Belle II Software development
MillepedeCollectorModule Class Reference

Calibration data collector for Millepede Algorithm. More...

#include <MillepedeCollectorModule.h>

Inheritance diagram for MillepedeCollectorModule:
CalibrationCollectorModule HistoModule Module PathElement

Public Types

enum  EModulePropFlags {
  c_Input = 1 ,
  c_Output = 2 ,
  c_ParallelProcessingCertified = 4 ,
  c_HistogramManager = 8 ,
  c_InternalSerializer = 16 ,
  c_TerminateInAllProcesses = 32 ,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

 MillepedeCollectorModule ()
 Constructor: Sets the description, the properties and the parameters of the module.
 
virtual void prepare () override
 Prepration.
 
virtual void collect () override
 Data collection.
 
virtual void closeRun () override
 Only for closing mille binaries after each run.
 
virtual void finish () override
 Register mille binaries in file catalog.
 
std::string getUniqueMilleName ()
 Make a name for mille binary (encodes module name + starting exp, run and event + process id)
 
std::vector< genfit::Track * > getParticlesTracks (std::vector< Particle * > particles, bool addVertexPoint=true)
 Get all useable tracks for particles.
 
bool fitRecoTrack (RecoTrack &recoTrack, Particle *particle=nullptr)
 Fit given RecoTrack with GBL.
 
TMatrixD getGlobalToLocalTransform (const genfit::MeasuredStateOnPlane &msop)
 Compute the transformation matrix d(q/p,u',v',u,v)/d(x,y,z,px,py,pz) from state at first track point (vertex)
 
TMatrixD getLocalToGlobalTransform (const genfit::MeasuredStateOnPlane &msop)
 Compute the transformation matrix d(x,y,z,px,py,pz)/d(q/p,u',v',u,v) from state at first track point (vertex)
 
std::pair< TMatrixD, TMatrixD > getTwoBodyToLocalTransform (Particle &mother, double motherMass)
 Compute the transformation matrices d(q/p,u'v',u,v)/d(vx,vy,vz,px,py,pz,theta,phi,M) = dq/d(v,z) for both particles in pair.
 
void storeTrajectory (gbl::GblTrajectory &trajectory)
 Write down a GBL trajectory (to TTree or binary file)
 
std::tuple< B2Vector3D, TMatrixDSym > getPrimaryVertexAndCov () const
 Get the primary vertex position estimation and its size from BeamSpot.
 
void initialize () final
 Set up a default RunRange object in datastore and call prepare()
 
void event () final
 Check current experiment and run and update if needed, fill into RunRange and collect()
 
void beginRun () final
 Reset the m_runCollectOnRun flag, if necessary, to begin collection again.
 
void endRun () final
 Write the current collector objects to a file and clear their memory.
 
void terminate () final
 Write the final objects to the file.
 
void defineHisto () final
 Runs due to HistoManager, allows us to discover the correct file.
 
template<class T >
void registerObject (std::string name, T *obj)
 Register object with a name, takes ownership, do not access the pointer beyond prepare()
 
template<class T >
T * getObjectPtr (std::string name)
 Calls the CalibObjManager to get the requested stored collector data.
 
virtual std::vector< std::string > getFileNames (bool outputFiles)
 Return a list of output filenames for this modules.
 
const std::string & getName () const
 Returns the name of the module.
 
const std::string & getType () const
 Returns the type of the module (i.e.
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module.
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties.
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level.
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module.
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module.
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module.
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true.
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished.
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module.
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter.
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module.
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module.
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters.
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Protected Member Functions

virtual void startRun ()
 Replacement for beginRun(). Do anything you would normally do in beginRun here.
 
virtual void inDefineHisto ()
 Replacement for defineHisto(). Do anything you would normally do in defineHisto here.
 
virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python.
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side.
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module.
 
void setType (const std::string &type)
 Set the module type.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module.
 
void setReturnValue (int value)
 Sets the return value for this module as integer.
 
void setReturnValue (bool value)
 Sets the return value for this module as bool.
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Protected Attributes

TDirectory * m_dir
 The top TDirectory that collector objects for this collector will be stored beneath.
 
CalibObjManager m_manager
 Controls the creation, collection and access to calibration objects.
 
RunRangem_runRange
 Overall list of runs processed.
 
Calibration::ExpRun m_expRun
 Current ExpRun for object retrieval (becomes -1,-1 for granularity=all)
 
StoreObjPtr< EventMetaDatam_emd
 Current EventMetaData.
 

Private Member Functions

void updateMassWidthIfSet (std::string listName, double &mass, double &width)
 Update mass and width of the particle (mother in list) with user custom-defined values.
 
bool getPreScaleChoice ()
 I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values.
 
std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects.
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary.
 

Private Attributes

std::vector< std::string > m_tracks
 Names of arrays with single RecoTracks fitted by GBL.
 
std::vector< std::string > m_particles
 Names of particle list with single particles.
 
std::vector< std::string > m_vertices
 Name of particle list with mothers of daughters to be used with vertex constraint in calibration.
 
std::vector< std::string > m_primaryVertices
 Name of particle list with mothers of daughters to be used with vertex + IP profile (+ optional calibration) constraint in calibration.
 
std::vector< std::string > m_twoBodyDecays
 Name of particle list with mothers of daughters to be used with vertex + mass constraint in calibration.
 
std::vector< std::string > m_primaryTwoBodyDecays
 Name of particle list with mothers of daughters to be used with vertex + IP profile (+ optional calibration) + IP kinematics (+ optional calibration) constraint in calibration.
 
std::vector< std::string > m_primaryMassTwoBodyDecays
 Name of particle list with mothers of daughters to be used with vertex + IP profile + mass constraint in calibration.
 
std::vector< std::string > m_primaryMassVertexTwoBodyDecays
 Name of particle list with mothers of daughters to be used with vertex + IP profile + mass constraint in calibration.
 
double m_stableParticleWidth
 Width (in GeV/c/c) to use for invariant mass constraint for 'stable' particles (like K short).
 
bool m_doublePrecision
 Use double (instead of single/float) precision for binary files.
 
bool m_calibrateVertex
 Add derivatives for beam spot vertex calibration for primary vertices.
 
bool m_calibrateKinematics = true
 Add derivatives for beam spot kinematics calibration for primary vertices.
 
double m_minPValue
 Minimum p.value for output.
 
bool m_useGblTree
 Whether to use TTree to accumulate GBL data instead of binary files.
 
bool m_absFilePaths
 Use absolute path to locate binary files in MilleData.
 
std::vector< std::string > m_components {}
 Whether to use VXD alignment hierarchy.
 
int m_externalIterations
 Number of external iterations of GBL fitter.
 
std::string m_internalIterations
 String defining internal GBL iterations for outlier down-weighting.
 
int m_recalcJacobians
 Up to which external iteration propagation Jacobians should be re-calculated.
 
bool m_fitTrackT0
 Add local parameter for track T0 fit in GBL (local derivative)
 
bool m_updateCDCWeights
 Update L/R weights from previous DAF fit result?
 
double m_minCDCHitWeight
 Minimum CDC hit weight.
 
double m_minUsedCDCHitFraction
 Minimum CDC used hit fraction.
 
int m_hierarchyType
 Type of alignment hierarchy (for VXD only for now): 0 = None, 1 = Flat (only constraints, no new global parameters/derivatives), 2 = Half-Shells + sensors (no ladders), 3 = Full.
 
bool m_enablePXDHierarchy
 enable PXD hierarchy
 
bool m_enableSVDHierarchy
 enable SVD hierarchy
 
bool m_enableWireByWireAlignment
 Enable global derivatives for wire-by-wire alignment.
 
bool m_enableWireSagging
 Enable global derivatives for wire sagging.
 
std::vector< std::tuple< int, int, int > > m_eventNumbers {}
 List of event meta data entries at which payloads can change for timedep calibration.
 
std::vector< std::tuple< std::vector< int >, std::vector< std::tuple< int, int, int > > > > m_timedepConfig
 Config for time dependence: list( tuple( list( param1, param2, ... ), list( (ev, run, exp), ... )), ...
 
std::map< std::string, std::tuple< double, double > > m_customMassConfig
 Map of list_name -> (mass, width) for custom mass and width setting.
 
std::vector< gbl::GblData > m_currentGblData {}
 Current vector of GBL data from trajectory to be stored in a tree.
 
StoreObjPtr< EventT0m_eventT0
 Optional input for EventT0.
 
StoreObjPtr< EventMetaDatam_evtMetaData
 Required object pointer to EventMetaData.
 
std::string m_granularity
 Granularity of data collection = run|all(= no granularity, exp,run=-1,-1)
 
int m_maxEventsPerRun
 Maximum number of events to be collected at the start of each run (-1 = no maximum)
 
float m_preScale
 Prescale module parameter, this fraction of events will have collect() run on them [0.0 -> 1.0].
 
bool m_runCollectOnRun = true
 Whether or not we will run the collect() at all this run, basically skips the event() function if false.
 
std::map< Calibration::ExpRun, int > m_expRunEvents
 How many events processed for each ExpRun so far, stops counting up once max is hit Only used/incremented if m_maxEventsPerRun > -1.
 
int * m_eventsCollectedInRun
 Will point at correct value in m_expRunEvents.
 
std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 

Detailed Description

Calibration data collector for Millepede Algorithm.

Collects data from GBL-fitted tracks and produces binary files for Millepede

Definition at line 34 of file MillepedeCollectorModule.h.

Member Typedef Documentation

◆ EAfterConditionPath

Forward the EAfterConditionPath definition from the ModuleCondition.

Definition at line 88 of file Module.h.

Member Enumeration Documentation

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 77 of file Module.h.

77 {
78 c_Input = 1,
79 c_Output = 2,
85 };
@ c_HistogramManager
This module is used to manage histograms accumulated by other modules.
Definition: Module.h:81
@ c_Input
This module is an input module (reads data).
Definition: Module.h:78
@ c_DontCollectStatistics
No statistics is collected for this module.
Definition: Module.h:84
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
Definition: Module.h:80
@ c_InternalSerializer
This module is an internal serializer/deserializer for parallel processing.
Definition: Module.h:82
@ c_Output
This module is an output module (writes data).
Definition: Module.h:79
@ c_TerminateInAllProcesses
When using parallel processing, call this module's terminate() function in all processes().
Definition: Module.h:83

Constructor & Destructor Documentation

◆ MillepedeCollectorModule()

Constructor: Sets the description, the properties and the parameters of the module.

Definition at line 62 of file MillepedeCollectorModule.cc.

63{
65 setDescription("Calibration data collector for Millepede Algorithm");
66
67 // Configure input sample types
68 addParam("tracks", m_tracks, "Names of collections of RecoTracks (already fitted with DAF) for calibration", vector<string>({""}));
69 addParam("particles", m_particles, "Names of particle list of single particles", vector<string>());
70 addParam("vertices", m_vertices,
71 "Name of particle list of (mother) particles with daughters for calibration using vertex constraint", vector<string>());
72 addParam("primaryVertices", m_primaryVertices,
73 "Name of particle list of (mother) particles with daughters for calibration using vertex + IP profile constraint",
74 vector<string>());
75 addParam("twoBodyDecays", m_twoBodyDecays,
76 "Name of particle list of (mother) particles with daughters for calibration using vertex + mass constraint",
77 vector<string>());
78 addParam("primaryTwoBodyDecays", m_primaryTwoBodyDecays,
79 "Name of particle list of (mother) particles with daughters for calibration using vertex + IP profile + kinematics constraint",
80 vector<string>());
81 addParam("primaryMassTwoBodyDecays", m_primaryMassTwoBodyDecays,
82 "Name of particle list of (mother) particles with daughters for calibration using vertex + mass constraint",
83 vector<string>());
84 addParam("primaryMassVertexTwoBodyDecays", m_primaryMassVertexTwoBodyDecays,
85 "Name of particle list of (mother) particles with daughters for calibration using vertex + IP profile + mass constraint",
86 vector<string>());
87
88 addParam("stableParticleWidth", m_stableParticleWidth,
89 "Width (in GeV/c/c) to use for invariant mass constraint for 'stable' particles (like K short). Temporary until proper solution is found.",
90 double(0.002));
91 // Configure output
92 addParam("doublePrecision", m_doublePrecision, "Use double (=true) or single/float (=false) precision for writing binary files",
93 bool(false));
94 addParam("useGblTree", m_useGblTree, "Store GBL trajectories in a tree instead of output to binary files",
95 bool(true));
96 addParam("absFilePaths", m_absFilePaths, "Use absolute paths to remember binary files. Only applies if useGblTree=False",
97 bool(false));
98
99 // Configure global parameters
100 addParam("components", m_components,
101 "Specify which DB objects are calibrated, like ['BeamSpot', 'CDCTimeWalks'] or leave empty to use all components available.",
103 addParam("calibrateVertex", m_calibrateVertex,
104 "For primary vertices / two body decays, beam spot vertex calibration derivatives are added",
105 bool(true));
106 addParam("calibrateKinematics", m_calibrateKinematics,
107 "For primary two body decays, beam spot kinematics calibration derivatives are added",
108 bool(true));
109
110 //Configure GBL fit of individual tracks
111 addParam("externalIterations", m_externalIterations, "Number of external iterations of GBL fitter",
112 int(0));
113 addParam("internalIterations", m_internalIterations, "String defining internal GBL iterations for outlier down-weighting",
114 string(""));
115 addParam("recalcJacobians", m_recalcJacobians, "Up to which external iteration propagation Jacobians should be re-calculated",
116 int(0));
117
118 addParam("minPValue", m_minPValue, "Minimum p-value to write out a (combined) trajectory. Set <0 to write out all.",
119 double(-1.));
120
121 // Configure CDC specific options
122 addParam("fitTrackT0", m_fitTrackT0, "Add local parameter for track T0 fit in GBL",
123 bool(true));
124 addParam("updateCDCWeights", m_updateCDCWeights, "Update L/R weights from previous DAF fit result",
125 bool(true));
126 addParam("minCDCHitWeight", m_minCDCHitWeight, "Minimum (DAF) CDC hit weight for usage by GBL",
127 double(1.0E-6));
128 addParam("minUsedCDCHitFraction", m_minUsedCDCHitFraction, "Minimum used CDC hit fraction to write out a trajectory",
129 double(0.85));
130
131 addParam("hierarchyType", m_hierarchyType, "Type of (VXD only now) hierarchy: 0 = None, 1 = Flat, 2 = Half-Shells, 3 = Full",
132 int(3));
133 addParam("enablePXDHierarchy", m_enablePXDHierarchy, "Enable PXD in hierarchy (flat or full)",
134 bool(true));
135 addParam("enableSVDHierarchy", m_enableSVDHierarchy, "Enable SVD in hierarchy (flat or full)",
136 bool(true));
137
138 addParam("enableWireByWireAlignment", m_enableWireByWireAlignment, "Enable global derivatives for wire-by-wire alignment",
139 bool(false));
140 addParam("enableWireSagging", m_enableWireSagging, "Enable global derivatives for wire sagging",
141 bool(false));
142
143 // Time dependence
144 addParam("events", m_eventNumbers,
145 "List of (event, run, exp) with event numbers at which payloads can change for timedep calibration.",
147 // Time dependence config
148 addParam("timedepConfig", m_timedepConfig,
149 "list{ {list{param1, param2, ...}, list{(ev1, run1, exp1), ...}}, ... }.",
151
152 // Custom mass+width config
153 addParam("customMassConfig", m_customMassConfig,
154 "dict{ list_name: (mass, width), ... } with custom mass and width to use as external measurement.",
156}
CalibrationCollectorModule()
Constructor. Sets the default prefix for calibration dataobjects.
bool m_updateCDCWeights
Update L/R weights from previous DAF fit result?
std::vector< std::string > m_twoBodyDecays
Name of particle list with mothers of daughters to be used with vertex + mass constraint in calibrati...
std::vector< std::string > m_tracks
Names of arrays with single RecoTracks fitted by GBL.
std::vector< std::string > m_components
Whether to use VXD alignment hierarchy.
double m_minCDCHitWeight
Minimum CDC hit weight.
std::vector< std::string > m_primaryMassTwoBodyDecays
Name of particle list with mothers of daughters to be used with vertex + IP profile + mass constraint...
double m_minPValue
Minimum p.value for output.
std::vector< std::tuple< int, int, int > > m_eventNumbers
List of event meta data entries at which payloads can change for timedep calibration.
bool m_absFilePaths
Use absolute path to locate binary files in MilleData.
std::vector< std::string > m_vertices
Name of particle list with mothers of daughters to be used with vertex constraint in calibration.
bool m_fitTrackT0
Add local parameter for track T0 fit in GBL (local derivative)
bool m_enableWireSagging
Enable global derivatives for wire sagging.
std::map< std::string, std::tuple< double, double > > m_customMassConfig
Map of list_name -> (mass, width) for custom mass and width setting.
int m_recalcJacobians
Up to which external iteration propagation Jacobians should be re-calculated.
bool m_useGblTree
Whether to use TTree to accumulate GBL data instead of binary files.
bool m_doublePrecision
Use double (instead of single/float) precision for binary files.
bool m_enablePXDHierarchy
enable PXD hierarchy
bool m_calibrateKinematics
Add derivatives for beam spot kinematics calibration for primary vertices.
double m_minUsedCDCHitFraction
Minimum CDC used hit fraction.
bool m_enableSVDHierarchy
enable SVD hierarchy
std::string m_internalIterations
String defining internal GBL iterations for outlier down-weighting.
std::vector< std::tuple< std::vector< int >, std::vector< std::tuple< int, int, int > > > > m_timedepConfig
Config for time dependence: list( tuple( list( param1, param2, ... ), list( (ev, run,...
std::vector< std::string > m_particles
Names of particle list with single particles.
std::vector< std::string > m_primaryVertices
Name of particle list with mothers of daughters to be used with vertex + IP profile (+ optional calib...
int m_externalIterations
Number of external iterations of GBL fitter.
int m_hierarchyType
Type of alignment hierarchy (for VXD only for now): 0 = None, 1 = Flat (only constraints,...
bool m_enableWireByWireAlignment
Enable global derivatives for wire-by-wire alignment.
double m_stableParticleWidth
Width (in GeV/c/c) to use for invariant mass constraint for 'stable' particles (like K short).
std::vector< std::string > m_primaryTwoBodyDecays
Name of particle list with mothers of daughters to be used with vertex + IP profile (+ optional calib...
std::vector< std::string > m_primaryMassVertexTwoBodyDecays
Name of particle list with mothers of daughters to be used with vertex + IP profile + mass constraint...
bool m_calibrateVertex
Add derivatives for beam spot vertex calibration for primary vertices.
void setDescription(const std::string &description)
Sets the description of the module.
Definition: Module.cc:214
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
Definition: Module.cc:208
void addParam(const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
Definition: Module.h:560

Member Function Documentation

◆ beginRun()

void beginRun ( void  )
finalvirtualinherited

Reset the m_runCollectOnRun flag, if necessary, to begin collection again.

