Belle II Software development
PhysicsObjectsMiraBelleModule.cc
1/**************************************************************************
2 * basf2 (Belle II Analysis Software Framework) *
3 * Author: The Belle II Collaboration *
4 * *
5 * See git log for contributors and copyright holders. *
6 * This file is licensed under LGPL-3.0, see LICENSE.md. *
7 **************************************************************************/
8
9#include <dqm/modules/PhysicsObjectsMiraBelle/PhysicsObjectsMiraBelleModule.h>
10#include <analysis/dataobjects/ParticleList.h>
11#include <analysis/variables/ContinuumSuppressionVariables.h>
12#include <analysis/variables/TrackVariables.h>
13#include <analysis/utility/PCmsLabTransform.h>
14#include <framework/datastore/StoreObjPtr.h>
15#include <framework/datastore/StoreArray.h>
16#include <mdst/dataobjects/Track.h>
17#include <mdst/dataobjects/TrackFitResult.h>
18#include <mdst/dataobjects/KLMCluster.h>
19#include <mdst/dataobjects/HitPatternCDC.h>
20#include <mdst/dataobjects/HitPatternVXD.h>
21#include <mdst/dataobjects/EventLevelTrackingInfo.h>
22#include <mdst/dataobjects/PIDLikelihood.h>
23#include <top/variables/TOPDigitVariables.h>
24#include <arich/modules/arichDQM/ARICHDQMModule.h>
25#include <arich/dataobjects/ARICHLikelihood.h>
26#include <klm/dataobjects/KLMMuidLikelihood.h>
27#include <mdst/dataobjects/SoftwareTriggerResult.h>
28#include <TDirectory.h>
29#include <TMath.h>
30#include <map>
31
32using namespace Belle2;
33
34REG_MODULE(PhysicsObjectsMiraBelle);
35
37{
38 setDescription("Monitor Physics Objects Quality");
40
41 addParam("TriggerIdentifier", m_triggerIdentifier,
42 "Trigger identifier string used to select events for the histograms", std::string("software_trigger_cut&skim&accept_mumutight"));
43 addParam("MuPListName", m_muPListName, "Name of the muon particle list", std::string("mu+:physMiraBelle"));
44 addParam("MuMuPListName", m_mumuPListName, "Name of the di-muon particle list", std::string("Upsilon:physMiraBelle"));
45}
46
48{
49 TDirectory* oldDir = gDirectory;
50 oldDir->mkdir("PhysicsObjectsMiraBelle");
51 oldDir->cd("PhysicsObjectsMiraBelle");
52
53 m_h_npxd = new TH1F("hist_npxd", "hist_npxd", 100, 0, 5);
54 m_h_npxd->SetXTitle("hist_npxd");
55 m_h_nsvd = new TH1F("hist_nsvd", "hist_nsvd", 100, 0, 16);
56 m_h_nsvd->SetXTitle("hist_nsvd");
57 m_h_ncdc = new TH1F("hist_ncdc", "hist_ncdc", 100, 0, 80);
58 m_h_ncdc->SetXTitle("hist_ncdc");
59 m_h_topdig = new TH1F("hist_topdig", "hist_topdig", 120, 0, 120);
60 m_h_topdig->SetXTitle("hist_topdig");
61 m_h_DetPhotonARICH = new TH1F("hist_DetPhotonARICH", "hist_DetPhotonARICH", 70, 0, 70);
62 m_h_DetPhotonARICH->SetXTitle("hist_DetPhotonARICH");
63 m_h_klmTotalHits = new TH1F("hist_klmTotalHits", "hist_klmTotalHits", 15, 0, 15);
64 m_h_klmTotalHits->SetXTitle("hist_klmTotalHits");
65 m_h_Pval = new TH1F("hist_Pval", "hist_Pval", 100, 0, 1);
66 m_h_Pval->SetXTitle("hist_Pval");
67 m_h_dD0 = new TH1F("hist_dD0", "hist_dD0", 100, -0.02, 0.02);
