< Belle2::Particle * > getDaughters() const
Returns a vector of pointers to daughter particles.
Definition: Particle.cc:637
double getPDGMass(void) const
Returns uncertainty on the invariant mass (requires valid momentum error matrix)
Definition: Particle.cc:604
ROOT::Math::PxPyPzEVector get4Vector() const
Returns Lorentz vector.
Definition: Particle.h:547
double getMomentumMagnitude() const
Returns momentum magnitude.
Definition: Particle.h:569
const Particle * getDaughter(unsigned i) const
Returns a pointer to the i-th daughter particle.
Definition: Particle.cc:631
static int EvtProcID()
Return ID of the current process.
Definition: ProcHandler.cc:248
static bool parallelProcessingUsed()
Returns true if multiple processes have been spawned, false in single-core mode.
Definition: ProcHandler.cc:226
This class stores additional information to every CDC/SVD/PXD hit stored in a RecoTrack.
CDCHit UsedCDCHit
Define, use of CDC hits as CDC hits (for symmetry).
EKLMAlignmentHit UsedEKLMHit
Define, use of EKLMHit2d as EKLM hits.
KLMHit2d UsedBKLMHit
Define, use of KLMHit2d as BKLM hits.
PXDCluster UsedPXDHit
Define, use of clusters or true hits for PXD.
SVDCluster UsedSVDHit
Define, use of clusters or true hits for SVD.
static genfit::Track & getGenfitTrack(RecoTrack &recoTrack)
Give access to the RecoTrack's genfit::Track.
Definition: RecoTrack.cc:404
static genfit::AbsTrackRep * createOrReturnRKTrackRep(RecoTrack &recoTrack, int PDGcode)
Checks if a TrackRap for the PDG id of the RecoTrack (and its charge conjugate) does already exit and...
Definition: RecoTrack.cc:409
This is the Reconstruction Event-Data Model Track.
Definition: RecoTrack.h:79
genfit::AbsTrackRep * getCardinalRepresentation() const
Get a pointer to the cardinal track representation. You are not allowed to modify or delete it!
Definition: RecoTrack.h:631
unsigned int getNumberOfCDCHits() const
Return the number of cdc hits.
Definition: RecoTrack.h:427
const std::string & getStoreArrayNameOfRecoHitInformation() const
Name of the store array of the reco hit informations.
Definition: RecoTrack.h:747
const genfit::TrackPoint * getCreatedTrackPoint(const RecoHitInformation *recoHitInformation) const
Get a pointer to the TrackPoint that was created from this hit.
Definition: RecoTrack.cc:230
const genfit::FitStatus * getTrackFitStatus(const genfit::AbsTrackRep *representation=nullptr) const
Return the track fit status for the given representation or for the cardinal one. You are not allowed...
Definition: RecoTrack.h:621
RelationVector< TO > getRelationsTo(const std::string &name="", const std::string &namedRelation="") const
Get the relations that point from this object to another store array.
Rest frame of a particle.
virtual ROOT::Math::PxPyPzEVector getMomentum(const ROOT::Math::PxPyPzEVector &vector) const override
Get Lorentz vector in rest frame System.
bool isU() const
Is the coordinate u or v?
Definition: SVDRecoHit.h:91
bool isOptional(const std::string &name="")
Tell the DataStore about an optional input.
Accessor to arrays stored in the data store.
Definition: StoreArray.h:113
bool isValid() const
Check wether the array was registered.
Definition: StoreArray.h:288
TClonesArray * getPtr() const
Raw access to the underlying TClonesArray.
Definition: StoreArray.h:311
Type-safe access to single objects in the data store.
Definition: StoreObjPtr.h:96
bool isValid() const
Check whether the object was created.
Definition: StoreObjPtr.h:111
static int createCorrectPDGCodeForChargedStable(const Const::ChargedStable &particleType, const RecoTrack &recoTrack)
Helper function to multiply the PDG code of a charged stable with the charge of the reco track (if ne...
Definition: TrackFitter.cc:24
static const double GeV
Standard of [energy, momentum, mass].
Definition: Unit.h:51
void writeConstraints(std::string txtFilename)
Write-out complete hierarchy to a text file.
Definition: Manager.cc:169
void initialize(const std::vector< std::string > &components={}, const std::vector< EventMetaData > &timeSlices={})
Initialize the manager with given configuration (from MillepedeCollector)
Definition: Manager.cc:52
void preCollect(const EventMetaData &emd)
Notice manager of a comming event (from MillepedeCollector)
Definition: Manager.cc:98
static GlobalCalibrationManager & getInstance()
Get instance of the Manager auto& gcm = GlobalCalibrationManager::getInstance();.
Definition: Manager.cc:27
Class for easier manipulation with global derivatives (and their labels)
static bool s_enablePXD
Enable PXD in hierarchy?
Definition: GlobalParam.h:85
static bool s_enableSVD
Enable SVD in hierarchy?
Definition: GlobalParam.h:87
static E_VXDHierarchyType s_hierarchyType
What type of hierarchy to use for VXD?
Definition: GlobalParam.h:83
void addParam(const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
Definition: Module.h:560
#define REG_MODULE(moduleName)
Register the given module (without 'Module' suffix) with the framework.
Definition: Module.h:650
B2Vector3< double > B2Vector3D
typedef for common usage with double
Definition: B2Vector3.h:516
double sqrt(double a)
sqrt for double
Definition: beamHelpers.h:28
CoordinateMeasurementCreator< RecoHitInformation::UsedSVDHit, Const::SVD > SVDCoordinateMeasurementCreator
Hit to reco hit measurement creator for the SVD.
CoordinateMeasurementCreator< RecoHitInformation::UsedPXDHit, Const::PXD > PXDCoordinateMeasurementCreator
Hit to reco hit measurement creator for the PXD.
CoordinateMeasurementCreator< RecoHitInformation::UsedBKLMHit, Const::BKLM > BKLMCoordinateMeasurementCreator
Hit to reco hit measurement creator for the BKLM.
CoordinateMeasurementCreator< RecoHitInformation::UsedCDCHit, Const::CDC > CDCCoordinateMeasurementCreator
Needed for templating.
CoordinateMeasurementCreator< RecoHitInformation::UsedEKLMHit, Const::EKLM > EKLMCoordinateMeasurementCreator
Hit to reco hit measurement creator for the EKLM.
Abstract base class for different kinds of events.
STL namespace.