It seems that the beginRun() function is called in each basf2 subprocess when the run changes in each process. This is nice because it allows us to write the new (exp,run) object creation in the beginRun function as though the other processes don't exist.

Reimplemented from HistoModule.

Definition at line 77 of file CalibrationCollectorModule.cc.

78{
83 // Current (Exp,Run)
84 ExpRun expRun = make_pair(m_emd->getExperiment(), m_emd->getRun());
85 m_runRange->add(expRun.first, expRun.second);
86
87 // Do we care about the number of events collected in each (input data) ExpRun?
88 // If so, we want to create values for the events collected map
89 if (m_maxEventsPerRun > -1) {
90 // Do we have a count for this ExpRun yet? If not create one
91 auto i_eventsInExpRun = m_expRunEvents.find(expRun);
92 if (i_eventsInExpRun == m_expRunEvents.end()) {
93 m_expRunEvents[expRun] = 0;
94 }
95
96 // Set our pointer to the correct location for this ExpRun
98 // Want to reset our flag to start collection if necessary
100 B2INFO("New run has had less events than the maximum collected so far ("
102 << " < "
104 << "). Turning on collection.");
105 m_runCollectOnRun = true;
106 } else {
107 B2INFO("New run has had more events than the maximum collected so far ("
109 << " >= "
111 << "). Turning off collection.");
112 m_runCollectOnRun = false;
113 }
114 }
115 // Granularity=all removes data splitting by runs by setting
116 // always the same exp, run for calibration data objects
117 if (m_granularity == "all") {
118 m_expRun = { -1, -1};
119 } else {
120 m_expRun = expRun;
121 }
123 // Run the user's startRun() implementation if there is one
124 startRun();
125}
bool m_runCollectOnRun
Whether or not we will run the collect() at all this run, basically skips the event() function if fal...
virtual void startRun()
Replacement for beginRun(). Do anything you would normally do in beginRun here.
Calibration::ExpRun m_expRun
Current ExpRun for object retrieval (becomes -1,-1 for granularity=all)
CalibObjManager m_manager
Controls the creation, collection and access to calibration objects.
std::string m_granularity
Granularity of data collection = run|all(= no granularity, exp,run=-1,-1)
RunRange * m_runRange
Overall list of runs processed.
int * m_eventsCollectedInRun
Will point at correct value in m_expRunEvents.
StoreObjPtr< EventMetaData > m_emd
Current EventMetaData.
int m_maxEventsPerRun
Maximum number of events to be collected at the start of each run (-1 = no maximum)
std::map< Calibration::ExpRun, int > m_expRunEvents
How many events processed for each ExpRun so far, stops counting up once max is hit Only used/increme...
void add(int exp, int run)
Add an experiment and run number to the set.
Definition: RunRange.h:58
void createExpRunDirectories(Calibration::ExpRun &expRun) const
For each templated object, we create a new TDirectory for this exprun.
Struct containing exp number and run number.
Definition: Splitter.h:51

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 179 of file Module.cc.

180{
182 newModule->m_moduleParamList.setParameters(getParamList());
183 newModule->setName(getName());
184 newModule->m_package = m_package;
185 newModule->m_propertyFlags = m_propertyFlags;
186 newModule->m_logConfig = m_logConfig;
187 newModule->m_conditions = m_conditions;
188
189 return newModule;
190}
std::shared_ptr< Module > registerModule(const std::string &moduleName, std::string sharedLibPath="") noexcept(false)
Creates an instance of a module and registers it to the ModuleManager.
static ModuleManager & Instance()
Exception is thrown if the requested module could not be created by the ModuleManager.
const ModuleParamList & getParamList() const
Return module param list.
Definition: Module.h:363
const std::string & getName() const
Returns the name of the module.
Definition: Module.h:187
const std::string & getType() const
Returns the type of the module (i.e.
Definition: Module.cc:41
unsigned int m_propertyFlags
The properties of the module as bitwise or (with |) of EModulePropFlags.
Definition: Module.h:512
LogConfig m_logConfig
The log system configuration of the module.
Definition: Module.h:514
std::vector< ModuleCondition > m_conditions
Module condition, only non-null if set.
Definition: Module.h:521
std::string m_package
Package this module is found in (may be empty).
Definition: Module.h:510
std::shared_ptr< Module > ModulePtr
Defines a pointer to a module object as a boost shared pointer.
Definition: Module.h:43

◆ closeRun()

void closeRun ( )
overridevirtual

Only for closing mille binaries after each run.

Reimplemented from CalibrationCollectorModule.

Definition at line 973 of file MillepedeCollectorModule.cc.

974{
975 // We close the file at end of run, producing
976 // one file per run (and process id) which is more
977 // convenient than one large binary block.
978 auto mille = getObjectPtr<MilleData>("mille");
979 if (mille->isOpen())
980 mille->close();
981}

◆ collect()

void collect ( )
overridevirtual

Data collection.

Reimplemented from CalibrationCollectorModule.

Definition at line 254 of file MillepedeCollectorModule.cc.