68 m_h_dD0->SetXTitle("hist_dD0");
69 m_h_dZ0 = new TH1F("hist_dZ0", "hist_dZ0", 100, -0.05, 0.05);
70 m_h_dZ0->SetXTitle("hist_dZ0");
71 m_h_dPtcms = new TH1F("hist_dPtcms", "hist_dPtcms", 100, -0.5, 0.5);
72 m_h_dPtcms->SetXTitle("hist_dPtcms");
73 m_h_nExtraCDCHits = new TH1F("hist_nExtraCDCHits", "hist_nExtraCDCHits", 500, 0, 5000);
74 m_h_nExtraCDCHits->SetXTitle("hist_nExtraCDCHits");
75 m_h_nECLClusters = new TH1F("hist_nECLClusters", "hist_nECLClusters", 100, 0, 60);
76 m_h_nECLClusters->SetXTitle("hist_nECLClusters");
77 m_h_muid = new TH1F("hist_muid", "hist_muid", 20, 0, 1);
78 m_h_muid->SetXTitle("hist_muid");
79 m_h_inv_p = new TH1F("hist_inv_p", "hist_inv_p", 400, 8, 12);
80 m_h_inv_p->SetXTitle("hist_inv_p");
81 m_h_ndf = new TH1F("hist_ndf", "hist_ndf", 100, 0, 80);
82 m_h_ndf->SetXTitle("hist_ndf");
83 m_h_D0 = new TH1F("hist_D0", "hist_D0", 100, -0.1, 0.1);
84 m_h_D0->SetXTitle("hist_D0");
85 m_h_Z0 = new TH1F("hist_Z0", "hist_Z0", 100, -0.3, 0.3);
86 m_h_Z0->SetXTitle("hist_Z0");
87 m_h_theta = new TH1F("hist_theta", "hist_theta in CMS", 32, 10, 170);
88 m_h_theta->SetXTitle("hist_theta");
89 m_h_theta_lab = new TH1F("hist_theta_lab", "hist_theta in lab frame", 180, 0, 180);
90 m_h_theta_lab->SetXTitle("hist_theta_lab");
91 m_h_Phi0 = new TH1F("hist_Phi0", "hist_Phi0 in lab frame", 72, -180, 180);
92 m_h_Phi0->SetXTitle("hist_Phi0");
93 m_h_Pt = new TH1F("hist_Pt", "hist_Pt", 100, 0, 10);
94 m_h_Pt->SetXTitle("hist_Pt");
95 m_h_Mom = new TH1F("hist_Mom", "hist_Mom", 100, 0, 10);
96 m_h_Mom->SetXTitle("hist_Mom");
97 m_h_klmClusterLayers = new TH1F("hist_klmClusterLayers", "hist_klmClusterLayers", 16, 0, 16);
98 m_h_klmClusterLayers->SetXTitle("hist_klmClusterLayers");
99 m_h_klmTotalBarrelHits = new TH1F("hist_klmTotalBarrelHits", "hist_klmTotalBarrelHits", 16, 0, 16);
100 m_h_klmTotalBarrelHits->SetXTitle("hist_klmTotalBarrelHits");
101 m_h_klmTotalEndcapHits = new TH1F("hist_klmTotalEndcapHits", "hist_klmTotalEndcapHits", 16, 0, 16);
102 m_h_klmTotalEndcapHits->SetXTitle("hist_klmTotalEndcapHits");
103 m_h_dPhicms = new TH1F("hist_dPhicms", "hist_dPhicms: 180#circ - |#phi_{1} - #phi_{2}|", 100, -10, 10);
104 m_h_dPhicms->SetXTitle("hist_dPhicms");
105 m_h_dThetacms = new TH1F("hist_dThetacms", "hist_dThetacms: |#theta_{1} + #theta_{2}| - 180#circ", 100, -10, 10);
106 m_h_dThetacms->SetXTitle("hist_dThetacms");
107
108 oldDir->cd();
109}
110
111
113{
114 REG_HISTOGRAM
115
117 result.isOptional();
118}
119
121{
122 m_h_npxd->Reset();
123 m_h_nsvd->Reset();
124 m_h_ncdc->Reset();
125 m_h_topdig->Reset();
126 m_h_DetPhotonARICH->Reset();
127 m_h_klmTotalHits->Reset();
128 m_h_Pval->Reset();
129 m_h_dD0->Reset();
130 m_h_dZ0->Reset();
131 m_h_dPtcms->Reset();
132 m_h_nExtraCDCHits->Reset();
133 m_h_nECLClusters->Reset();
134 m_h_muid->Reset();
135 m_h_inv_p->Reset();
136 m_h_ndf->Reset();
137 m_h_D0->Reset();
138 m_h_Z0->Reset();
139 m_h_theta->Reset();
140 m_h_theta_lab->Reset();
141 m_h_Phi0->Reset();
142 m_h_Pt->Reset();
143 m_h_Mom->Reset();