255{
257
258 if (!m_useGblTree) {
259 // Open new file on request (at start or after being closed)
260 auto mille = getObjectPtr<MilleData>("mille");
261 if (!mille->isOpen())
262 mille->open(getUniqueMilleName());
263 }
264
265 std::shared_ptr<genfit::GblFitter> gbl(new genfit::GblFitter());
266 double chi2 = -1.;
267 double lostWeight = -1.;
268 int ndf = -1;
269 float evt0 = -9999.;
270
271 for (auto arrayName : m_tracks) {
272 StoreArray<RecoTrack> recoTracks(arrayName);
273 if (!recoTracks.isValid())
274 continue;
275
276 for (auto& recoTrack : recoTracks) {
277
278 if (!fitRecoTrack(recoTrack))
279 continue;
280
281 auto& track = RecoTrackGenfitAccess::getGenfitTrack(recoTrack);
282 if (!track.hasFitStatus())
283 continue;
284 genfit::GblFitStatus* fs = dynamic_cast<genfit::GblFitStatus*>(track.getFitStatus());
285 if (!fs)
286 continue;
287
288 if (!fs->isFittedWithReferenceTrack())
289 continue;
290
291 using namespace gbl;
292 GblTrajectory trajectory(gbl->collectGblPoints(&track, track.getCardinalRep()), fs->hasCurvature());
293
294 trajectory.fit(chi2, ndf, lostWeight);
295 getObjectPtr<TH1I>("ndf")->Fill(ndf);
296 getObjectPtr<TH1F>("chi2_per_ndf")->Fill(chi2 / double(ndf));
297 getObjectPtr<TH1F>("pval")->Fill(TMath::Prob(chi2, ndf));
298 if (m_eventT0.isValid() && m_eventT0->hasEventT0()) {
299 evt0 = m_eventT0->getEventT0();
300 getObjectPtr<TH1F>("evt0")->Fill(evt0);
301 }
302
303 if (TMath::Prob(chi2, ndf) > m_minPValue) storeTrajectory(trajectory);
304
305 }
306
307 }
308
309 for (auto listName : m_particles) {
310 StoreObjPtr<ParticleList> list(listName);
311 if (!list.isValid())
312 continue;
313
314 for (unsigned int iParticle = 0; iParticle < list->getListSize(); ++iParticle) {
315 for (auto& track : getParticlesTracks({list->getParticle(iParticle)}, false)) {
316 auto gblfs = dynamic_cast<genfit::GblFitStatus*>(track->getFitStatus());
317
318 gbl::GblTrajectory trajectory(gbl->collectGblPoints(track, track->getCardinalRep()), gblfs->hasCurvature());
319
320 trajectory.fit(chi2, ndf, lostWeight);
321 getObjectPtr<TH1I>("ndf")->Fill(ndf);
322 getObjectPtr<TH1F>("chi2_per_ndf")->Fill(chi2 / double(ndf));
323 getObjectPtr<TH1F>("pval")->Fill(TMath::Prob(chi2, ndf));
324 if (m_eventT0.isValid() && m_eventT0->hasEventT0()) {
325 evt0 = m_eventT0->getEventT0();
326 getObjectPtr<TH1F>("evt0")->Fill(evt0);
327 }
328
329 if (TMath::Prob(chi2, ndf) > m_minPValue) storeTrajectory(trajectory);
330
331 }
332 }
333 }
334
335 for (auto listName : m_vertices) {
336 StoreObjPtr<ParticleList> list(listName);
337 if (!list.isValid())
338 continue;
339
340 for (unsigned int iParticle = 0; iParticle < list->getListSize(); ++iParticle) {
341 auto mother = list->getParticle(iParticle);
342 std::vector<std::pair<std::vector<gbl::GblPoint>, TMatrixD> > daughters;
343
344 for (auto& track : getParticlesTracks(mother->getDaughters()))
345 daughters.push_back({
346 gbl->collectGblPoints(track, track->getCardinalRep()),
347 getGlobalToLocalTransform(track->getFittedState()).GetSub(0, 4, 0, 2)
348 });
349
350 if (daughters.size() > 1) {
351 gbl::GblTrajectory combined(daughters);
352
353 combined.fit(chi2, ndf, lostWeight);
354 getObjectPtr<TH1I>("ndf")->Fill(ndf);
355 getObjectPtr<TH1F>("chi2_per_ndf")->Fill(chi2 / double(ndf));
356 getObjectPtr<TH1F>("pval")->Fill(TMath::Prob(chi2, ndf));
357 if (m_eventT0.isValid() && m_eventT0->hasEventT0()) {
358 evt0 = m_eventT0->getEventT0();
359 getObjectPtr<TH1F>("evt0")->Fill(evt0);
360 }
361
362
363 if (TMath::Prob(chi2, ndf) > m_minPValue) storeTrajectory(combined);
364
365 B2RESULT("Vertex-constrained fit NDF = " << ndf << " Chi2/NDF = " << chi2 / double(ndf));
366
367 }
368 }
369 }
370
371 for (auto listName : m_primaryVertices) {
372 StoreObjPtr<ParticleList> list(listName);
373 if (!list.isValid())
374 continue;
375
376 for (unsigned int iParticle = 0; iParticle < list->getListSize(); ++iParticle) {
377 auto mother = list->getParticle(iParticle);
378 std::vector<std::pair<std::vector<gbl::GblPoint>, TMatrixD> > daughters;
379
380 TMatrixD extProjection(5, 3);
381 TMatrixD locProjection(3, 5);
382
383 bool first(true);
384 for (auto& track : getParticlesTracks(mother->getDaughters())) {
385 if (first) {
386 // For first trajectory only
387 extProjection = getGlobalToLocalTransform(track->getFittedState()).GetSub(0, 4, 0, 2);
388 locProjection = getLocalToGlobalTransform(track->getFittedState()).GetSub(0, 2, 0, 4);
389 first = false;
390 }
391 daughters.push_back({
392 gbl->collectGblPoints(track, track->getCardinalRep()),
393 getGlobalToLocalTransform(track->getFittedState()).GetSub(0, 4, 0, 2)
394 });
395 }
396
397 if (daughters.size() > 1) {
398 auto beam = getPrimaryVertexAndCov();
399
400 TMatrixDSym vertexCov(get<TMatrixDSym>(beam));
401 TMatrixDSym vertexPrec(get<TMatrixDSym>(beam).Invert());
402 B2Vector3D vertexResidual = - (B2Vector3D(mother->getVertex()) - get<B2Vector3D>(beam));
403
404 TVectorD extMeasurements(3);
405 extMeasurements[0] = vertexResidual[0];
406 extMeasurements[1] = vertexResidual[1];
407 extMeasurements[2] = vertexResidual[2];
408
409 TMatrixD extDeriv(3, 3);
410 extDeriv.Zero();
411 // beam vertex constraint
412 extDeriv(0, 0) = 1.;
413 extDeriv(1, 1) = 1.;
414 extDeriv(2, 2) = 1.;
415
416 if (m_calibrateVertex) {
417 TMatrixD derivatives(3, 3);
418 derivatives.Zero();
419 derivatives(0, 0) = 1.;
420 derivatives(1, 1) = 1.;
421 derivatives(2, 2) = 1.;
422
423 std::vector<int> labels;
424 GlobalLabel label = GlobalLabel::construct<BeamSpot>(0, 0);
425 labels.push_back(label.setParameterId(1));
426 labels.push_back(label.setParameterId(2));
427 labels.push_back(label.setParameterId(3));
428
429 // Allow to disable BeamSpot externally
430 alignment::GlobalDerivatives globals(labels, derivatives);
431 // Add derivatives for vertex calibration to first point of first trajectory
432 // NOTE: use GlobalDerivatives operators vector<int> and TMatrixD which filter
433 // the derivatives to not pass those with zero labels (usefull to get rid of some params)
434 std::vector<int> lab(globals); TMatrixD der(globals);
435
436 // Transformation from local system at (vertex) point to global (vx,vy,vz)
437 // of the (decay) vertex
438 //
439 // d(q/p,u',v',u,v)/d(vy,vy,vz) = dLocal_dExt
440 //
441 //
442 // Note its transpose is its "inverse" in the sense that
443 //
444 // dloc/dext * (dloc/dext)^T = diag(0, 0, 0, 0, 1, 1)
445 //
446 //
447 // N.B. typical dLocal_dExt matrix (5x3):
448 //
449 // | 0 | 1 | 2 |
450 // --------------------------------------------
451 // 0 | 0 0 0
452 // 1 | 0 0 0
453 // 2 | 0 0 0
454 // 3 | -0.02614 -0.9997 0
455 // 4 | 0 0 1
456 //
457 // Therefore one can simplify things by only taking the last two rows/columns in vectors/matrices
458 // and vertex measurement can be expressed as standard 2D measurement in GBL.
459 //
460 TMatrixD dLocal_dExt = extProjection;
461 TMatrixD dExt_dLocal = locProjection;
462
463 TVectorD locRes = dLocal_dExt * extMeasurements;
464 // Do not use inverted covariance - seems to have issues with numeric precision
465 TMatrixD locCov = dLocal_dExt * vertexCov * dExt_dLocal;
466 // Invert here only the 2D sub-matrix (rest is zero due to the foŕm of dLocal_dExt)
467 TMatrixD locPrec = locCov.GetSub(3, 4, 3, 4).Invert();
468 TMatrixDSym locPrec2D(2); locPrec2D.Zero();
469 for (int i = 0; i < 2; ++i)
470 for (int j = 0; j < 2; ++j)
471 locPrec2D(i, j) = locPrec(i, j);
472
473 // Take the 2 last components also for residuals and global derivatives
474 // (in local system of vertex point - defined during fitRecoTrack(..., particle) and using
475 // the (hopefully) updated momentum and position seed after vertex fit by modularAnalysis
476 TVectorD locRes2D = locRes.GetSub(3, 4);
477 TMatrixD locDerivs2D = (extProjection * der).GetSub(3, 4, 0, 2);
478
479 // Attach the primary beamspot vertex position as a measurement at 1st point
480 // of first trajectory (and optionaly also the global derivatives for beamspot alignment
481 daughters[0].first[0].addMeasurement(locRes2D, locPrec2D);
482 if (!lab.empty()) {
483 daughters[0].first[0].addGlobals(lab, locDerivs2D);
484 }
485
486 gbl::GblTrajectory combined(daughters);
487 //combined.printTrajectory(100);
488 //combined.printPoints(100);
489
490 combined.fit(chi2, ndf, lostWeight);
491 getObjectPtr<TH1I>("ndf")->Fill(ndf);
492 getObjectPtr<TH1F>("chi2_per_ndf")->Fill(chi2 / double(ndf));
493 getObjectPtr<TH1F>("pval")->Fill(TMath::Prob(chi2, ndf));
494 if (m_eventT0.isValid() && m_eventT0->hasEventT0()) {
495 evt0 = m_eventT0->getEventT0();
496 getObjectPtr<TH1F>("evt0")->Fill(evt0);
497 }
498
499 if (TMath::Prob(chi2, ndf) > m_minPValue) storeTrajectory(combined);
500 B2RESULT("Beam vertex constrained fit results NDF = " << ndf << " Chi2/NDF = " << chi2 / double(ndf));
501
502 } else {
503
504 gbl::GblTrajectory combined(daughters, extDeriv, extMeasurements, vertexPrec);
505
506 combined.fit(chi2, ndf, lostWeight);
507 getObjectPtr<TH1I>("ndf")->Fill(ndf);
508 getObjectPtr<TH1F>("chi2_per_ndf")->Fill(chi2 / double(ndf));
509 getObjectPtr<TH1F>("pval")->Fill(TMath::Prob(chi2, ndf));
510 if (m_eventT0.isValid() && m_eventT0->hasEventT0()) {
511 evt0 = m_eventT0->getEventT0();
512 getObjectPtr<TH1F>("evt0")->Fill(evt0);
513 }
514
515 if (TMath::Prob(chi2, ndf) > m_minPValue) storeTrajectory(combined);
516
517 B2RESULT("Beam vertex constrained fit results NDF = " << ndf << " Chi2/NDF = " << chi2 / double(ndf));
518
519 }
520 }
521 }
522 }
523
524 for (auto listName : m_twoBodyDecays) {
525 StoreObjPtr<ParticleList> list(listName);
526 if (!list.isValid())
527 continue;
528
529 for (unsigned int iParticle = 0; iParticle < list->getListSize(); ++iParticle) {
530
531 auto mother = list->getParticle(iParticle);
532 auto track12 = getParticlesTracks(mother->getDaughters());
533 if (track12.size() != 2) {
534 B2ERROR("Did not get 2 fitted tracks. Skipping this mother.");
535 continue;
536 }
537
538 auto pdgdb = EvtGenDatabasePDG::Instance();
539 double motherMass = mother->getPDGMass();
540 double motherWidth = pdgdb->GetParticle(mother->getPDGCode())->Width();
541
542 updateMassWidthIfSet(listName, motherMass, motherWidth);
543
544 //TODO: what to take as width for "real" particles? -> make a param for default detector mass resolution??
545 if (motherWidth == 0.) {
546 motherWidth = m_stableParticleWidth * Unit::GeV;
547 B2WARNING("Using artificial width for " << pdgdb->GetParticle(mother->getPDGCode())->GetName() << " : " << motherWidth << " GeV");
548 }
549
550 auto dfdextPlusMinus = getTwoBodyToLocalTransform(*mother, motherMass);
551 std::vector<std::pair<std::vector<gbl::GblPoint>, TMatrixD> > daughters;
552
553 daughters.push_back({gbl->collectGblPoints(track12[0], track12[0]->getCardinalRep()), dfdextPlusMinus.first});
554 daughters.push_back({gbl->collectGblPoints(track12[1], track12[1]->getCardinalRep()), dfdextPlusMinus.second});
555
556 TMatrixDSym massPrec(1); massPrec(0, 0) = 1. / motherWidth / motherWidth;
557 TVectorD massResidual(1); massResidual = - (mother->getMass() - motherMass);
558
559 TVectorD extMeasurements(1);
560 extMeasurements[0] = massResidual[0];
561
562 TMatrixD extDeriv(1, 9);
563 extDeriv.Zero();
564 extDeriv(0, 8) = 1.;
565
566 gbl::GblTrajectory combined(daughters, extDeriv, extMeasurements, massPrec);
567
568 combined.fit(chi2, ndf, lostWeight);
569 //combined.printTrajectory(1000);
570 //combined.printPoints(1000);
571 getObjectPtr<TH1I>("ndf")->Fill(ndf);
572 getObjectPtr<TH1F>("chi2_per_ndf")->Fill(chi2 / double(ndf));
573 getObjectPtr<TH1F>("pval")->Fill(TMath::Prob(chi2, ndf));
574 if (m_eventT0.isValid() && m_eventT0->hasEventT0()) {
575 evt0 = m_eventT0->getEventT0();
576 getObjectPtr<TH1F>("evt0")->Fill(evt0);
577 }
578
579
580 B2RESULT("Mass(PDG) + vertex constrained fit results NDF = " << ndf << " Chi2/NDF = " << chi2 / double(ndf));
581
582 if (TMath::Prob(chi2, ndf) > m_minPValue) storeTrajectory(combined);
583
584 }
585 }
586
587 for (auto listName : m_primaryMassTwoBodyDecays) {
588 StoreObjPtr<ParticleList> list(listName);
589 if (!list.isValid())
590 continue;
591
593
594 double motherMass = beam->getMass();
595 double motherWidth = sqrt((beam->getCovHER() + beam->getCovLER())(0, 0));
596
597 updateMassWidthIfSet(listName, motherMass, motherWidth);
598
599 for (unsigned int iParticle = 0; iParticle < list->getListSize(); ++iParticle) {
600
601 auto mother = list->getParticle(iParticle);
602 auto track12 = getParticlesTracks(mother->getDaughters());
603 if (track12.size() != 2) {
604 B2ERROR("Did not get 2 fitted tracks. Skipping this mother.");
605 continue;
606 }
607
608 auto dfdextPlusMinus = getTwoBodyToLocalTransform(*mother, motherMass);
609 std::vector<std::pair<std::vector<gbl::GblPoint>, TMatrixD> > daughters;
610
611 daughters.push_back({gbl->collectGblPoints(track12[0], track12[0]->getCardinalRep()), dfdextPlusMinus.first});
612 daughters.push_back({gbl->collectGblPoints(track12[1], track12[1]->getCardinalRep()), dfdextPlusMinus.second});
613
614 TMatrixDSym massPrec(1); massPrec(0, 0) = 1. / motherWidth / motherWidth;
615 TVectorD massResidual(1); massResidual = - (mother->getMass() - motherMass);
616
617 TVectorD extMeasurements(1);
618 extMeasurements[0] = massResidual[0];
619
620 TMatrixD extDeriv(1, 9);
621 extDeriv.Zero();
622 extDeriv(0, 8) = 1.;
623
624 gbl::GblTrajectory combined(daughters, extDeriv, extMeasurements, massPrec);
625
626 combined.fit(chi2, ndf, lostWeight);
627 getObjectPtr<TH1I>("ndf")->Fill(ndf);
628 getObjectPtr<TH1F>("chi2_per_ndf")->Fill(chi2 / double(ndf));
629 getObjectPtr<TH1F>("pval")->Fill(TMath::Prob(chi2, ndf));
630 if (m_eventT0.isValid() && m_eventT0->hasEventT0()) {
631 evt0 = m_eventT0->getEventT0();
632 getObjectPtr<TH1F>("evt0")->Fill(evt0);
633 }
634
635
636 B2RESULT("Mass constrained fit results NDF = " << ndf << " Chi2/NDF = " << chi2 / double(ndf));
637
638 if (TMath::Prob(chi2, ndf) > m_minPValue) storeTrajectory(combined);
639
640 }
641 }
642
643 for (auto listName : m_primaryMassVertexTwoBodyDecays) {
644 StoreObjPtr<ParticleList> list(listName);
645 if (!list.isValid())
646 continue;
647
649
650 double motherMass = beam->getMass();
651 double motherWidth = sqrt((beam->getCovHER() + beam->getCovLER())(0, 0));
652
653 updateMassWidthIfSet(listName, motherMass, motherWidth);
654
655 for (unsigned int iParticle = 0; iParticle < list->getListSize(); ++iParticle) {
656
657 auto mother = list->getParticle(iParticle);
658 auto track12 = getParticlesTracks(mother->getDaughters());
659 if (track12.size() != 2) {
660 B2ERROR("Did not get 2 fitted tracks. Skipping this mother.");
661 continue;
662 }
663
664 auto dfdextPlusMinus = getTwoBodyToLocalTransform(*mother, motherMass);
665 std::vector<std::pair<std::vector<gbl::GblPoint>, TMatrixD> > daughters;
666
667 daughters.push_back({gbl->collectGblPoints(track12[0], track12[0]->getCardinalRep()), dfdextPlusMinus.first});
668 daughters.push_back({gbl->collectGblPoints(track12[1], track12[1]->getCardinalRep()), dfdextPlusMinus.second});
669
670 TMatrixDSym vertexPrec(get<TMatrixDSym>(getPrimaryVertexAndCov()).Invert());
671 B2Vector3D vertexResidual = - (B2Vector3D(mother->getVertex()) - get<B2Vector3D>(getPrimaryVertexAndCov()));
672
673 TMatrixDSym massPrec(1); massPrec(0, 0) = 1. / motherWidth / motherWidth;
674 TVectorD massResidual(1); massResidual = - (mother->getMass() - motherMass);
675
676 TMatrixDSym extPrec(4); extPrec.Zero();
677 extPrec.SetSub(0, 0, vertexPrec);
678 extPrec(3, 3) = massPrec(0, 0);
679
680 TVectorD extMeasurements(4);
681 extMeasurements[0] = vertexResidual[0];
682 extMeasurements[1] = vertexResidual[1];
683 extMeasurements[2] = vertexResidual[2];
684 extMeasurements[3] = massResidual[0];
685
686 TMatrixD extDeriv(4, 9);
687 extDeriv.Zero();
688 extDeriv(0, 0) = 1.;
689 extDeriv(1, 1) = 1.;
690 extDeriv(2, 2) = 1.;
691 extDeriv(3, 8) = 1.;
692
693 gbl::GblTrajectory combined(daughters, extDeriv, extMeasurements, extPrec);
694
695 combined.fit(chi2, ndf, lostWeight);
696 getObjectPtr<TH1I>("ndf")->Fill(ndf);
697 getObjectPtr<TH1F>("chi2_per_ndf")->Fill(chi2 / double(ndf));
698 getObjectPtr<TH1F>("pval")->Fill(TMath::Prob(chi2, ndf));
699 if (m_eventT0.isValid() && m_eventT0->hasEventT0()) {
700 evt0 = m_eventT0->getEventT0();
701 getObjectPtr<TH1F>("evt0")->Fill(evt0);
702 }
703
704
705 if (TMath::Prob(chi2, ndf) > m_minPValue) storeTrajectory(combined);
706
707 B2RESULT("Mass + vertex constrained fit results NDF = " << ndf << " Chi2/NDF = " << chi2 / double(ndf));
708
709 }
710 }
711
712 for (auto listName : m_primaryTwoBodyDecays) {
713 B2WARNING("This should NOT be used for production of calibration constants for the real detector (yet)!");
714
715 StoreObjPtr<ParticleList> list(listName);
716 if (!list.isValid())
717 continue;
718
720
721 // For the error of invariant mass M = 2 * sqrt(E_HER * E_LER) (for m_e ~ 0)
722 double M = beam->getMass();
723 double E_HER = beam->getHER().E();
724 double E_LER = beam->getLER().E();
725
726 double pz = beam->getHER().Pz() + beam->getLER().Pz();
727 double E = (beam->getHER() + beam->getLER()).E();
728
729 double motherMass = beam->getMass();
730 double motherWidth = sqrt((E_HER / M) * (E_HER / M) * beam->getCovLER()(0, 0) + (E_LER / M) * (E_LER / M) * beam->getCovHER()(0,
731 0));
732
733 updateMassWidthIfSet(listName, motherMass, motherWidth);
734
735 for (unsigned int iParticle = 0; iParticle < list->getListSize(); ++iParticle) {
736
737 B2WARNING("Two body decays with full kinematic constraint not yet correct - need to resolve strange covariance provided by BeamParameters!");
738
739 auto mother = list->getParticle(iParticle);
740
741 auto track12 = getParticlesTracks(mother->getDaughters());
742 if (track12.size() != 2) {
743 B2ERROR("Did not get exactly 2 fitted tracks. Skipping this mother in list " << listName);
744 continue;
745 }
746
747 auto dfdextPlusMinus = getTwoBodyToLocalTransform(*mother, motherMass);
748 std::vector<std::pair<std::vector<gbl::GblPoint>, TMatrixD> > daughters;
749
750 daughters.push_back({gbl->collectGblPoints(track12[0], track12[0]->getCardinalRep()), dfdextPlusMinus.first});
751 daughters.push_back({gbl->collectGblPoints(track12[1], track12[1]->getCardinalRep()), dfdextPlusMinus.second});
752
753 TMatrixDSym extCov(7); extCov.Zero();
754
755 // 3x3 IP vertex covariance
756 extCov.SetSub(0, 0, get<TMatrixDSym>(getPrimaryVertexAndCov()));
757
758 // 3x3 boost vector covariance
759 //NOTE: BeamSpot return covarince in variables (E, theta_x, theta_y)
760 // We need to transform it to our variables (px, py, pz)
761
762 TMatrixD dBoost_dVect(3, 3);
763 dBoost_dVect(0, 0) = 0.; dBoost_dVect(0, 1) = 1. / pz; dBoost_dVect(0, 2) = 0.;
764 dBoost_dVect(1, 0) = 0.; dBoost_dVect(1, 1) = 0.; dBoost_dVect(1, 2) = 1. / pz;
765 dBoost_dVect(2, 0) = pz / E; dBoost_dVect(2, 1) = 0.; dBoost_dVect(2, 2) = 0.;
766
767 TMatrixD dVect_dBoost(3, 3);
768 dVect_dBoost(0, 0) = 0.; dVect_dBoost(0, 1) = 0.; dVect_dBoost(0, 2) = E / pz;
769 dVect_dBoost(1, 0) = pz; dVect_dBoost(1, 1) = 0.; dVect_dBoost(1, 2) = 0.;
770 dVect_dBoost(2, 0) = 0.; dVect_dBoost(2, 1) = pz; dVect_dBoost(2, 2) = 0.;
771
772 TMatrixD covBoost(3, 3);
773 for (int i = 0; i < 3; ++i) {
774 for (int j = i; j < 3; ++j) {
775 covBoost(j, i) = covBoost(i, j) = (beam->getCovHER() + beam->getCovLER())(i, j);
776 }
777 }
778 //TODO: Temporary fix: if theta_x, theta_y covariance is zero, use arbitrary 10mrad^2
779// if (covBoost(1, 1) == 0.) covBoost(1, 1) = 1.;
780// if (covBoost(2, 2) == 0.) covBoost(2, 2) = 1.;
781 if (covBoost(1, 1) == 0.) covBoost(1, 1) = 1.e-4;
782 if (covBoost(2, 2) == 0.) covBoost(2, 2) = 1.e-4;
783
784 TMatrixD covVect = dBoost_dVect * covBoost * dVect_dBoost;
785
786 extCov.SetSub(3, 3, covVect);
787
788 extCov(6, 6) = motherWidth * motherWidth;
789 auto extPrec = extCov; extPrec.Invert();
790
791 TVectorD extMeasurements(7);
792 extMeasurements[0] = - (B2Vector3D(mother->getVertex()) - get<B2Vector3D>(getPrimaryVertexAndCov()))[0];
793 extMeasurements[1] = - (B2Vector3D(mother->getVertex()) - get<B2Vector3D>(getPrimaryVertexAndCov()))[1];
794 extMeasurements[2] = - (B2Vector3D(mother->getVertex()) - get<B2Vector3D>(getPrimaryVertexAndCov()))[2];
795 extMeasurements[3] = - (B2Vector3D(mother->getMomentum()) - (beam->getHER().Vect() + beam->getLER().Vect()))[0];
796 extMeasurements[4] = - (B2Vector3D(mother->getMomentum()) - (beam->getHER().Vect() + beam->getLER().Vect()))[1];
797 extMeasurements[5] = - (B2Vector3D(mother->getMomentum()) - (beam->getHER().Vect() + beam->getLER().Vect()))[2];
798 extMeasurements[6] = - (mother->getMass() - motherMass);
799
800 B2INFO("mother mass = " << mother->getMass() << " and beam mass = " << beam->getMass());
801
802 TMatrixD extDeriv(7, 9);
803 extDeriv.Zero();
804 // beam vertex constraint
805 extDeriv(0, 0) = 1.;
806 extDeriv(1, 1) = 1.;
807 extDeriv(2, 2) = 1.;
808 // beam kinematics constraint
809 extDeriv(3, 3) = 1.;
810 extDeriv(4, 4) = 1.;
811 extDeriv(5, 5) = 1.;
812 // beam inv. mass constraint
813 extDeriv(6, 8) = 1;
814
816 B2WARNING("Primary vertex+kinematics calibration not (yet?) fully implemented!");
817 B2WARNING("This code is highly experimental and has (un)known issues!");
818
819 // up to d(x,y,z,px,py,pz,theta,phi,M)/d(vx,vy,vz,theta_x,theta_y,E)
820 TMatrixD derivatives(9, 6);
821 std::vector<int> labels;
822 derivatives.Zero();
823
824 if (m_calibrateVertex) {
825 derivatives(0, 0) = 1.;
826 derivatives(1, 1) = 1.;
827 derivatives(2, 2) = 1.;
828 GlobalLabel label = GlobalLabel::construct<BeamSpot>(0, 0);
829 labels.push_back(label.setParameterId(1));
830 labels.push_back(label.setParameterId(2));
831 labels.push_back(label.setParameterId(3));
832 } else {
833 labels.push_back(0);
834 labels.push_back(0);
835 labels.push_back(0);
836 }
837
839 derivatives(3, 3) = mother->getMomentumMagnitude();
840 derivatives(4, 4) = mother->getMomentumMagnitude();
841 derivatives(8, 5) = (beam->getLER().E() + beam->getHER().E()) / beam->getMass();
842
843 GlobalLabel label = GlobalLabel::construct<BeamSpot>(0, 0);
844 labels.push_back(label.setParameterId(4)); //theta_x
845 labels.push_back(label.setParameterId(5)); //theta_y
846 labels.push_back(label.setParameterId(6)); //E
847
848 } else {
849 labels.push_back(0);
850 labels.push_back(0);
851 labels.push_back(0);
852 }
853
854 // Allow to disable BeamSpot externally
855 alignment::GlobalDerivatives globals(labels, derivatives);
856
857 // Add derivatives for vertex calibration to first point of first trajectory
858 // NOTE: use GlobalDerivatives operators vector<int> and TMatrixD which filter
859 // the derivatives to not pass those with zero labels (usefull to get rid of some params)
860 std::vector<int> lab(globals); TMatrixD der(globals);
861
862 // I want: dlocal/dext = dlocal/dtwobody * dtwobody/dext = dfdextPlusMinus * dtwobody/dext
863 TMatrixD dTwoBody_dExt(9, 7);
864 dTwoBody_dExt.Zero();
865 // beam vertex constraint
866 dTwoBody_dExt(0, 0) = 1.;
867 dTwoBody_dExt(1, 1) = 1.;
868 dTwoBody_dExt(2, 2) = 1.;
869 // beam kinematics constraint
870 dTwoBody_dExt(3, 3) = 1.;
871 dTwoBody_dExt(4, 4) = 1.;
872 dTwoBody_dExt(5, 5) = 1.;
873 // beam inv. mass constraint
874 dTwoBody_dExt(8, 6) = 1.;
875
876 const TMatrixD dLocal_dExt = dfdextPlusMinus.first * dTwoBody_dExt;
877 TMatrixD dLocal_dExt_T = dLocal_dExt; dLocal_dExt_T.T();
878
879 // The 5x7 transformation matrix d(q/p,u',v',u,v)/d(vx,vy,vz,px,py,pz,M) needs to be "inverted"
880 // to transform the covariance of the beamspot and boost vector of SuperKEKB into the local system
881 // of one GBL point - such that Millepede can align the beamspot (or even beam kinematics) if requested.
882 //
883 // I tested also other methods, but only the Singular Value Decomposition gives nice-enough results,
884 // with almost no code:
885 //
886 TDecompSVD svd(dLocal_dExt_T);
887 TMatrixD dExt_dLocal = svd.Invert().T();
888 //
889 // (dLocal_dExt * dExt_dLocal).Print(); // Check how close we are to unit matrix
890 //
891 // 5x5 matrix is as follows
892 //
893 // | 0 | 1 | 2 | 3 | 4 |
894 // ----------------------------------------------------------------------
895 // 0 | 1 -2.58e-17 6.939e-18 1.571e-17 -1.649e-19
896 // 1 | 1.787e-14 1 5.135e-16 -3.689e-16 -2.316e-18
897 // 2 | -1.776e-15 -7.806e-17 1 5.636e-17 6.193e-18
898 // 3 | -2.453e-15 7.26e-18 2.009e-16 1 -1.14e-16
899 // 4 | -1.689e-14 -9.593e-17 -2.317e-15 -3.396e-17 1
900 //
901 // It took me half a day to find out how to do this with 2 lines of code (3 with the include).
902 // Source: ROOT macro example - actually found at:
903 // <https://root.cern.ch/root/html/tutorials/matrix/solveLinear.C.html>
904 for (int i = 0; i < 7; ++i) {
905 for (int j = 0; j < 5; ++j) {
906 if (fabs(dExt_dLocal(i, j)) < 1.e-6)
907 dExt_dLocal(i, j) = 0.;
908 }
909 }
910 const TVectorD locRes = dLocal_dExt * extMeasurements;
911 const TMatrixD locPrec = dLocal_dExt * extPrec * dExt_dLocal;
912
913 TMatrixDSym locPrecSym(5); locPrecSym.Zero();
914 for (int i = 0; i < 5; ++i) {
915 for (int j = i; j < 5; ++j) {
916 //locPrecSym(j, i) = locPrecSym(i, j) = locPrec(i, j);
917 locPrecSym(j, i) = locPrecSym(i, j) = (fabs(locPrec(i, j)) > 1.e-6) ? locPrec(i, j) : 0.;
918 }
919 }
920
921 daughters[0].first[0].addMeasurement(locRes, locPrecSym);
922 if (!lab.empty())
923 daughters[0].first[0].addGlobals(lab, dfdextPlusMinus.first * der);
924
925 //TODO: Understand this: either find a bug somewhere or improve the parametrization or .... ?
926 // This should be enough, but the parametrization seems to fail for nearly horizontal pairs...
927 //gbl::GblTrajectory combined(daughters);
928 // This should not be needed, it actually seems to make worse Chi2/NDF, but GBL does not fail.
929 // The measurement added just to be able to add the global derivatives (done just above) is redundant
930 // to the external measurement added here:
931 gbl::GblTrajectory combined(daughters, extDeriv, extMeasurements, extPrec);
932 //combined.printTrajectory(1000);
933 //combined.printPoints(1000);
934
935 combined.fit(chi2, ndf, lostWeight);
936 getObjectPtr<TH1I>("ndf")->Fill(ndf);
937 getObjectPtr<TH1F>("chi2_per_ndf")->Fill(chi2 / double(ndf));
938 getObjectPtr<TH1F>("pval")->Fill(TMath::Prob(chi2, ndf));
939 if (m_eventT0.isValid() && m_eventT0->hasEventT0()) {
940 evt0 = m_eventT0->getEventT0();
941 getObjectPtr<TH1F>("evt0")->Fill(evt0);
942 }
943
944
945 B2RESULT("Full kinematic-constrained fit (calibration version) results NDF = " << ndf << " Chi2/NDF = " << chi2 / double(ndf));
946
947 if (TMath::Prob(chi2, ndf) > m_minPValue) storeTrajectory(combined);
948
949 } else {
950
951 gbl::GblTrajectory combined(daughters, extDeriv, extMeasurements, extPrec);
952 //combined.printTrajectory(1000);
953 //combined.printPoints(1000);
954
955 combined.fit(chi2, ndf, lostWeight);
956 getObjectPtr<TH1I>("ndf")->Fill(ndf);
957 getObjectPtr<TH1F>("chi2_per_ndf")->Fill(chi2 / double(ndf));
958 getObjectPtr<TH1F>("pval")->Fill(TMath::Prob(chi2, ndf));
959 if (m_eventT0.isValid() && m_eventT0->hasEventT0()) {
960 evt0 = m_eventT0->getEventT0();
961 getObjectPtr<TH1F>("evt0")->Fill(evt0);
962 }
963
964
965 B2RESULT("Full kinematic-constrained fit results NDF = " << ndf << " Chi2/NDF = " << chi2 / double(ndf));
966
967 if (TMath::Prob(chi2, ndf) > m_minPValue) storeTrajectory(combined);
968 }
969 }
970 }
971}
R E
internal precision of FFTW codelets
Class for accessing objects in the database.
Definition: DBObjPtr.h:21
static EvtGenDatabasePDG * Instance()
Instance method that loads the EvtGen table.
Class to convert to/from global labels for Millepede II to/from detector & parameter identificators.
Definition: GlobalLabel.h:41
TMatrixD getLocalToGlobalTransform(const genfit::MeasuredStateOnPlane &msop)
Compute the transformation matrix d(x,y,z,px,py,pz)/d(q/p,u',v',u,v) from state at first track point ...
StoreObjPtr< EventT0 > m_eventT0
Optional input for EventT0.
std::string getUniqueMilleName()
Make a name for mille binary (encodes module name + starting exp, run and event + process id)
std::vector< genfit::Track * > getParticlesTracks(std::vector< Particle * > particles, bool addVertexPoint=true)
Get all useable tracks for particles.
bool fitRecoTrack(RecoTrack &recoTrack, Particle *particle=nullptr)
Fit given RecoTrack with GBL.
TMatrixD getGlobalToLocalTransform(const genfit::MeasuredStateOnPlane &msop)
Compute the transformation matrix d(q/p,u',v',u,v)/d(x,y,z,px,py,pz) from state at first track point ...
std::tuple< B2Vector3D, TMatrixDSym > getPrimaryVertexAndCov() const
Get the primary vertex position estimation and its size from BeamSpot.
void storeTrajectory(gbl::GblTrajectory &trajectory)
Write down a GBL trajectory (to TTree or binary file)
StoreObjPtr< EventMetaData > m_evtMetaData
Required object pointer to EventMetaData.
std::pair< TMatrixD, TMatrixD > getTwoBodyToLocalTransform(Particle &mother, double motherMass)
Compute the transformation matrices d(q/p,u'v',u,v)/d(vx,vy,vz,px,py,pz,theta,phi,...
void updateMassWidthIfSet(std::string listName, double &mass, double &width)
Update mass and width of the particle (mother in list) with user custom-defined values.
static genfit::Track & getGenfitTrack(RecoTrack &recoTrack)
Give access to the RecoTrack's genfit::Track.
Definition: RecoTrack.cc:404
Accessor to arrays stored in the data store.
Definition: StoreArray.h:113
Type-safe access to single objects in the data store.
Definition: StoreObjPtr.h:96
static const double GeV
Standard of [energy, momentum, mass].
Definition: Unit.h:51
void preCollect(const EventMetaData &emd)
Notice manager of a comming event (from MillepedeCollector)
Definition: Manager.cc:98
static GlobalCalibrationManager & getInstance()
Get instance of the Manager auto& gcm = GlobalCalibrationManager::getInstance();.
Definition: Manager.cc:27
B2Vector3< double > B2Vector3D
typedef for common usage with double
Definition: B2Vector3.h:516
double sqrt(double a)
sqrt for double
Definition: beamHelpers.h:28

◆ def_beginRun()

virtual void def_beginRun ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 426 of file Module.h.

426{ beginRun(); }
virtual void beginRun()
Called when entering a new run.
Definition: Module.h:147

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 439 of file Module.h.

439{ endRun(); }
virtual void endRun()
This method is called if the current run ends.
Definition: Module.h:166

◆ def_event()

virtual void def_event ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 432 of file Module.h.

432{ event(); }
virtual void event()
This method is the core of the module.
Definition: Module.h:157

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 420 of file Module.h.

420{ initialize(); }
virtual void initialize()
Initialize the Module.
Definition: Module.h:109

◆ def_terminate()

virtual void def_terminate ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 445 of file Module.h.

445{ terminate(); }
virtual void terminate()
This method is called at the end of the event processing.
Definition: Module.h:176

◆ defineHisto()

void defineHisto ( )
finalvirtualinherited

Runs due to HistoManager, allows us to discover the correct file.

Reimplemented from HistoModule.

Definition at line 127 of file CalibrationCollectorModule.cc.

128{
130 m_dir = gDirectory->mkdir(getName().c_str(), "", true);
132 B2INFO("Saving output to TDirectory " << m_dir->GetPath());
133 B2DEBUG(100, "Creating directories for individual collector objects.");
135 m_runRange = new RunRange();
137 m_runRange->SetName(Calibration::RUN_RANGE_OBJ_NAME.c_str());
138 m_dir->Add(m_runRange);
139 }
141}
void setDirectory(TDirectory *dir)
Change the directory that we will be using to find/store all our objects, we don't own it.
TDirectory * m_dir
The top TDirectory that collector objects for this collector will be stored beneath.
virtual void inDefineHisto()
Replacement for defineHisto(). Do anything you would normally do in defineHisto here.
static bool isWorkerProcess()
Return true if the process is a worker process.
Definition: ProcHandler.cc:230
static bool parallelProcessingUsed()
Returns true if multiple processes have been spawned, false in single-core mode.
Definition: ProcHandler.cc:226
Mergeable object holding (unique) set of (exp,run) pairs.
Definition: RunRange.h:25
void setGranularity(const std::string &granularity)
Set the m_granularity to an allowed value.
Definition: RunRange.h:100
void createDirectories()
Each object gets its own TDirectory under the main manager directory to store its objects.

◆ endRun()

void endRun ( void  )
finalvirtualinherited

Write the current collector objects to a file and clear their memory.

Reimplemented from HistoModule.

Definition at line 143 of file CalibrationCollectorModule.cc.

144{
145 closeRun();
146 // Moving between runs possibly creates new objects if getObjectPtr is called and granularity is run
147 // So we should write and clear the current memory objects.
148 if (m_granularity == "run") {
149 ExpRun expRun = make_pair(m_emd->getExperiment(), m_emd->getRun());
152 }
153}
virtual void closeRun()
Replacement for endRun(). Do anything you would normally do in endRun here.
void clearCurrentObjects(const Calibration::ExpRun &expRun)
Deletes all in-memory objects in the exprun directories for all the collector objects we know about.
void writeCurrentObjects(const Calibration::ExpRun &expRun)
For each templated object we know about, we find an in memory object for this exprun and write to the...

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 96 of file Module.cc.

97{
98 if (m_conditions.empty()) return false;
99
100 //okay, a condition was set for this Module...
101 if (!m_hasReturnValue) {
102 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
103 }
104
105 for (const auto& condition : m_conditions) {
106 if (condition.evaluate(m_returnValue)) {
107 return true;
108 }
109 }
110 return false;
111}
int m_returnValue
The return value.
Definition: Module.h:519
bool m_hasReturnValue
True, if the return value is set.
Definition: Module.h:518

◆ event()

void event ( void  )
finalvirtualinherited

Check current experiment and run and update if needed, fill into RunRange and collect()

Reimplemented from HistoModule.

Definition at line 52 of file CalibrationCollectorModule.cc.

53{
54 // Should we collect data this event based on the number collected in the run?
56 // If yes, does our preScale return true?
57 if (getPreScaleChoice()) {
58 collect();
59 // Since we collected, do we care about incrementing the number of events collected?
60 if (m_maxEventsPerRun > -1) {
61 (*m_eventsCollectedInRun) += 1;
62 // Now that we incremented, have we exceeded our maximum collected events in this run?
64 // If we have, we should skip collection until further notice
65 B2INFO("Reached maximum number of events processed by collector for this run ("
67 << " >= "
69 << "). Turning off collection.");
70 m_runCollectOnRun = false;
71 }
72 }
73 }
74 }
75}
virtual void collect()
Replacement for event(). Fill you calibration data objects here.
bool getPreScaleChoice()
I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values.

◆ exposePythonAPI()

void exposePythonAPI ( )
staticinherited

Exposes methods of the Module class to Python.

Definition at line 325 of file Module.cc.

326{
327 // to avoid confusion between std::arg and boost::python::arg we want a shorthand namespace as well
328 namespace bp = boost::python;
329
330 docstring_options options(true, true, false); //userdef, py sigs, c++ sigs
331
332 void (Module::*setReturnValueInt)(int) = &Module::setReturnValue;
333
334 enum_<Module::EAfterConditionPath>("AfterConditionPath",
335 R"(Determines execution behaviour after a conditional path has been executed:
336
337.. attribute:: END
338
339 End processing of this path after the conditional path. (this is the default for if_value() etc.)
340
341.. attribute:: CONTINUE
342
343 After the conditional path, resume execution after this module.)")
344 .value("END", Module::EAfterConditionPath::c_End)
345 .value("CONTINUE", Module::EAfterConditionPath::c_Continue)
346 ;
347
348 /* Do not change the names of >, <, ... we use them to serialize conditional pathes */
349 enum_<Belle2::ModuleCondition::EConditionOperators>("ConditionOperator")
356 ;
357
358 enum_<Module::EModulePropFlags>("ModulePropFlags",
359 R"(Flags to indicate certain low-level features of modules, see :func:`Module.set_property_flags()`, :func:`Module.has_properties()`. Most useful flags are:
360
361.. attribute:: PARALLELPROCESSINGCERTIFIED
362
363 This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)
364
365.. attribute:: HISTOGRAMMANAGER
366
367 This module is used to manage histograms accumulated by other modules
368
369.. attribute:: TERMINATEINALLPROCESSES
370
371 When using parallel processing, call this module's terminate() function in all processes. This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.
372)")
373 .value("INPUT", Module::EModulePropFlags::c_Input)
374 .value("OUTPUT", Module::EModulePropFlags::c_Output)
375 .value("PARALLELPROCESSINGCERTIFIED", Module::EModulePropFlags::c_ParallelProcessingCertified)
376 .value("HISTOGRAMMANAGER", Module::EModulePropFlags::c_HistogramManager)
377 .value("INTERNALSERIALIZER", Module::EModulePropFlags::c_InternalSerializer)
378 .value("TERMINATEINALLPROCESSES", Module::EModulePropFlags::c_TerminateInAllProcesses)
379 ;
380
381 //Python class definition
382 class_<Module, PyModule> module("Module", R"(
383Base class for Modules.
384
385A module is the smallest building block of the framework.
386A typical event processing chain consists of a Path containing
387modules. By inheriting from this base class, various types of
388modules can be created. To use a module, please refer to
389:func:`Path.add_module()`. A list of modules is available by running
390``basf2 -m`` or ``basf2 -m package``, detailed information on parameters is
391given by e.g. ``basf2 -m RootInput``.
392
393The 'Module Development' section in the manual provides detailed information
394on how to create modules, setting parameters, or using return values/conditions:
395https://xwiki.desy.de/xwiki/rest/p/f4fa4/#HModuleDevelopment
396
397)");
398 module
399 .def("__str__", &Module::getPathString)
400 .def("name", &Module::getName, return_value_policy<copy_const_reference>(),
401 "Returns the name of the module. Can be changed via :func:`set_name() <Module.set_name()>`, use :func:`type() <Module.type()>` for identifying a particular module class.")
402 .def("type", &Module::getType, return_value_policy<copy_const_reference>(),
403 "Returns the type of the module (i.e. class name minus 'Module')")
404 .def("set_name", &Module::setName, args("name"), R"(
405Set custom name, e.g. to distinguish multiple modules of the same type.
406
407>>> path.add_module('EventInfoSetter')
408>>> ro = path.add_module('RootOutput', branchNames=['EventMetaData'])
409>>> ro.set_name('RootOutput_metadata_only')
410>>> print(path)
411[EventInfoSetter -> RootOutput_metadata_only]
412
413)")
414 .def("description", &Module::getDescription, return_value_policy<copy_const_reference>(),
415 "Returns the description of this module.")
416 .def("package", &Module::getPackage, return_value_policy<copy_const_reference>(),
417 "Returns the package this module belongs to.")
418 .def("available_params", &_getParamInfoListPython,
419 "Return list of all module parameters as `ModuleParamInfo` instances")
420 .def("has_properties", &Module::hasProperties, (bp::arg("properties")),
421 R"DOCSTRING(Allows to check if the module has the given properties out of `ModulePropFlags` set.
422
423>>> if module.has_properties(ModulePropFlags.PARALLELPROCESSINGCERTIFIED):
424>>> ...
425
426Parameters:
427 properties (int): bitmask of `ModulePropFlags` to check for.
428)DOCSTRING")
429 .def("set_property_flags", &Module::setPropertyFlags, args("property_mask"),
430 "Set module properties in the form of an OR combination of `ModulePropFlags`.");
431 {
432 // python signature is too crowded, make ourselves
433 docstring_options subOptions(true, false, false); //userdef, py sigs, c++ sigs
434 module
435 .def("if_value", &Module::if_value,
436 (bp::arg("expression"), bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
437 R"DOCSTRING(if_value(expression, condition_path, after_condition_path=AfterConditionPath.END)
438
439Sets a conditional sub path which will be executed after this
440module if the return value set in the module passes the given ``expression``.
441
442Modules can define a return value (int or bool) using ``setReturnValue()``,
443which can be used in the steering file to split the Path based on this value, for example
444
445>>> module_with_condition.if_value("<1", another_path)
446
447In case the return value of the ``module_with_condition`` for a given event is
448less than 1, the execution will be diverted into ``another_path`` for this event.
449
450You could for example set a special return value if an error occurs, and divert
451the execution into a path containing :b2:mod:`RootOutput` if it is found;
452saving only the data producing/produced by the error.
453
454After a conditional path has executed, basf2 will by default stop processing
455the path for this event. This behaviour can be changed by setting the
456``after_condition_path`` argument.
457
458Parameters:
459 expression (str): Expression to determine if the conditional path should be executed.
460 This should be one of the comparison operators ``<``, ``>``, ``<=``,
461 ``>=``, ``==``, or ``!=`` followed by a numerical value for the return value
462 condition_path (Path): path to execute in case the expression is fulfilled
463 after_condition_path (AfterConditionPath): What to do once the ``condition_path`` has been executed.
464)DOCSTRING")
465 .def("if_false", &Module::if_false,
466 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
467 R"DOC(if_false(condition_path, after_condition_path=AfterConditionPath.END)
468
469Sets a conditional sub path which will be executed after this module if
470the return value of the module evaluates to False. This is equivalent to
471calling `if_value` with ``expression=\"<1\"``)DOC")
472 .def("if_true", &Module::if_true,
473 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
474 R"DOC(if_true(condition_path, after_condition_path=AfterConditionPath.END)
475
476Sets a conditional sub path which will be executed after this module if
477the return value of the module evaluates to True. It is equivalent to
478calling `if_value` with ``expression=\">=1\"``)DOC");
479 }
480 module
481 .def("has_condition", &Module::hasCondition,
482 "Return true if a conditional path has been set for this module "
483 "using `if_value`, `if_true` or `if_false`")
484 .def("get_all_condition_paths", &_getAllConditionPathsPython,
485 "Return a list of all conditional paths set for this module using "
486 "`if_value`, `if_true` or `if_false`")
487 .def("get_all_conditions", &_getAllConditionsPython,
488 "Return a list of all conditional path expressions set for this module using "
489 "`if_value`, `if_true` or `if_false`")
490 .add_property("logging", make_function(&Module::getLogConfig, return_value_policy<reference_existing_object>()),
@ c_GE
Greater or equal than: ">=".
@ c_SE
Smaller or equal than: "<=".
@ c_GT
Greater than: ">"
@ c_NE
Not equal: "!=".
@ c_EQ
Equal: "=" or "=="
@ c_ST
Smaller than: "<"
Base class for Modules.
Definition: Module.h:72
LogConfig & getLogConfig()
Returns the log system configuration.
Definition: Module.h:225
void if_value(const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
Add a condition to the module.
Definition: Module.cc:79
void if_true(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to set the condition of the module.
Definition: Module.cc:90
void setReturnValue(int value)
Sets the return value for this module as integer.
Definition: Module.cc:220
void setLogConfig(const LogConfig &logConfig)
Set the log system configuration.
Definition: Module.h:230
const std::string & getDescription() const
Returns the description of the module.
Definition: Module.h:202
void if_false(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to add a condition to the module.
Definition: Module.cc:85
bool hasCondition() const
Returns true if at least one condition was set for the module.
Definition: Module.h:311
const std::string & getPackage() const
Returns the package this module is in.
Definition: Module.h:197
void setName(const std::string &name)
Set the name of the module.
Definition: Module.h:214
bool hasProperties(unsigned int propertyFlags) const
Returns true if all specified property flags are available in this module.
Definition: Module.cc:160
std::string getPathString() const override
return the module name.
Definition: Module.cc:192

◆ finish()

void finish ( )
overridevirtual

Register mille binaries in file catalog.