144 m_h_klmClusterLayers->Reset();
145 m_h_klmTotalBarrelHits->Reset();
146 m_h_klmTotalEndcapHits->Reset();
147 m_h_dPhicms->Reset();
148 m_h_dThetacms->Reset();
149}
150
152{
153
155 if (!result.isValid()) {
156 B2WARNING("SoftwareTriggerResult object not available but needed to select events for the histograms.");
157 return;
158 }
159
160 const std::map<std::string, int>& results = result->getResults();
161 if (results.find(m_triggerIdentifier) == results.end()) {
162 B2WARNING("PhysicsObjectsMiraBelle: Can't find trigger identifier: " << m_triggerIdentifier);
163 return;
164 }
165
166 // apply software trigger
167 const bool accepted = (result->getResult(m_triggerIdentifier) == SoftwareTriggerCutResult::c_accept);
168 if (accepted == false) return;
169
170 // for resolution (difference b/w 2 tracks)
171 double d0[2] = {};
172 double z0[2] = {};
173 double ptcms[2] = {};
174 double phicms[2] = {};
175 double thetacms[2] = {};
176
177 //get the di-muons for beam energy check
179 if (UpsParticles.isValid()) {
180 for (unsigned int i = 0; i < UpsParticles->getListSize(); i++) {
181 Particle* Ups = UpsParticles->getParticle(i);
182 m_h_inv_p->Fill(Ups->getMass());
183 }
184 }
185
186 // get muons
188 for (unsigned int i = 0; i < muParticles->getListSize(); i++) {
189 Particle* mu = muParticles->getParticle(i);
190 const Belle2::Track* track = mu->getTrack();
191 if (!track) {
192 continue;
193 }
194
195 // Detector hits
196 m_h_npxd->Fill(Belle2::Variable::trackNPXDHits(mu));
197 m_h_nsvd->Fill(Belle2::Variable::trackNSVDHits(mu));
198 m_h_ncdc->Fill(Belle2::Variable::trackNCDCHits(mu));
199 m_h_topdig->Fill(Belle2::Variable::TOPVariable::topDigitCount(mu));
200 ARICHLikelihood* lkh = track->getRelated<ARICHLikelihood>();
201 if (lkh) {
202 m_h_DetPhotonARICH->Fill(lkh->getDetPhot());
203 }
204
205 // KLM total hits
206 KLMMuidLikelihood* muid = track->getRelatedTo<KLMMuidLikelihood>();
207 if (muid) {
208 unsigned int bklm_hit = muid->getTotalBarrelHits();
209 unsigned int eklm_hit = muid->getTotalEndcapHits();
210 m_h_klmTotalBarrelHits->Fill(bklm_hit);
211 m_h_klmTotalEndcapHits->Fill(eklm_hit);
212 m_h_klmTotalHits->Fill(bklm_hit + eklm_hit);
213 }
214
215 // KLM Cluster layers
216 KLMCluster* klmc = track->getRelated<KLMCluster>();
217 if (klmc) {
218 m_h_klmClusterLayers->Fill(klmc->getLayers());
219 }
220
221 // muon ID
222 PIDLikelihood* pid_lkh = track->getRelated<PIDLikelihood>();
223 if (pid_lkh) {
225 }
226
227 // Track variables
228 const TrackFitResult* fitresult = track->getTrackFitResult(Belle2::Const::pion);
229 if (fitresult) {
230 // Pvalue
231 double pval = fitresult->getPValue();
232 m_h_Pval->Fill(pval);
233 // separate mu+ and mu-
234 int index = fitresult->getChargeSign() > 0 ? 0 : 1;
235 d0[index] = fitresult->getD0();
236 z0[index] = fitresult->getZ0();
237 m_h_D0->Fill(d0[index]);
238 m_h_Z0->Fill(z0[index]);
239 // Momentum
240 ptcms[index] = Belle2::PCmsLabTransform::labToCms(fitresult->get4Momentum()).Pt();//CMS