Reimplemented from CalibrationCollectorModule.

Definition at line 983 of file MillepedeCollectorModule.cc.

984{
986
988 if (!fileMetaData.isValid()) {
989 B2ERROR("Cannot register binaries in FileCatalog.");
990 return;
991 }
992
993
994 const std::vector<string> parents = {fileMetaData->getLfn()};
995 for (auto binary : getObjectPtr<MilleData>("mille")->getFiles()) {
996 FileMetaData milleMetaData(*fileMetaData);
997 // We reset filename to be set directly by the registerFile procedure
998 milleMetaData.setLfn("");
999 milleMetaData.setParents(parents);
1000 FileCatalog::Instance().registerFile(binary, milleMetaData);
1001 }
1002
1003}
@ c_Persistent
Object is available during entire execution time.
Definition: DataStore.h:60
static FileCatalog & Instance()
Static method to get a reference to the FileCatalog instance.
Definition: FileCatalog.cc:23
virtual bool registerFile(const std::string &fileName, FileMetaData &metaData, const std::string &oldLFN="")
Register a file in the (local) file catalog.
Definition: FileCatalog.cc:90
Metadata information about a file.
Definition: FileMetaData.h:29
void writeConstraints(std::string txtFilename)
Write-out complete hierarchy to a text file.
Definition: Manager.cc:169

◆ fitRecoTrack()

bool fitRecoTrack ( RecoTrack recoTrack,
Particle particle = nullptr 
)

Fit given RecoTrack with GBL.

Parameters
recoTrackA RecoTrack object to be fitted
particlePointer to reconstructed daughter particle updated by vertex fit OR nullptr for single track
Returns
true for success, false when some problems occured (or track too much down-weighted by previous DAF fit)

Definition at line 1036 of file MillepedeCollectorModule.cc.

1037{
1038 try {
1039 // For already fitted tracks, try to get fitted (DAF) weights for CDC
1040 if (m_updateCDCWeights && recoTrack.getNumberOfCDCHits() && recoTrack.getTrackFitStatus()
1041 && recoTrack.getTrackFitStatus()->isFitted()) {
1042 double sumCDCWeights = recoTrack.getNumberOfCDCHits(); // start with full weights
1043 // Do the hits synchronisation
1044 auto relatedRecoHitInformation =
1046
1047 for (RecoHitInformation& recoHitInformation : relatedRecoHitInformation) {
1048
1049 if (recoHitInformation.getFlag() == RecoHitInformation::c_pruned) {
1050 B2FATAL("Found pruned point in RecoTrack. Pruned tracks cannot be used in MillepedeCollector.");
1051 }
1052
1053 if (recoHitInformation.getTrackingDetector() != RecoHitInformation::c_CDC) continue;
1054
1055 const genfit::TrackPoint* trackPoint = recoTrack.getCreatedTrackPoint(&recoHitInformation);
1056 if (trackPoint) {
1057 if (not trackPoint->hasFitterInfo(recoTrack.getCardinalRepresentation()))
1058 continue;
1059 auto kalmanFitterInfo = dynamic_cast<genfit::KalmanFitterInfo*>(trackPoint->getFitterInfo());
1060 if (not kalmanFitterInfo) {
1061 continue;
1062 } else {
1063 std::vector<double> weights = kalmanFitterInfo->getWeights();
1064 if (weights.size() == 2) {
1065 if (weights.at(0) > weights.at(1))
1066 recoHitInformation.setRightLeftInformation(RecoHitInformation::c_left);
1067 else if (weights.at(0) < weights.at(1))
1068 recoHitInformation.setRightLeftInformation(RecoHitInformation::c_right);
1069
1070 double weightLR = weights.at(0) + weights.at(1);
1071 if (weightLR < m_minCDCHitWeight) recoHitInformation.setUseInFit(false);
1072 sumCDCWeights += weightLR - 1.; // reduce weight sum if weightLR<1
1073 }
1074 }
1075 }
1076 }
1077
1078 double usedCDCHitFraction = sumCDCWeights / double(recoTrack.getNumberOfCDCHits());
1079 getObjectPtr<TH1F>("cdc_hit_fraction")->Fill(usedCDCHitFraction);
1080 if (usedCDCHitFraction < m_minUsedCDCHitFraction)
1081 return false;
1082 }
1083 } catch (...) {
1084 B2ERROR("Error in checking DAF weights from previous fit to resolve hit ambiguity. Why? Failed fit points in DAF? Skip track to be sure.");
1085 return false;
1086 }
1087
1088 std::shared_ptr<genfit::GblFitter> gbl(new genfit::GblFitter());
1089 gbl->setOptions(m_internalIterations, true, true, m_externalIterations, m_recalcJacobians);
1090 gbl->setTrackSegmentController(new GblMultipleScatteringController);
1091
1092 MeasurementAdder factory("", "", "", "", "");
1093
1094 // We need the store arrays
1100
1101 // Create the genfit::MeasurementFactory
1102 genfit::MeasurementFactory<genfit::AbsMeasurement> genfitMeasurementFactory;
1103
1104 // Add producer for alignable RecoHits to factory
1105 if (pxdHits.isOptional()) {
1106 genfit::MeasurementProducer <RecoHitInformation::UsedPXDHit, AlignablePXDRecoHit>* PXDProducer = new genfit::MeasurementProducer
1108 genfitMeasurementFactory.addProducer(Const::PXD, PXDProducer);
1109 }
1110
1111 if (svdHits.isOptional()) {
1112 genfit::MeasurementProducer <RecoHitInformation::UsedSVDHit, AlignableSVDRecoHit>* SVDProducer = new genfit::MeasurementProducer
1114 genfitMeasurementFactory.addProducer(Const::SVD, SVDProducer);
1115 }
1116
1117 if (cdcHits.isOptional()) {
1118 genfit::MeasurementProducer <RecoHitInformation::UsedCDCHit, AlignableCDCRecoHit>* CDCProducer = new genfit::MeasurementProducer
1120 genfitMeasurementFactory.addProducer(Const::CDC, CDCProducer);
1121 }
1122
1123 if (bklmHits.isOptional()) {
1124 genfit::MeasurementProducer <RecoHitInformation::UsedBKLMHit, AlignableBKLMRecoHit>* BKLMProducer = new genfit::MeasurementProducer
1126 genfitMeasurementFactory.addProducer(Const::BKLM, BKLMProducer);
1127 }
1128
1129 if (eklmHits.isOptional()) {
1130 genfit::MeasurementProducer <RecoHitInformation::UsedEKLMHit, AlignableEKLMRecoHit>* EKLMProducer = new genfit::MeasurementProducer
1132 genfitMeasurementFactory.addProducer(Const::EKLM, EKLMProducer);
1133 }
1134
1135
1136 // Create the measurement creators
1137 std::vector<std::shared_ptr<PXDBaseMeasurementCreator>> pxdMeasurementCreators = { std::shared_ptr<PXDBaseMeasurementCreator>(new PXDCoordinateMeasurementCreator(genfitMeasurementFactory)) };
1138 std::vector<std::shared_ptr<SVDBaseMeasurementCreator>> svdMeasurementCreators = { std::shared_ptr<SVDBaseMeasurementCreator>(new SVDCoordinateMeasurementCreator(genfitMeasurementFactory)) };
1139 // TODO: Create a new MeasurementCreator based on SVDBaseMeasurementCreator (or on SVDCoordinateMeasurementCreator), which does the combination on the fly.
1140
1141 std::vector<std::shared_ptr<CDCBaseMeasurementCreator>> cdcMeasurementCreators = { std::shared_ptr<CDCBaseMeasurementCreator>(new CDCCoordinateMeasurementCreator(genfitMeasurementFactory)) };
1142 std::vector<std::shared_ptr<BKLMBaseMeasurementCreator>> bklmMeasurementCreators = { std::shared_ptr<BKLMBaseMeasurementCreator>(new BKLMCoordinateMeasurementCreator(genfitMeasurementFactory)) };
1143 std::vector<std::shared_ptr<EKLMBaseMeasurementCreator>> eklmMeasurementCreators = { std::shared_ptr<EKLMBaseMeasurementCreator>(new EKLMCoordinateMeasurementCreator(genfitMeasurementFactory)) };
1144
1145 // TODO: Or put it in here and leave the svdMeasurementCreators empty.
1146 std::vector<std::shared_ptr<BaseMeasurementCreator>> additionalMeasurementCreators = {};
1147 factory.resetMeasurementCreators(pxdMeasurementCreators, svdMeasurementCreators, cdcMeasurementCreators, bklmMeasurementCreators,
1148 eklmMeasurementCreators, additionalMeasurementCreators);
1149 factory.addMeasurements(recoTrack);
1150
1151 auto& gfTrack = RecoTrackGenfitAccess::getGenfitTrack(recoTrack);
1152
1153 int currentPdgCode = TrackFitter::createCorrectPDGCodeForChargedStable(Const::muon, recoTrack);
1154 if (particle)
1155 currentPdgCode = particle->getPDGCode();
1156
1157 genfit::AbsTrackRep* trackRep = RecoTrackGenfitAccess::createOrReturnRKTrackRep(recoTrack, currentPdgCode);
1158 gfTrack.setCardinalRep(gfTrack.getIdForRep(trackRep));
1159
1160 if (particle) {
1161 B2Vector3D vertexPos = particle->getVertex();
1162 B2Vector3D vertexMom = particle->getMomentum();
1163 gfTrack.setStateSeed(vertexPos, vertexMom);
1164
1165 genfit::StateOnPlane vertexSOP(gfTrack.getCardinalRep());
1166 B2Vector3D vertexRPhiDir(vertexPos[0], vertexPos[1], 0);
1167 B2Vector3D vertexZDir(0, 0, vertexPos[2]);
1168 //FIXME: This causes problem to current GBL version in genfit -> needs update of GBL to re-enable
1169 // genfit::SharedPlanePtr vertexPlane(new genfit::DetPlane(vertexPos, vertexRPhiDir, vertexZDir));
1170 //This works instead fine:
1171 genfit::SharedPlanePtr vertexPlane(new genfit::DetPlane(vertexPos, vertexMom));
1172
1173 vertexSOP.setPlane(vertexPlane);
1174 vertexSOP.setPosMom(vertexPos, vertexMom);
1175 TMatrixDSym vertexCov(5);
1176 vertexCov.UnitMatrix();
1177 // By using negative covariance no measurement is added to GBL. But this first point
1178 // is then used as additional point in trajectory at the assumed point of its fitted vertex
1179 vertexCov *= -1.;
1180 genfit::MeasuredStateOnPlane mop(vertexSOP, vertexCov);
1181 genfit::FullMeasurement* vertex = new genfit::FullMeasurement(mop, Const::IR);
1182 gfTrack.insertMeasurement(vertex, 0);
1183 }
1184
1185 try {
1186 for (unsigned int i = 0; i < gfTrack.getNumPoints() - 1; ++i) {
1187 //if (gfTrack.getPointWithMeasurement(i)->getNumRawMeasurements() != 1)
1188 // continue;
1189 genfit::PlanarMeasurement* planarMeas1 = dynamic_cast<genfit::PlanarMeasurement*>(gfTrack.getPointWithMeasurement(
1190 i)->getRawMeasurement(0));
1191 genfit::PlanarMeasurement* planarMeas2 = dynamic_cast<genfit::PlanarMeasurement*>(gfTrack.getPointWithMeasurement(
1192 i + 1)->getRawMeasurement(0));
1193
1194 if (planarMeas1 != NULL && planarMeas2 != NULL &&
1195 planarMeas1->getDetId() == planarMeas2->getDetId() &&
1196 planarMeas1->getPlaneId() != -1 && // -1 is default plane id
1197 planarMeas1->getPlaneId() == planarMeas2->getPlaneId()) {
1198 Belle2::AlignableSVDRecoHit* hit1 = dynamic_cast<Belle2::AlignableSVDRecoHit*>(planarMeas1);
1199 Belle2::AlignableSVDRecoHit* hit2 = dynamic_cast<Belle2::AlignableSVDRecoHit*>(planarMeas2);
1200 if (hit1 && hit2) {
1201 Belle2::AlignableSVDRecoHit* hitU(NULL);
1202 Belle2::AlignableSVDRecoHit* hitV(NULL);
1203 // We have to decide U/V now (else AlignableSVDRecoHit2D could throw FATAL)
1204 if (hit1->isU() && !hit2->isU()) {
1205 hitU = hit1;
1206 hitV = hit2;
1207 } else if (!hit1->isU() && hit2->isU()) {
1208 hitU = hit2;
1209 hitV = hit1;
1210 } else {
1211 continue;
1212 }
1214 // insert measurement before point i (increases number of currect point to i+1)
1215 gfTrack.insertMeasurement(hit, i);
1216 // now delete current point (at its original place, we have the new 2D recohit)
1217 gfTrack.deletePoint(i + 1);
1218 gfTrack.deletePoint(i + 1);
1219 }
1220 }
1221 }
1222 } catch (std::exception& e) {
1223 B2ERROR(e.what());
1224 B2ERROR("SVD Cluster combination failed. This is symptomatic of pruned tracks. MillepedeCollector cannot process pruned tracks.");
1225 return false;
1226 }
1227
1228 try {
1229 gbl->processTrackWithRep(&gfTrack, gfTrack.getCardinalRep(), true);
1230 } catch (genfit::Exception& e) {
1231 B2ERROR(e.what());
1232 return false;
1233 } catch (...) {
1234 B2ERROR("GBL fit failed.");
1235 return false;
1236 }
1237
1238 return true;
1239}
This class is used to transfer CDC information to the track fit and Millepede.
This class is used to transfer PXD information to the track fit.
This class is used to transfer SVD information to the track fit.
This class is used to transfer SVD information to the track fit.
static const ChargedStable muon
muon particle
Definition: Const.h:660
TrackSegmentController for use with GblFitter in Belle2.
Algorithm class to translate the added detector hits (e.g.
This class stores additional information to every CDC/SVD/PXD hit stored in a RecoTrack.
CDCHit UsedCDCHit
Define, use of CDC hits as CDC hits (for symmetry).
EKLMAlignmentHit UsedEKLMHit
Define, use of EKLMHit2d as EKLM hits.
KLMHit2d UsedBKLMHit
Define, use of KLMHit2d as BKLM hits.
PXDCluster UsedPXDHit
Define, use of clusters or true hits for PXD.
SVDCluster UsedSVDHit
Define, use of clusters or true hits for SVD.
static genfit::AbsTrackRep * createOrReturnRKTrackRep(RecoTrack &recoTrack, int PDGcode)
Checks if a TrackRap for the PDG id of the RecoTrack (and its charge conjugate) does already exit and...
Definition: RecoTrack.cc:409
genfit::AbsTrackRep * getCardinalRepresentation() const
Get a pointer to the cardinal track representation. You are not allowed to modify or delete it!
Definition: RecoTrack.h:631
unsigned int getNumberOfCDCHits() const
Return the number of cdc hits.
Definition: RecoTrack.h:427
const std::string & getStoreArrayNameOfRecoHitInformation() const
Name of the store array of the reco hit information.
Definition: RecoTrack.h:747
const genfit::TrackPoint * getCreatedTrackPoint(const RecoHitInformation *recoHitInformation) const
Get a pointer to the TrackPoint that was created from this hit.
Definition: RecoTrack.cc:230
const genfit::FitStatus * getTrackFitStatus(const genfit::AbsTrackRep *representation=nullptr) const
Return the track fit status for the given representation or for the cardinal one. You are not allowed...
Definition: RecoTrack.h:621
RelationVector< TO > getRelationsTo(const std::string &name="", const std::string &namedRelation="") const
Get the relations that point from this object to another store array.
bool isU() const
Is the coordinate u or v?
Definition: SVDRecoHit.h:91
static int createCorrectPDGCodeForChargedStable(const Const::ChargedStable &particleType, const RecoTrack &recoTrack)
Helper function to multiply the PDG code of a charged stable with the charge of the reco track (if ne...
Definition: TrackFitter.cc:24
CoordinateMeasurementCreator< RecoHitInformation::UsedSVDHit, Const::SVD > SVDCoordinateMeasurementCreator
Hit to reco hit measurement creator for the SVD.
CoordinateMeasurementCreator< RecoHitInformation::UsedPXDHit, Const::PXD > PXDCoordinateMeasurementCreator
Hit to reco hit measurement creator for the PXD.
CoordinateMeasurementCreator< RecoHitInformation::UsedBKLMHit, Const::BKLM > BKLMCoordinateMeasurementCreator
Hit to reco hit measurement creator for the BKLM.
CoordinateMeasurementCreator< RecoHitInformation::UsedCDCHit, Const::CDC > CDCCoordinateMeasurementCreator
Needed for templating.
CoordinateMeasurementCreator< RecoHitInformation::UsedEKLMHit, Const::EKLM > EKLMCoordinateMeasurementCreator
Hit to reco hit measurement creator for the EKLM.

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 133 of file Module.cc.

134{
135 if (m_conditions.empty()) return EAfterConditionPath::c_End;
136
137 //okay, a condition was set for this Module...
138 if (!m_hasReturnValue) {
139 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
140 }
141
142 for (const auto& condition : m_conditions) {
143 if (condition.evaluate(m_returnValue)) {
144 return condition.getAfterConditionPath();
145 }
146 }
147
148 return EAfterConditionPath::c_End;
149}

◆ getAllConditionPaths()

std::vector< std::shared_ptr< Path > > getAllConditionPaths ( ) const
inherited

Return all condition paths currently set (no matter if the condition is true or not).

Definition at line 150 of file Module.cc.

151{
152 std::vector<std::shared_ptr<Path>> allConditionPaths;
153 for (const auto& condition : m_conditions) {
154 allConditionPaths.push_back(condition.getPath());
155 }
156
157 return allConditionPaths;
158}

◆ getAllConditions()

const std::vector< ModuleCondition > & getAllConditions ( ) const
inlineinherited

Return all set conditions for this module.

Definition at line 324 of file Module.h.

325 {
326 return m_conditions;
327 }

◆ getCondition()

const ModuleCondition * getCondition ( ) const
inlineinherited

Return a pointer to the first condition (or nullptr, if none was set)

Definition at line 314 of file Module.h.

315 {
316 if (m_conditions.empty()) {
317 return nullptr;
318 } else {
319 return &m_conditions.front();
320 }
321 }

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 113 of file Module.cc.

114{
115 PathPtr p;
116 if (m_conditions.empty()) return p;
117
118 //okay, a condition was set for this Module...
119 if (!m_hasReturnValue) {
120 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
121 }
122
123 for (const auto& condition : m_conditions) {
124 if (condition.evaluate(m_returnValue)) {
125 return condition.getPath();
126 }
127 }
128
129 // if none of the conditions were true, return a null pointer.
130 return p;
131}
std::shared_ptr< Path > PathPtr
Defines a pointer to a path object as a boost shared pointer.
Definition: Path.h:35

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Returns the description of the module.

Definition at line 202 of file Module.h.

202{return m_description;}
std::string m_description
The description of the module.
Definition: Module.h:511

◆ getFileNames()

virtual std::vector< std::string > getFileNames ( bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Reimplemented in RootInputModule, StorageRootOutputModule, and RootOutputModule.

Definition at line 134 of file Module.h.

135 {
136 return std::vector<std::string>();
137 }

◆ getGlobalToLocalTransform()

TMatrixD getGlobalToLocalTransform ( const genfit::MeasuredStateOnPlane &  msop)

Compute the transformation matrix d(q/p,u',v',u,v)/d(x,y,z,px,py,pz) from state at first track point (vertex)

Parameters
msopMeasuredStateOnPlane - linearization point (track state @ plane) at which the transformation should be computed

Definition at line 1435 of file MillepedeCollectorModule.cc.

1436{
1437 auto state = msop;
1438 const B2Vector3D& U(state.getPlane()->getU());
1439 const B2Vector3D& V(state.getPlane()->getV());
1440 const B2Vector3D& O(state.getPlane()->getO());
1441 const B2Vector3D& W(state.getPlane()->getNormal());
1442
1443 const double* state5 = state.getState().GetMatrixArray();
1444
1445 double spu = 1.;
1446
1447 const TVectorD& auxInfo = state.getAuxInfo();
1448 if (auxInfo.GetNrows() == 2
1449 || auxInfo.GetNrows() == 1) // backwards compatibility with old RKTrackRep
1450 spu = state.getAuxInfo()(0);
1451
1452 TVectorD state7(7);
1453
1454 state7[0] = O.X() + state5[3] * U.X() + state5[4] * V.X(); // x
1455 state7[1] = O.Y() + state5[3] * U.Y() + state5[4] * V.Y(); // y
1456 state7[2] = O.Z() + state5[3] * U.Z() + state5[4] * V.Z(); // z
1457
1458 state7[3] = spu * (W.X() + state5[1] * U.X() + state5[2] * V.X()); // a_x
1459 state7[4] = spu * (W.Y() + state5[1] * U.Y() + state5[2] * V.Y()); // a_y
1460 state7[5] = spu * (W.Z() + state5[1] * U.Z() + state5[2] * V.Z()); // a_z
1461
1462 // normalize dir
1463 double norm = 1. / sqrt(state7[3] * state7[3] + state7[4] * state7[4] + state7[5] * state7[5]);
1464 for (unsigned int i = 3; i < 6; ++i) state7[i] *= norm;
1465
1466 state7[6] = state5[0]; // q/p
1467
1468 const double AtU = state7[3] * U.X() + state7[4] * U.Y() + state7[5] * U.Z();
1469 const double AtV = state7[3] * V.X() + state7[4] * V.Y() + state7[5] * V.Z();
1470 const double AtW = state7[3] * W.X() + state7[4] * W.Y() + state7[5] * W.Z();
1471
1472 // J_Mp matrix is d(q/p,u',v',u,v) / d(x,y,z,px,py,pz) (in is 6x6)
1473
1474 const double qop = state7[6];
1475 const double p = state.getCharge() / qop; // momentum
1476
1477 TMatrixD J_Mp_6x5(6, 5);
1478 J_Mp_6x5.Zero();
1479
1480 //d(u)/d(x,y,z)
1481 J_Mp_6x5(0, 3) = U.X(); // [0][3]
1482 J_Mp_6x5(1, 3) = U.Y(); // [1][3]
1483 J_Mp_6x5(2, 3) = U.Z(); // [2][3]
1484 //d(v)/d(x,y,z)
1485 J_Mp_6x5(0, 4) = V.X(); // [0][4]
1486 J_Mp_6x5(1, 4) = V.Y(); // [1][4]
1487 J_Mp_6x5(2, 4) = V.Z(); // [2][4]
1488
1489 // d(q/p)/d(px,py,pz)
1490 double fact = (-1.) * qop / p;
1491 J_Mp_6x5(3, 0) = fact * state7[3]; // [3][0]
1492 J_Mp_6x5(4, 0) = fact * state7[4]; // [4][0]
1493 J_Mp_6x5(5, 0) = fact * state7[5]; // [5][0]
1494 // d(u')/d(px,py,pz)
1495 fact = 1. / (p * AtW * AtW);
1496 J_Mp_6x5(3, 1) = fact * (U.X() * AtW - W.X() * AtU); // [3][1]
1497 J_Mp_6x5(4, 1) = fact * (U.Y() * AtW - W.Y() * AtU); // [4][1]
1498 J_Mp_6x5(5, 1) = fact * (U.Z() * AtW - W.Z() * AtU); // [5][1]
1499 // d(v')/d(px,py,pz)
1500 J_Mp_6x5(3, 2) = fact * (V.X() * AtW - W.X() * AtV); // [3][2]
1501 J_Mp_6x5(4, 2) = fact * (V.Y() * AtW - W.Y() * AtV); // [4][2]
1502 J_Mp_6x5(5, 2) = fact * (V.Z() * AtW - W.Z() * AtV); // [5][2]
1503
1504 return J_Mp_6x5.T();
1505}

◆ getLocalToGlobalTransform()

TMatrixD getLocalToGlobalTransform ( const genfit::MeasuredStateOnPlane &  msop)

Compute the transformation matrix d(x,y,z,px,py,pz)/d(q/p,u',v',u,v) from state at first track point (vertex)

Parameters
msopMeasuredStateOnPlane - linearization point (track state @ plane) at which the transformation should be computed

Definition at line 1507 of file MillepedeCollectorModule.cc.

1508{
1509 auto state = msop;
1510 // get vectors and aux variables
1511 const B2Vector3D& U(state.getPlane()->getU());
1512 const B2Vector3D& V(state.getPlane()->getV());
1513 const B2Vector3D& W(state.getPlane()->getNormal());
1514
1515 const TVectorD& state5(state.getState());
1516 double spu = 1.;
1517
1518 const TVectorD& auxInfo = state.getAuxInfo();
1519 if (auxInfo.GetNrows() == 2
1520 || auxInfo.GetNrows() == 1) // backwards compatibility with old RKTrackRep
1521 spu = state.getAuxInfo()(0);
1522
1523 TVectorD pTilde(3);
1524 pTilde[0] = spu * (W.X() + state5(1) * U.X() + state5(2) * V.X()); // a_x
1525 pTilde[1] = spu * (W.Y() + state5(1) * U.Y() + state5(2) * V.Y()); // a_y
1526 pTilde[2] = spu * (W.Z() + state5(1) * U.Z() + state5(2) * V.Z()); // a_z
1527
1528 const double pTildeMag = sqrt(pTilde[0] * pTilde[0] + pTilde[1] * pTilde[1] + pTilde[2] * pTilde[2]);
1529 const double pTildeMag2 = pTildeMag * pTildeMag;
1530
1531 const double utpTildeOverpTildeMag2 = (U.X() * pTilde[0] + U.Y() * pTilde[1] + U.Z() * pTilde[2]) / pTildeMag2;
1532 const double vtpTildeOverpTildeMag2 = (V.X() * pTilde[0] + V.Y() * pTilde[1] + V.Z() * pTilde[2]) / pTildeMag2;
1533
1534 //J_pM matrix is d(x,y,z,px,py,pz) / d(q/p,u',v',u,v) (out is 6x6)
1535
1536 const double qop = state5(0);
1537 const double p = state.getCharge() / qop; // momentum
1538
1539 TMatrixD J_pM_5x6(5, 6);
1540 J_pM_5x6.Zero();
1541
1542 // d(px,py,pz)/d(q/p)
1543 double fact = -1. * p / (pTildeMag * qop);
1544 J_pM_5x6(0, 3) = fact * pTilde[0]; // [0][3]
1545 J_pM_5x6(0, 4) = fact * pTilde[1]; // [0][4]
1546 J_pM_5x6(0, 5) = fact * pTilde[2]; // [0][5]
1547 // d(px,py,pz)/d(u')
1548 fact = p * spu / pTildeMag;
1549 J_pM_5x6(1, 3) = fact * (U.X() - pTilde[0] * utpTildeOverpTildeMag2); // [1][3]
1550 J_pM_5x6(1, 4) = fact * (U.Y() - pTilde[1] * utpTildeOverpTildeMag2); // [1][4]
1551 J_pM_5x6(1, 5) = fact * (U.Z() - pTilde[2] * utpTildeOverpTildeMag2); // [1][5]
1552 // d(px,py,pz)/d(v')
1553 J_pM_5x6(2, 3) = fact * (V.X() - pTilde[0] * vtpTildeOverpTildeMag2); // [2][3]
1554 J_pM_5x6(2, 4) = fact * (V.Y() - pTilde[1] * vtpTildeOverpTildeMag2); // [2][4]
1555 J_pM_5x6(2, 5) = fact * (V.Z() - pTilde[2] * vtpTildeOverpTildeMag2); // [2][5]
1556 // d(x,y,z)/d(u)
1557 J_pM_5x6(3, 0) = U.X(); // [3][0]
1558 J_pM_5x6(3, 1) = U.Y(); // [3][1]
1559 J_pM_5x6(3, 2) = U.Z(); // [3][2]
1560 // d(x,y,z)/d(v)
1561 J_pM_5x6(4, 0) = V.X(); // [4][0]
1562 J_pM_5x6(4, 1) = V.Y(); // [4][1]
1563 J_pM_5x6(4, 2) = V.Z(); // [4][2]
1564
1565 return J_pM_5x6.T();
1566
1567}

◆ getLogConfig()

LogConfig & getLogConfig ( )
inlineinherited

Returns the log system configuration.

Definition at line 225 of file Module.h.

225{return m_logConfig;}

◆ getModules()

std::list< ModulePtr > getModules ( ) const
inlineoverrideprivatevirtualinherited

no submodules, return empty list

Implements PathElement.

Definition at line 506 of file Module.h.

506{ return std::list<ModulePtr>(); }

◆ getName()

const std::string & getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 187 of file Module.h.

187{return m_name;}
std::string m_name
The name of the module, saved as a string (user-modifiable)
Definition: Module.h:508

◆ getObjectPtr()

T * getObjectPtr ( std::string  name)
inlineinherited

Calls the CalibObjManager to get the requested stored collector data.

Definition at line 64 of file CalibrationCollectorModule.h.

65 {
66 return m_manager.getObject<T>(name, m_expRun);
67 }
T * getObject(const std::string &name, const Belle2::Calibration::ExpRun expRun)
Gets the collector object of this name for the given exprun.

◆ getPackage()

const std::string & getPackage ( ) const
inlineinherited

Returns the package this module is in.

Definition at line 197 of file Module.h.

197{return m_package;}

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 279 of file Module.cc.

280{
282}
std::shared_ptr< boost::python::list > getParamInfoListPython() const
Returns a python list of all parameters.
ModuleParamList m_moduleParamList
List storing and managing all parameter of the module.
Definition: Module.h:516

◆ getParamList()

const ModuleParamList & getParamList ( ) const
inlineinherited

Return module param list.

Definition at line 363 of file Module.h.

363{ return m_moduleParamList; }

◆ getParticlesTracks()

std::vector< genfit::Track * > getParticlesTracks ( std::vector< Particle * >  particles,
bool  addVertexPoint = true 
)

Get all useable tracks for particles.

Parameters
particlesvector of Belle2::Particles to be changed in vector of genfit::Tracks
addVertexPointflag for adding the vertex point

Definition at line 1241 of file MillepedeCollectorModule.cc.

1242{
1243 std::vector< genfit::Track* > tracks;
1244 for (auto particle : particles) {
1245 auto belle2Track = particle->getTrack();
1246 if (!belle2Track) {
1247 B2WARNING("No Belle2::Track for particle (particle->X");
1248 continue;
1249 }
1250// auto trackFitResult = belle2Track->getTrackFitResult(Const::chargedStableSet.find(abs(particle->getPDGCode())));
1251// if (!trackFitResult) {
1252// B2INFO("No track fit result for track");
1253// continue;
1254// }
1255// auto recoTrack = trackFitResult->getRelatedFrom<RecoTrack>();
1256 auto recoTrack = belle2Track->getRelatedTo<RecoTrack>();
1257
1258 if (!recoTrack) {
1259 B2WARNING("No related RecoTrack for Belle2::Track (particle->Track->X)");
1260 continue;
1261 }
1262
1263 // If any track fails, fail completely
1264 if (!fitRecoTrack(*recoTrack, (addVertexPoint) ? particle : nullptr))
1265 return {};
1266
1267 auto& track = RecoTrackGenfitAccess::getGenfitTrack(*recoTrack);
1268
1269 if (!track.hasFitStatus()) {
1270 B2WARNING("Track has no fit status");
1271 continue;
1272 }
1273 genfit::GblFitStatus* fs = dynamic_cast<genfit::GblFitStatus*>(track.getFitStatus());
1274 if (!fs) {
1275 B2WARNING("Track FitStatus is not GblFitStatus.");
1276 continue;
1277 }
1278 if (!fs->isFittedWithReferenceTrack()) {
1279 B2WARNING("Track is not fitted with reference track.");
1280 continue;
1281 }
1282
1283 tracks.push_back(&track);
1284 }
1285
1286 return tracks;
1287}
This is the Reconstruction Event-Data Model Track.
Definition: RecoTrack.h:79

◆ getPathString()

std::string getPathString ( ) const
overrideprivatevirtualinherited

return the module name.

Implements PathElement.

Definition at line 192 of file Module.cc.

193{
194
195 std::string output = getName();
196
197 for (const auto& condition : m_conditions) {
198 output += condition.getString();
199 }
200
201 return output;
202}

◆ getPreScaleChoice()

bool getPreScaleChoice ( )
inlineprivateinherited

I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values.

But since a user will have set them (or left them as default) as exactly equal to 0.0 or 1.0 rather than calculating them in almost every case, I think we can assume that the equalities hold.

Definition at line 122 of file CalibrationCollectorModule.h.

123 {
124 if (m_preScale == 1.) {
125 return true;
126 } else if (m_preScale == 0.) {
127 return false;
128 } else {
129 const double randomNumber = gRandom->Uniform();
130 return randomNumber < m_preScale;
131 }
132 }
float m_preScale
Prescale module parameter, this fraction of events will have collect() run on them [0....

◆ getPrimaryVertexAndCov()

tuple< B2Vector3D, TMatrixDSym > getPrimaryVertexAndCov ( ) const

Get the primary vertex position estimation and its size from BeamSpot.

Returns
tuple<B2Vector3D, TMatrixDSym> tuple with position and size as covariance matrix

Definition at line 1569 of file MillepedeCollectorModule.cc.

1570{
1571 DBObjPtr<BeamSpot> beam;
1572 return {beam->getIPPosition(), beam->getSizeCovMatrix()};
1573}

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 381 of file Module.h.

381{ return m_returnValue; }

◆ getTwoBodyToLocalTransform()

std::pair< TMatrixD, TMatrixD > getTwoBodyToLocalTransform ( Particle mother,
double  motherMass 
)

Compute the transformation matrices d(q/p,u'v',u,v)/d(vx,vy,vz,px,py,pz,theta,phi,M) = dq/d(v,z) for both particles in pair.