241 phicms[index] = Belle2::PCmsLabTransform::labToCms(fitresult->get4Momentum()).Phi() * TMath::RadToDeg();
242 thetacms[index] = Belle2::PCmsLabTransform::labToCms(fitresult->get4Momentum()).Theta() * TMath::RadToDeg();
243 m_h_Pt->Fill(fitresult->get4Momentum().Pt());//Lab
244 m_h_theta->Fill(Belle2::PCmsLabTransform::labToCms(fitresult->get4Momentum()).Theta() * TMath::RadToDeg());//CMS
245 m_h_theta_lab->Fill(fitresult->get4Momentum().Theta() * TMath::RadToDeg());//Lab
246 m_h_Phi0->Fill(fitresult->get4Momentum().Phi() * TMath::RadToDeg());//Lab
247 m_h_Mom->Fill(fitresult->get4Momentum().P());//Lab
248 }
249 }
250 // Resolution
251 m_h_dD0->Fill((d0[0] + d0[1]) / sqrt(2));
252 m_h_dZ0->Fill((z0[0] - z0[1]) / sqrt(2));
253 m_h_dPtcms->Fill((ptcms[0] - ptcms[1]) / sqrt(2));
254 m_h_dPhicms->Fill(180 - abs(phicms[0] - phicms[1]));
255 m_h_dThetacms->Fill(abs(thetacms[0] + thetacms[1]) - 180);
256 // Event level information
258 if (elti) {
259 m_h_nExtraCDCHits->Fill(elti->getNCDCHitsNotAssigned());
260 }
261 //nECLClustersLE
262 double neclClusters = -1.;
263 StoreArray<ECLCluster> eclClusters;
264 if (eclClusters.isValid()) {
265 const unsigned int numberOfECLClusters = std::count_if(eclClusters.begin(), eclClusters.end(),
266 [](const ECLCluster & eclcluster) {
267 return (eclcluster.hasHypothesis(ECLCluster::EHypothesisBit::c_nPhotons)
268 and eclcluster.getEnergy(ECLCluster::EHypothesisBit::c_nPhotons) > 0.1);
269 });
270 neclClusters = numberOfECLClusters;
271 }
272 m_h_nECLClusters->Fill(neclClusters);
273}
274
276{
277}
278
280{
281}
282
This is a class to store ARICH likelihoods in the datastore.
float getDetPhot() const
Return number of detected photons for a given particle.
static const ChargedStable muon
muon particle
Definition: Const.h:660
static const ChargedStable pion
charged pion particle
Definition: Const.h:661
ECL cluster data.
Definition: ECLCluster.h:27
HistoModule.h is supposed to be used instead of Module.h for the modules with histogram definitions t...
Definition: HistoModule.h:29
KLM cluster data.
Definition: KLMCluster.h:28
int getLayers() const
Get number of layers with hits.
Definition: KLMCluster.h:66
Class to store the likelihoods from KLM with additional information related to the extrapolation.
void setDescription(const std::string &description)
Sets the description of the module.
Definition: Module.cc:214
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
Definition: Module.cc:208
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
Definition: Module.h:80
static ROOT::Math::PxPyPzMVector labToCms(const ROOT::Math::PxPyPzMVector &vec)
Transforms Lorentz vector into CM System.
Class to collect log likelihoods from TOP, ARICH, dEdx, ECL and KLM aimed for output to mdst includes...
Definition: PIDLikelihood.h:29
double getProbability(const Const::ChargedStable &p1, const Const::ChargedStable &p2, Const::PIDDetectorSet set=Const::PIDDetectorSet::set()) const
Return combined likelihood probability for a particle being p1 and not p2, assuming equal prior proba...