Only for decays of type V0(*)->f+f- (same mass for f)

Parameters
motherThe mother Belle2::Particle with two daughters, its 4-momenta should already be updated by a previous vertex fit done by modularAnalysis.
motherMassThis function expect the assumed invariant mass of the pair. This is to allow to set artifical values (e.g. for e+e- -> mu+mu-)
Returns
a pair of 5x9 matrices {dq+/d(v,z), dq-/d(v,z)}. One for each particle in list (in list order). NOTE: The signs DO NOT refer to charges of the particles! If you want to know: (+) particle is that one which goes along the mother momentum in CM system

The transformation is from local measurement system at 1st (GBL) point of each track in pair (virtual measurement (see fitRecoTrack(..., particle) and addVertexPoint parameter of getParticlesTracks(...)) to the common parameters which staticaly and kinematicaly describe the two-body decay:

  • Position of the common vertex (vy,vy,vz)
  • Total momentum of the pair (particles are back-to-back in their CM) (px,py,pz) and the invariant mass (M) of the decay
  • 2 angles describing the orientation of the decay particles in the system of the mother (CM)

Reference: Widl, Edmund ; Frühwirth R; "Representation and Estimation of Trajectories from Two-body Decays", CMS-NOTE-2007-032, http://cds.cern.ch/record/1073690

Definition at line 1289 of file MillepedeCollectorModule.cc.

1291{
1292 std::vector<TMatrixD> result;
1293
1294 double px = mother.getPx();
1295 double py = mother.getPy();
1296 double pz = mother.getPz();
1297 double pt = sqrt(px * px + py * py);
1298 double p = mother.getMomentumMagnitude();
1299 double M = motherMass;
1300 double m = mother.getDaughter(0)->getPDGMass();
1301
1302 if (mother.getNDaughters() != 2
1303 || m != mother.getDaughter(1)->getPDGMass()) B2FATAL("Only two same-mass daughters (V0->f+f- decays) allowed.");
1304
1305 // Rotation matrix from mother reference system to lab system
1306 TMatrixD mother2lab(3, 3);
1307 mother2lab(0, 0) = px * pz / pt / p; mother2lab(0, 1) = - py / pt; mother2lab(0, 2) = px / p;
1308 mother2lab(1, 0) = py * pz / pt / p; mother2lab(1, 1) = px / pt; mother2lab(1, 2) = py / p;
1309 mother2lab(2, 0) = - pt / p; mother2lab(2, 1) = 0; mother2lab(2, 2) = pz / p;
1310 ROOT::Math::Rotation3D lab2mother;
1311 lab2mother.SetRotationMatrix(mother2lab); lab2mother.Invert();
1312
1313 // Need to rotate and boost daughters' momenta to know which goes forward (+sign in decay model)
1314 // and to get the angles theta, phi of the decaying daughter system in mothers' reference frame
1315 RestFrame boostedFrame(&mother);
1316 ROOT::Math::PxPyPzEVector fourVector1 = mother.getDaughter(0)->get4Vector();
1317 ROOT::Math::PxPyPzEVector fourVector2 = mother.getDaughter(1)->get4Vector();
1318
1319 auto mom1 = lab2mother * boostedFrame.getMomentum(fourVector1).Vect();
1320 auto mom2 = lab2mother * boostedFrame.getMomentum(fourVector2).Vect();
1321 // One momentum has opposite direction (otherwise should be same in CMS of mother), but which?
1322 double sign = 1.;
1323 auto avgMom = 0.5 * (mom1 - mom2);
1324 if (avgMom.Z() < 0.) {
1325 avgMom *= -1.;
1326 // switch meaning of plus/minus trajectories
1327 sign = -1.;
1328 }
1329
1330 double theta = atan2(avgMom.rho(), avgMom.Z());
1331 double phi = atan2(avgMom.Y(), avgMom.X());
1332 if (phi < 0.) phi += 2. * TMath::Pi();
1333
1334 double alpha = M / 2. / m;
1335 double c1 = m * sqrt(alpha * alpha - 1.);
1336 double c2 = 0.5 * sqrt((alpha * alpha - 1.) / alpha / alpha * (p * p + M * M));
1337
1338 double p3 = p * p * p;
1339 double pt3 = pt * pt * pt;
1340
1341
1342 for (auto& track : getParticlesTracks(mother.getDaughters())) {
1343
1344
1345 TMatrixD R = mother2lab;
1346 B2Vector3D P(sign * c1 * sin(theta) * cos(phi),
1347 sign * c1 * sin(theta) * sin(phi),
1348 p / 2. + sign * c2 * cos(theta));
1349
1350 TMatrixD dRdpx(3, 3);
1351 dRdpx(0, 0) = - pz * (pow(px, 4.) - pow(py, 4.) - py * py * pz * pz) / pt3 / p3;
1352 dRdpx(0, 1) = px * py / pt3;
1353 dRdpx(0, 2) = (py * py + pz * pz) / p3;
1354
1355 dRdpx(1, 0) = - px * py * pz * (2. * px * px + 2. * py * py + pz * pz) / pt3 / p3;
1356 dRdpx(1, 1) = - py * py / pt3;
1357 dRdpx(1, 2) = px * py / p3;
1358
1359 dRdpx(2, 0) = - px * pz * pz / pt / p3;
1360 dRdpx(2, 1) = 0.;
1361 dRdpx(2, 2) = - px * pz / p3;
1362
1363 TMatrixD dRdpy(3, 3);
1364 dRdpy(0, 0) = - px * py * pz * (2. * px * px + 2. * py * py + pz * pz) / pt3 / p3;
1365 dRdpy(0, 1) = - px * px / pt3;
1366 dRdpy(0, 2) = px * pz / p3;
1367
1368 dRdpy(1, 0) = - pz * (- pow(px, 4.) - px * px * pz * pz + pow(py, 4.)) / pt3 / p3;
1369 dRdpy(1, 1) = px * py / pt3;
1370 dRdpy(1, 2) = (px * px + pz * pz) / p3;
1371
1372 dRdpy(2, 0) = - py * pz * pz / pt / p3;
1373 dRdpy(2, 1) = 0.;
1374 dRdpy(2, 2) = - py * pz / p3;
1375
1376 TMatrixD dRdpz(3, 3);
1377 dRdpz(0, 0) = px * pt / p3;
1378 dRdpz(0, 1) = 0.;
1379 dRdpz(0, 2) = - px * pz / p3;
1380
1381 dRdpz(1, 0) = py * pt / p3;
1382 dRdpz(1, 1) = 0.;
1383 dRdpz(1, 2) = py * pz / p3;
1384
1385 dRdpz(2, 0) = pz * pt / p3;
1386 dRdpz(2, 1) = 0.;
1387 dRdpz(2, 2) = (px * px + py * py) / p3;
1388
1389 auto K = 1. / 2. / p + sign * cos(theta) * m * m * (M * M / 4. / m / m - 1.) / M / M / sqrt(m * m * (M * M / 4. / m / m - 1.) *
1390 (M * M + p * p) / M / M);
1391
1392 B2Vector3D dpdpx = dRdpx * P + R * K * px * B2Vector3D(0., 0., 1.);
1393 B2Vector3D dpdpy = dRdpy * P + R * K * py * B2Vector3D(0., 0., 1.);
1394 B2Vector3D dpdpz = dRdpz * P + R * K * pz * B2Vector3D(0., 0., 1.);
1395
1396 B2Vector3D dpdtheta = R * B2Vector3D(sign * c1 * cos(theta) * cos(phi),
1397 sign * c1 * cos(theta) * sin(phi),
1398 sign * c2 * (- sin(theta)));
1399
1400
1401 B2Vector3D dpdphi = R * B2Vector3D(sign * c1 * sin(theta) * (- sin(phi)),
1402 sign * c1 * sin(theta) * cos(phi),
1403 0.);
1404
1405 double dc1dM = m * M / (2. * sqrt(M * M - 4. * m * m));
1406 double dc2dM = M * (4. * m * m * p * p + pow(M, 4)) / (2 * M * M * M * sqrt((M * M - 4. * m * m) * (p * p + M * M)));
1407
1408 B2Vector3D dpdM = R * B2Vector3D(sign * sin(theta) * cos(phi) * dc1dM,
1409 sign * sin(theta) * sin(phi) * dc1dM,
1410 sign * cos(theta) * dc2dM);
1411
1412 TMatrixD dpdz(3, 6);
1413 dpdz(0, 0) = dpdpx(0); dpdz(0, 1) = dpdpy(0); dpdz(0, 2) = dpdpz(0); dpdz(0, 3) = dpdtheta(0); dpdz(0, 4) = dpdphi(0);
1414 dpdz(0, 5) = dpdM(0);
1415 dpdz(1, 0) = dpdpx(1); dpdz(1, 1) = dpdpy(1); dpdz(1, 2) = dpdpz(1); dpdz(1, 3) = dpdtheta(1); dpdz(1, 4) = dpdphi(1);
1416 dpdz(1, 5) = dpdM(1);
1417 dpdz(2, 0) = dpdpx(2); dpdz(2, 1) = dpdpy(2); dpdz(2, 2) = dpdpz(2); dpdz(2, 3) = dpdtheta(2); dpdz(2, 4) = dpdphi(2);
1418 dpdz(2, 5) = dpdM(2);
1419
1420 TMatrixD dqdv = getGlobalToLocalTransform(track->getFittedState()).GetSub(0, 4, 0, 2);
1421 TMatrixD dqdp = getGlobalToLocalTransform(track->getFittedState()).GetSub(0, 4, 3, 5);
1422 TMatrixD dfdvz(5, 9);
1423 dfdvz.SetSub(0, 0, dqdv);
1424 dfdvz.SetSub(0, 3, dqdp * dpdz);
1425
1426 result.push_back(dfdvz);
1427
1428 // switch sign for second trajectory
1429 sign *= -1.;
1430 }
1431
1432 return {result[0], result[1]};
1433}
double R
typedef autogenerated by FFTW
#define K(x)
macro autogenerated by FFTW
double getPx() const
Returns x component of momentum.
Definition: Particle.h:587
double getPz() const
Returns z component of momentum.
Definition: Particle.h:605
double getPy() const
Returns y component of momentum.
Definition: Particle.h:596
unsigned getNDaughters(void) const
Returns number of daughter particles.
Definition: Particle.h:727
std::vector< Belle2::Particle * > getDaughters() const
Returns a vector of pointers to daughter particles.
Definition: Particle.cc:637
double getPDGMass(void) const
Returns uncertainty on the invariant mass (requires valid momentum error matrix)
Definition: Particle.cc:604
ROOT::Math::PxPyPzEVector get4Vector() const
Returns Lorentz vector.
Definition: Particle.h:547
double getMomentumMagnitude() const
Returns momentum magnitude.
Definition: Particle.h:569
const Particle * getDaughter(unsigned i) const
Returns a pointer to the i-th daughter particle.
Definition: Particle.cc:631
Rest frame of a particle.

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 41 of file Module.cc.

42{
43 if (m_type.empty())
44 B2FATAL("Module type not set for " << getName());
45 return m_type;
46}
std::string m_type
The type of the module, saved as a string.
Definition: Module.h:509

◆ getUniqueMilleName()

std::string getUniqueMilleName ( )

Make a name for mille binary (encodes module name + starting exp, run and event + process id)

Definition at line 1020 of file MillepedeCollectorModule.cc.

1021{
1022 string name = getName();
1023
1024 name += "-e" + to_string(m_evtMetaData->getExperiment());
1025 name += "-r" + to_string(m_evtMetaData->getRun());
1026 name += "-ev" + to_string(m_evtMetaData->getEvent());
1027
1029 name += "-pid" + to_string(ProcHandler::EvtProcID());
1030
1031 name += ".mille";
1032
1033 return name;
1034}
static int EvtProcID()
Return ID of the current process.
Definition: ProcHandler.cc:248

◆ hasCondition()

bool hasCondition ( ) const
inlineinherited

Returns true if at least one condition was set for the module.

Definition at line 311 of file Module.h.

311{ return not m_conditions.empty(); };

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 160 of file Module.cc.

161{
162 return (propertyFlags & m_propertyFlags) == propertyFlags;
163}

◆ hasReturnValue()

bool hasReturnValue ( ) const
inlineinherited

Return true if this module has a valid return value set.

Definition at line 378 of file Module.h.

378{ return m_hasReturnValue; }

◆ hasUnsetForcedParams()

bool hasUnsetForcedParams ( ) const
inherited

Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.

Definition at line 166 of file Module.cc.

167{
169 std::string allMissing = "";
170 for (const auto& s : missing)
171 allMissing += s + " ";
172 if (!missing.empty())
173 B2ERROR("The following required parameters of Module '" << getName() << "' were not specified: " << allMissing <<
174 "\nPlease add them to your steering file.");
175 return !missing.empty();
176}
std::vector< std::string > getUnsetForcedParams() const
Returns list of unset parameters (if they are required to have a value.

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 85 of file Module.cc.

86{
87 if_value("<1", path, afterConditionPath);
88}

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 90 of file Module.cc.

91{
92 if_value(">=1", path, afterConditionPath);
93}

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://xwiki.desy.de/xwiki/rest/p/a94f2 or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 79 of file Module.cc.

80{
81 m_conditions.emplace_back(expression, path, afterConditionPath);
82}

◆ inDefineHisto()

virtual void inDefineHisto ( )
inlineprotectedvirtualinherited

◆ initialize()

void initialize ( void  )
finalvirtualinherited

Set up a default RunRange object in datastore and call prepare()

Reimplemented from HistoModule.

Definition at line 44 of file CalibrationCollectorModule.cc.

45{
46 m_evtMetaData.isRequired();
47 REG_HISTOGRAM
48 prepare();
49}
virtual void prepare()
Replacement for initialize(). Register calibration dataobjects here as well.
StoreObjPtr< EventMetaData > m_evtMetaData
Required input for EventMetaData.

◆ prepare()

void prepare ( )
overridevirtual

Prepration.

Reimplemented from CalibrationCollectorModule.

Definition at line 158 of file MillepedeCollectorModule.cc.

159{
160 m_eventT0.isOptional();
161
162 if (m_tracks.empty() &&
163 m_particles.empty() &&
164 m_vertices.empty() &&
165 m_primaryVertices.empty() &&
166 m_twoBodyDecays.empty() &&
167 m_primaryTwoBodyDecays.empty() &&
170 B2ERROR("You have to specify either arrays of single tracks or particle lists of single single particles or mothers with vertex constrained daughters.");
171
172 if (!m_tracks.empty()) {
173 for (auto arrayName : m_tracks)
174 continue;
175 // StoreArray<RecoTrack>::required(arrayName);
176 }
177
178 if (!m_particles.empty() || !m_vertices.empty() || !m_primaryVertices.empty()) {
179 // StoreArray<RecoTrack> recoTracks;
180 // StoreArray<Track> tracks;
181 // StoreArray<TrackFitResult> trackFitResults;
182
183 //recoTracks.isRequired();
184 //tracks.isRequired();
185 //trackFitResults.isRequired();
186 }
187
188 for (auto listName : m_particles) {
189 StoreObjPtr<ParticleList> list(listName);
190 //list.isRequired();
191 }
192
193 for (auto listName : m_vertices) {
194 StoreObjPtr<ParticleList> list(listName);
195 //list.isRequired();
196 }
197
198 for (auto listName : m_primaryVertices) {
199 StoreObjPtr<ParticleList> list(listName);
200 //list.isRequired();
201 }
202
203 // Register Mille output
204 registerObject<MilleData>("mille", new MilleData(m_doublePrecision, m_absFilePaths));
205
206 auto gblDataTree = new TTree("GblDataTree", "GblDataTree");
207 gblDataTree->Branch<std::vector<gbl::GblData>>("GblData", &m_currentGblData, 32000, 99);
208 registerObject<TTree>("GblDataTree", gblDataTree);
209
210 registerObject<TH1I>("ndf", new TH1I("ndf", "ndf", 200, 0, 200));
211 registerObject<TH1F>("chi2_per_ndf", new TH1F("chi2_per_ndf", "chi2 divided by ndf", 200, 0., 50.));
212 registerObject<TH1F>("pval", new TH1F("pval", "pval", 100, 0., 1.));
213
214 registerObject<TH1F>("cdc_hit_fraction", new TH1F("cdc_hit_fraction", "cdc_hit_fraction", 100, 0., 1.));
215 registerObject<TH1F>("evt0", new TH1F("evt0", "evt0", 400, -100., 100.));
216
217 // Configure the (VXD) hierarchy before being built
218 if (m_hierarchyType == 0)
219 Belle2::alignment::VXDGlobalParamInterface::s_hierarchyType = VXDGlobalParamInterface::c_None;
220 else if (m_hierarchyType == 1)
221 Belle2::alignment::VXDGlobalParamInterface::s_hierarchyType = VXDGlobalParamInterface::c_Flat;
222 else if (m_hierarchyType == 2)
223 Belle2::alignment::VXDGlobalParamInterface::s_hierarchyType = VXDGlobalParamInterface::c_HalfShells;
224 else if (m_hierarchyType == 3)
225 Belle2::alignment::VXDGlobalParamInterface::s_hierarchyType = VXDGlobalParamInterface::c_Full;
226
229
230 std::vector<EventMetaData> events;
231 for (auto& ev_run_exp : m_eventNumbers) {
232 events.push_back(EventMetaData(std::get<0>(ev_run_exp), std::get<1>(ev_run_exp), std::get<2>(ev_run_exp)));
233 }
234
235 // This will also build the hierarchy for the first time:
236 if (!m_timedepConfig.empty() && m_eventNumbers.empty()) {
237 auto autoEvents = Belle2::alignment::timeline::setupTimedepGlobalLabels(m_timedepConfig);
239 } else if (m_timedepConfig.empty() && !m_eventNumbers.empty()) {
241 } else if (m_timedepConfig.empty() && m_eventNumbers.empty()) {
243 } else {
244 B2ERROR("Cannot set both, event list and timedep config.");
245 }
246
247// Belle2::alignment::GlobalCalibrationManager::getInstance().writeConstraints("constraints.txt");
248
252}
static bool s_enableWireSaggingGlobalDerivative
Static enabling(true) or disabling(false) addition of global derivative for wire sagging coefficient ...
static bool s_enableWireByWireAlignmentGlobalDerivatives
Static enabling(true) or disabling(false) addition of global derivatives for wire-by-wire alignment.
static bool s_enableTrackT0LocalDerivative
Static enabling(true) or disabling(false) addition of local derivative for track T0.
Store event, run, and experiment numbers.
Definition: EventMetaData.h:33
Mergeable class holding list of so far opened mille binaries and providing the binaries.
Definition: MilleData.h:24
std::vector< gbl::GblData > m_currentGblData
Current vector of GBL data from trajectory to be stored in a tree.
void initialize(const std::vector< std::string > &components={}, const std::vector< EventMetaData > &timeSlices={})
Initialize the manager with given configuration (from MillepedeCollector)
Definition: Manager.cc:52
static bool s_enablePXD
Enable PXD in hierarchy?
Definition: GlobalParam.h:85
static bool s_enableSVD
Enable SVD in hierarchy?
Definition: GlobalParam.h:87
static E_VXDHierarchyType s_hierarchyType
What type of hierarchy to use for VXD?
Definition: GlobalParam.h:83

◆ registerObject()

void registerObject ( std::string  name,
T *  obj 
)
inlineinherited

Register object with a name, takes ownership, do not access the pointer beyond prepare()

Definition at line 55 of file CalibrationCollectorModule.h.