Class to store reconstructed particles.
Definition: Particle.h:75
const Track * getTrack() const
Returns the pointer to the Track object that was used to create this Particle (ParticleType == c_Trac...
Definition: Particle.cc:845
double getMass() const
Returns invariant mass (= nominal for FS particles)
Definition: Particle.h:507
TH1F * m_h_dZ0
histogram for Z0 difference between mu+ and mu-
TH1F * m_h_D0
histogram for D0 of muon track
std::string m_muPListName
Name of the mu+ particle list.
TH1F * m_h_Pt
histogram for Pt of muon track
TH1F * m_h_DetPhotonARICH
histogram for number of photon in ARICH associated with muon track
TH1F * m_h_klmTotalEndcapHits
histogram for number of EKLM hits associated with muon track
TH1F * m_h_dPhicms
histogram for phi difference between mu+ and mu- in CMS
TH1F * m_h_Mom
histogram for Momentum of muon track
void event() override
This method is called for each event.
TH1F * m_h_dPtcms
histogram for Pt difference between mu+ and mu-
TH1F * m_h_theta
histogram for theta of muon track
TH1F * m_h_ncdc
histogram for number of CDC hits associated with muon track
void endRun() override
This method is called if the current run ends.
TH1F * m_h_npxd
histogram for number of PXD hits associated with muon track
void terminate() override
This method is called at the end of the event processing.
std::string m_triggerIdentifier
Trigger identifier string used to select events for the histograms.
TH1F * m_h_klmTotalBarrelHits
histogram for number of BKLM hits associated with muon track
TH1F * m_h_dThetacms
histogram for theta difference between mu+ and mu- in CMS
void beginRun() override
Called when entering a new run.
TH1F * m_h_theta_lab
histogram for theta of muon track in lab frame
TH1F * m_h_klmTotalHits
histogram for number of KLM hits associated with muon track
TH1F * m_h_nsvd
histogram for number of SVD hits associated with muon track
std::string m_mumuPListName
Name of the mu+mu- (Upsilon) particle list.
TH1F * m_h_Z0
histogram for Z0 of muon track
TH1F * m_h_nExtraCDCHits
histogram for number of CDC hits not associated with any tracks
TH1F * m_h_dD0
histogram for D0 difference between mu+ and mu-
TH1F * m_h_topdig
histogram for TOP digits associated with muon track
TH1F * m_h_inv_p
histogram for invariant mass of di-muon
TH1F * m_h_klmClusterLayers
histogram for number of KLM layers with cluster associated with muon track
TH1F * m_h_Pval
histogram for Pvalue of tracks in CDC
TH1F * m_h_Phi0
histogram for phi of muon track
TH1F * m_h_nECLClusters
histogram for ECL clusters
void defineHisto() override
Definition of the histograms.
Accessor to arrays stored in the data store.
Definition: StoreArray.h:113
bool isValid() const
Check wether the array was registered.
Definition: StoreArray.h:288
iterator end()
Return iterator to last entry +1.
Definition: StoreArray.h:320
iterator begin()
Return iterator to first entry.
Definition: StoreArray.h:318
Type-safe access to single objects in the data store.
Definition: StoreObjPtr.h:96
bool isValid() const
Check whether the object was created.
Definition: StoreObjPtr.h:111
Values of the result of a track fit with a given particle hypothesis.
short getChargeSign() const
Return track charge (1 or -1).
double getPValue() const
Getter for Chi2 Probability of the track fit.
ROOT::Math::PxPyPzEVector get4Momentum() const
Getter for the 4Momentum at the closest approach of the track in the r/phi projection.
double getD0() const
Getter for d0.
double getZ0() const
Getter for z0.
Class that bundles various TrackFitResults.
Definition: Track.h:25
void addParam(const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
Definition: Module.h:560
#define REG_MODULE(moduleName)
Register the given module (without 'Module' suffix) with the framework.
Definition: Module.h:650
double sqrt(double a)
sqrt for double
Definition: beamHelpers.h:28
@ c_accept
Accept this event.
Abstract base class for different kinds of events.