56 {
57 std::shared_ptr<T> calObj(obj);
58 calObj->SetName(name.c_str());
59 m_manager.addObject(name, calObj);
60 }
void addObject(const std::string &name, std::shared_ptr< TNamed > object)
Add a new object to manage, this is used as a template for creating future/missing objects.

◆ setAbortLevel()

void setAbortLevel ( int  abortLevel)
inherited

Configure the abort log level.

Definition at line 67 of file Module.cc.

68{
69 m_logConfig.setAbortLevel(static_cast<LogConfig::ELogLevel>(abortLevel));
70}
ELogLevel
Definition of the supported log levels.
Definition: LogConfig.h:26
void setAbortLevel(ELogLevel abortLevel)
Configure the abort level.
Definition: LogConfig.h:112

◆ setDebugLevel()

void setDebugLevel ( int  debugLevel)
inherited

Configure the debug messaging level.

Definition at line 61 of file Module.cc.

62{
63 m_logConfig.setDebugLevel(debugLevel);
64}
void setDebugLevel(int debugLevel)
Configure the debug messaging level.
Definition: LogConfig.h:98

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 214 of file Module.cc.

215{
216 m_description = description;
217}

◆ setLogConfig()

void setLogConfig ( const LogConfig logConfig)
inlineinherited

Set the log system configuration.

Definition at line 230 of file Module.h.

230{m_logConfig = logConfig;}

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 73 of file Module.cc.

74{
75 m_logConfig.setLogInfo(static_cast<LogConfig::ELogLevel>(logLevel), logInfo);
76}
void setLogInfo(ELogLevel logLevel, unsigned int logInfo)
Configure the printed log information for the given level.
Definition: LogConfig.h:127

◆ setLogLevel()

void setLogLevel ( int  logLevel)
inherited

Configure the log level.

Definition at line 55 of file Module.cc.

56{
57 m_logConfig.setLogLevel(static_cast<LogConfig::ELogLevel>(logLevel));
58}
void setLogLevel(ELogLevel logLevel)
Configure the log level.
Definition: LogConfig.cc:25

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 214 of file Module.h.

214{ m_name = name; };

◆ setParamList()

void setParamList ( const ModuleParamList params)
inlineprotectedinherited

Replace existing parameter list.

Definition at line 501 of file Module.h.

501{ m_moduleParamList = params; }

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 234 of file Module.cc.

235{
236 LogSystem& logSystem = LogSystem::Instance();
237 logSystem.updateModule(&(getLogConfig()), getName());
238 try {
240 } catch (std::runtime_error& e) {
241 throw std::runtime_error("Cannot set parameter '" + name + "' for module '"
242 + m_name + "': " + e.what());
243 }
244
245 logSystem.updateModule(nullptr);
246}
Class for logging debug, info and error messages.
Definition: LogSystem.h:46
void updateModule(const LogConfig *moduleLogConfig=nullptr, const std::string &moduleName="")
Sets the log configuration to the given module log configuration and sets the module name This method...
Definition: LogSystem.h:191
static LogSystem & Instance()
Static method to get a reference to the LogSystem instance.
Definition: LogSystem.cc:31
void setParamPython(const std::string &name, const PythonObject &pyObj)
Implements a method for setting boost::python objects.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 249 of file Module.cc.

250{
251
252 LogSystem& logSystem = LogSystem::Instance();
253 logSystem.updateModule(&(getLogConfig()), getName());
254
255 boost::python::list dictKeys = dictionary.keys();
256 int nKey = boost::python::len(dictKeys);
257
258 //Loop over all keys in the dictionary
259 for (int iKey = 0; iKey < nKey; ++iKey) {
260 boost::python::object currKey = dictKeys[iKey];
261 boost::python::extract<std::string> keyProxy(currKey);
262
263 if (keyProxy.check()) {
264 const boost::python::object& currValue = dictionary[currKey];
265 setParamPython(keyProxy, currValue);
266 } else {
267 B2ERROR("Setting the module parameters from a python dictionary: invalid key in dictionary!");
268 }
269 }
270
271 logSystem.updateModule(nullptr);
272}
void setParamPython(const std::string &name, const boost::python::object &pyObj)
Implements a method for setting boost::python objects.
Definition: Module.cc:234

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 208 of file Module.cc.

209{
210 m_propertyFlags = propertyFlags;
211}

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 227 of file Module.cc.

228{
229 m_hasReturnValue = true;
230 m_returnValue = value;
231}

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 220 of file Module.cc.

221{
222 m_hasReturnValue = true;
223 m_returnValue = value;
224}

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 48 of file Module.cc.

49{
50 if (!m_type.empty())
51 B2FATAL("Trying to change module type from " << m_type << " is not allowed, the value is assumed to be fixed.");
52 m_type = type;
53}

◆ startRun()

◆ storeTrajectory()

void storeTrajectory ( gbl::GblTrajectory &  trajectory)

Write down a GBL trajectory (to TTree or binary file)

Definition at line 1005 of file MillepedeCollectorModule.cc.

1006{
1007 if (m_useGblTree) {
1008 if (trajectory.isValid())
1009 m_currentGblData = trajectory.getData();
1010 else
1011 m_currentGblData.clear();
1012
1013 if (!m_currentGblData.empty())
1014 getObjectPtr<TTree>("GblDataTree")->Fill();
1015 } else {
1016 getObjectPtr<MilleData>("mille")->fill(trajectory);
1017 }
1018}

◆ terminate()

void terminate ( void  )
finalvirtualinherited

Write the final objects to the file.

Reimplemented from HistoModule.

Definition at line 155 of file CalibrationCollectorModule.cc.

156{
157 finish();
158 // actually this should be done by the write() called by HistoManager....
159
160 // Haven't written objects yet if collecting with granularity == all
161 // Write them now that everything is done.
162// if (m_granularity == "all") {
163// m_manager.writeCurrentObjects(m_expRun);
164// m_manager.clearCurrentObjects(m_expRun);
165// }
167}
virtual void finish()
Replacement for terminate(). Do anything you would normally do in terminate here.
void deleteHeldObjects()
Clears the map of templated objects -> causing their destruction.

◆ updateMassWidthIfSet()

void updateMassWidthIfSet ( std::string  listName,
double &  mass,
double &  width 
)
private

Update mass and width of the particle (mother in list) with user custom-defined values.

Definition at line 1575 of file MillepedeCollectorModule.cc.

1576{
1577 if (m_customMassConfig.find(listName) != m_customMassConfig.end()) {
1578 auto massWidth = m_customMassConfig.at(listName);
1579 mass = std::get<0>(massWidth);
1580 width = std::get<1>(massWidth);
1581 }
1582}

Member Data Documentation

◆ m_absFilePaths

bool m_absFilePaths
private

Use absolute path to locate binary files in MilleData.

Definition at line 148 of file MillepedeCollectorModule.h.

◆ m_calibrateKinematics

bool m_calibrateKinematics = true
private

Add derivatives for beam spot kinematics calibration for primary vertices.

Definition at line 142 of file MillepedeCollectorModule.h.

◆ m_calibrateVertex

bool m_calibrateVertex
private

Add derivatives for beam spot vertex calibration for primary vertices.

Definition at line 140 of file MillepedeCollectorModule.h.

◆ m_components

std::vector<std::string> m_components {}
private

Whether to use VXD alignment hierarchy.

Definition at line 150 of file MillepedeCollectorModule.h.

◆ m_conditions

std::vector<ModuleCondition> m_conditions
privateinherited

Module condition, only non-null if set.

Definition at line 521 of file Module.h.

◆ m_currentGblData

std::vector<gbl::GblData> m_currentGblData {}
private

Current vector of GBL data from trajectory to be stored in a tree.

Definition at line 187 of file MillepedeCollectorModule.h.

◆ m_customMassConfig

std::map<std::string, std::tuple<double, double> > m_customMassConfig
private

Map of list_name -> (mass, width) for custom mass and width setting.

Definition at line 184 of file MillepedeCollectorModule.h.

◆ m_description

std::string m_description
privateinherited

The description of the module.

Definition at line 511 of file Module.h.

◆ m_dir

TDirectory* m_dir
protectedinherited

The top TDirectory that collector objects for this collector will be stored beneath.

Definition at line 84 of file CalibrationCollectorModule.h.

◆ m_doublePrecision

bool m_doublePrecision
private

Use double (instead of single/float) precision for binary files.

Definition at line 138 of file MillepedeCollectorModule.h.

◆ m_emd

StoreObjPtr<EventMetaData> m_emd
protectedinherited

Current EventMetaData.

Definition at line 96 of file CalibrationCollectorModule.h.

◆ m_enablePXDHierarchy

bool m_enablePXDHierarchy
private

enable PXD hierarchy

Definition at line 169 of file MillepedeCollectorModule.h.

◆ m_enableSVDHierarchy

bool m_enableSVDHierarchy
private

enable SVD hierarchy

Definition at line 171 of file MillepedeCollectorModule.h.

◆ m_enableWireByWireAlignment

bool m_enableWireByWireAlignment
private

Enable global derivatives for wire-by-wire alignment.

Definition at line 173 of file MillepedeCollectorModule.h.

◆ m_enableWireSagging

bool m_enableWireSagging
private

Enable global derivatives for wire sagging.

Definition at line 175 of file MillepedeCollectorModule.h.

◆ m_eventNumbers

std::vector<std::tuple<int, int, int> > m_eventNumbers {}
private

List of event meta data entries at which payloads can change for timedep calibration.

Definition at line 178 of file MillepedeCollectorModule.h.

◆ m_eventsCollectedInRun

int* m_eventsCollectedInRun
privateinherited

Will point at correct value in m_expRunEvents.

Definition at line 117 of file CalibrationCollectorModule.h.

◆ m_eventT0

StoreObjPtr<EventT0> m_eventT0
private

Optional input for EventT0.

Definition at line 190 of file MillepedeCollectorModule.h.

◆ m_evtMetaData

StoreObjPtr<EventMetaData> m_evtMetaData
private

Required object pointer to EventMetaData.

Definition at line 193 of file MillepedeCollectorModule.h.

◆ m_expRun

Calibration::ExpRun m_expRun
protectedinherited

Current ExpRun for object retrieval (becomes -1,-1 for granularity=all)

Definition at line 93 of file CalibrationCollectorModule.h.

◆ m_expRunEvents

std::map<Calibration::ExpRun, int> m_expRunEvents
privateinherited

How many events processed for each ExpRun so far, stops counting up once max is hit Only used/incremented if m_maxEventsPerRun > -1.

Definition at line 115 of file CalibrationCollectorModule.h.

◆ m_externalIterations

int m_externalIterations
private

Number of external iterations of GBL fitter.

Definition at line 152 of file MillepedeCollectorModule.h.

◆ m_fitTrackT0

bool m_fitTrackT0
private

Add local parameter for track T0 fit in GBL (local derivative)

Definition at line 158 of file MillepedeCollectorModule.h.

◆ m_granularity

std::string m_granularity
privateinherited

Granularity of data collection = run|all(= no granularity, exp,run=-1,-1)

Definition at line 101 of file CalibrationCollectorModule.h.

◆ m_hasReturnValue

bool m_hasReturnValue
privateinherited

True, if the return value is set.

Definition at line 518 of file Module.h.

◆ m_hierarchyType

int m_hierarchyType
private

Type of alignment hierarchy (for VXD only for now): 0 = None, 1 = Flat (only constraints, no new global parameters/derivatives), 2 = Half-Shells + sensors (no ladders), 3 = Full.

Definition at line 167 of file MillepedeCollectorModule.h.

◆ m_internalIterations

std::string m_internalIterations
private

String defining internal GBL iterations for outlier down-weighting.

Definition at line 154 of file MillepedeCollectorModule.h.

◆ m_logConfig

LogConfig m_logConfig
privateinherited

The log system configuration of the module.

Definition at line 514 of file Module.h.

◆ m_manager

CalibObjManager m_manager
protectedinherited

Controls the creation, collection and access to calibration objects.

Definition at line 87 of file CalibrationCollectorModule.h.

◆ m_maxEventsPerRun

int m_maxEventsPerRun
privateinherited

Maximum number of events to be collected at the start of each run (-1 = no maximum)

Definition at line 103 of file CalibrationCollectorModule.h.

◆ m_minCDCHitWeight

double m_minCDCHitWeight
private

Minimum CDC hit weight.

Definition at line 162 of file MillepedeCollectorModule.h.

◆ m_minPValue

double m_minPValue
private

Minimum p.value for output.

Definition at line 144 of file MillepedeCollectorModule.h.

◆ m_minUsedCDCHitFraction

double m_minUsedCDCHitFraction
private

Minimum CDC used hit fraction.

Definition at line 164 of file MillepedeCollectorModule.h.

◆ m_moduleParamList

ModuleParamList m_moduleParamList
privateinherited

List storing and managing all parameter of the module.

Definition at line 516 of file Module.h.

◆ m_name

std::string m_name
privateinherited

The name of the module, saved as a string (user-modifiable)

Definition at line 508 of file Module.h.

◆ m_package

std::string m_package
privateinherited

Package this module is found in (may be empty).

Definition at line 510 of file Module.h.

◆ m_particles

std::vector<std::string> m_particles
private

Names of particle list with single particles.

Definition at line 121 of file MillepedeCollectorModule.h.

◆ m_preScale

float m_preScale
privateinherited

Prescale module parameter, this fraction of events will have collect() run on them [0.0 -> 1.0].

Definition at line 105 of file CalibrationCollectorModule.h.

◆ m_primaryMassTwoBodyDecays

std::vector<std::string> m_primaryMassTwoBodyDecays
private

Name of particle list with mothers of daughters to be used with vertex + IP profile + mass constraint in calibration.

Definition at line 131 of file MillepedeCollectorModule.h.

◆ m_primaryMassVertexTwoBodyDecays

std::vector<std::string> m_primaryMassVertexTwoBodyDecays
private

Name of particle list with mothers of daughters to be used with vertex + IP profile + mass constraint in calibration.

Definition at line 133 of file MillepedeCollectorModule.h.

◆ m_primaryTwoBodyDecays

std::vector<std::string> m_primaryTwoBodyDecays
private

Name of particle list with mothers of daughters to be used with vertex + IP profile (+ optional calibration) + IP kinematics (+ optional calibration) constraint in calibration.

Definition at line 129 of file MillepedeCollectorModule.h.

◆ m_primaryVertices

std::vector<std::string> m_primaryVertices
private

Name of particle list with mothers of daughters to be used with vertex + IP profile (+ optional calibration) constraint in calibration.

Definition at line 125 of file MillepedeCollectorModule.h.

◆ m_propertyFlags

unsigned int m_propertyFlags
privateinherited

The properties of the module as bitwise or (with |) of EModulePropFlags.

Definition at line 512 of file Module.h.

◆ m_recalcJacobians

int m_recalcJacobians
private

Up to which external iteration propagation Jacobians should be re-calculated.

Definition at line 156 of file MillepedeCollectorModule.h.

◆ m_returnValue

int m_returnValue
privateinherited

The return value.

Definition at line 519 of file Module.h.

◆ m_runCollectOnRun

bool m_runCollectOnRun = true
privateinherited

Whether or not we will run the collect() at all this run, basically skips the event() function if false.

Definition at line 111 of file CalibrationCollectorModule.h.

◆ m_runRange

RunRange* m_runRange
protectedinherited

Overall list of runs processed.

Definition at line 90 of file CalibrationCollectorModule.h.

◆ m_stableParticleWidth

double m_stableParticleWidth
private

Width (in GeV/c/c) to use for invariant mass constraint for 'stable' particles (like K short).

Temporary until proper solution is found

Definition at line 136 of file MillepedeCollectorModule.h.

◆ m_timedepConfig

std::vector< std::tuple< std::vector< int >, std::vector< std::tuple< int, int, int > > > > m_timedepConfig
private

Config for time dependence: list( tuple( list( param1, param2, ... ), list( (ev, run, exp), ... )), ...

Definition at line 181 of file MillepedeCollectorModule.h.

◆ m_tracks

std::vector<std::string> m_tracks
private

Names of arrays with single RecoTracks fitted by GBL.

Definition at line 119 of file MillepedeCollectorModule.h.

◆ m_twoBodyDecays

std::vector<std::string> m_twoBodyDecays
private

Name of particle list with mothers of daughters to be used with vertex + mass constraint in calibration.

Definition at line 127 of file MillepedeCollectorModule.h.

◆ m_type

std::string m_type
privateinherited

The type of the module, saved as a string.

Definition at line 509 of file Module.h.

◆ m_updateCDCWeights

bool m_updateCDCWeights
private

Update L/R weights from previous DAF fit result?

Definition at line 160 of file MillepedeCollectorModule.h.

◆ m_useGblTree

bool m_useGblTree
private

Whether to use TTree to accumulate GBL data instead of binary files.

Definition at line 146 of file MillepedeCollectorModule.h.

◆ m_vertices

std::vector<std::string> m_vertices
private

Name of particle list with mothers of daughters to be used with vertex constraint in calibration.

Definition at line 123 of file MillepedeCollectorModule.h.


The documentation for this class was generated from the following files: