Belle II Software development
eclBhabhaTimeCalibrationValidationCollectorModule Class Reference

This module generates 'TimevsCrys' histogram to later (in eclBhabhaTAlgorithm) find time offset from bhabha events. More...

#include <eclBhabhaTimeCalibrationValidationCollectorModule.h>

Inheritance diagram for eclBhabhaTimeCalibrationValidationCollectorModule:
CalibrationCollectorModule HistoModule Module PathElement

Public Types

enum  EModulePropFlags {
  c_Input = 1 ,
  c_Output = 2 ,
  c_ParallelProcessingCertified = 4 ,
  c_HistogramManager = 8 ,
  c_InternalSerializer = 16 ,
  c_TerminateInAllProcesses = 32 ,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

 eclBhabhaTimeCalibrationValidationCollectorModule ()
 Module constructor.
 
virtual ~eclBhabhaTimeCalibrationValidationCollectorModule ()
 Module destructor.
 
void inDefineHisto () override
 Replacement for defineHisto() in CalibrationCollector modules.
 
void prepare () override
 Define histograms and read payloads from DB.
 
void collect () override
 Select events and crystals and accumulate histograms.
 
void initialize () final
 Set up a default RunRange object in datastore and call prepare()
 
void event () final
 Check current experiment and run and update if needed, fill into RunRange and collect()
 
void beginRun () final
 Reset the m_runCollectOnRun flag, if necessary, to begin collection again.
 
void endRun () final
 Write the current collector objects to a file and clear their memory.
 
void terminate () final
 Write the final objects to the file.
 
void defineHisto () final
 Runs due to HistoManager, allows us to discover the correct file.
 
template<class T >
void registerObject (std::string name, T *obj)
 Register object with a name, takes ownership, do not access the pointer beyond prepare()
 
template<class T >
T * getObjectPtr (std::string name)
 Calls the CalibObjManager to get the requested stored collector data.
 
virtual std::vector< std::string > getFileNames (bool outputFiles)
 Return a list of output filenames for this modules.
 
const std::string & getName () const
 Returns the name of the module.
 
const std::string & getType () const
 Returns the type of the module (i.e.
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module.
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties.
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level.
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module.
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module.
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module.
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true.
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished.
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module.
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter.
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module.
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module.
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters.
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Protected Member Functions

virtual void startRun ()
 Replacement for beginRun(). Do anything you would normally do in beginRun here.
 
virtual void closeRun ()
 Replacement for endRun(). Do anything you would normally do in endRun here.
 
virtual void finish ()
 Replacement for terminate(). Do anything you would normally do in terminate here.
 
virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python.
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side.
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module.
 
void setType (const std::string &type)
 Set the module type.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module.
 
void setReturnValue (int value)
 Sets the return value for this module as integer.
 
void setReturnValue (bool value)
 Sets the return value for this module as bool.
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Protected Attributes

TDirectory * m_dir
 The top TDirectory that collector objects for this collector will be stored beneath.
 
CalibObjManager m_manager
 Controls the creation, collection and access to calibration objects.
 
RunRangem_runRange
 Overall list of runs processed.
 
Calibration::ExpRun m_expRun
 Current ExpRun for object retrieval (becomes -1,-1 for granularity=all)
 
StoreObjPtr< EventMetaDatam_emd
 Current EventMetaData.
 

Private Member Functions

bool getPreScaleChoice ()
 I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values.
 
std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects.
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary.
 

Private Attributes

bool m_saveTree
 If true, save TTree with more detailed event info.
 
StoreArray< Tracktracks
 Required input array of tracks.
 
StoreArray< ECLClusterm_eclClusterArray
 Required input array of ECLClusters.
 
StoreArray< ECLCalDigitm_eclCalDigitArray
 Required input array of ECLCalDigits.
 
std::unique_ptr< Belle2::ECL::ECLChannelMapperm_crystalMapper
 ECL object for keeping track of mapping between crystals and crates etc.
 
StoreObjPtr< EventMetaDatam_EventMetaData
 Event metadata.
 
StoreObjPtr< SoftwareTriggerResultm_TrgResult
 Store array for Trigger selection.
 
StoreObjPtr< EventT0m_eventT0
 StoreObjPtr for T0.
 
TTree * m_dbg_tree_electronClusters
 debug output tree for per electron cluster
 
TTree * m_dbg_tree_event
 debug output tree for per event
 
TTree * m_dbg_tree_run
 debug output tree for per run
 
int m_tree_evt_num = -1
 Event number for debug TTree output.
 
int m_tree_run = -1
 Run number for debug TTree output.
 
int m_tree_cid = -1
 ECL Cell ID (1..ECLElementNumbers::c_NCrystals) for debug TTree output.
 
double m_tree_dt99 = -1
 dt99 for cluster
 
double m_tree_time = -1
 Calibrated time.
 
double m_tree_time_fromE0 = -1
 Calibrated time - highest E cluster.
 
double m_tree_time_fromE1 = -1
 Calibrated time - second highest E cluster.
 
double m_tree_E0 = -1
 Highest E cluster energy.
 
double m_tree_E1 = -1
 second highest E cluster energy
 
double m_tree_t0 = -1
 EventT0 (not from ECL) for debug TTree output.
 
double m_tree_t0_unc = -1
 EventT0 uncertainty for debug TTree output.
 
int m_NtightTracks = -1
 Number of tight tracks.
 
DBObjPtr< ECLCrystalCalibm_CrateTimeDB
 database object
 
std::vector< float > m_CrateTime
 vector obtained from DB object
 
std::vector< float > m_CrateTimeUnc
 uncertainty vector obtained from DB object
 
DBObjPtr< Belle2::ECLChannelMapm_channelMapDB
 Mapper of ecl channels to various other objects, like crates.
 
int m_tree_crateid = -1
 Crate ID for debug TTree output.
 
double m_tree_tcrate = -1
 Crate time for debug TTree output.
 
double m_tree_tcrate_unc = -1
 Crate time uncertainty for debug TTree output.
 
int m_tree_PreviousRun = -1
 Run number for the previous run for debug TTree output.
 
std::vector< float > m_EperCrys
 ECL Cal digit energy for each crystal.
 
double m_E_electron_clust = -1
 Electron cluster energy.
 
short m_timeAbsMax
 Events with abs(time) > m_timeAbsMax are excluded, mostly for histogram x-range purposes.
 
double m_looseTrkZ0
 Loose track z0 minimum cut.
 
double m_tightTrkZ0
 Tight track z0 minimum cut.
 
double m_looseTrkD0
 Loose track d0 minimum cut.
 
double m_tightTrkD0
 Tight track d0 minimum cut.
 
bool skipTrgSel
 flag to skip the trigger skim selection in the module
 
std::string m_granularity
 Granularity of data collection = run|all(= no granularity, exp,run=-1,-1)
 
int m_maxEventsPerRun
 Maximum number of events to be collected at the start of each run (-1 = no maximum)
 
float m_preScale
 Prescale module parameter, this fraction of events will have collect() run on them [0.0 -> 1.0].
 
StoreObjPtr< EventMetaDatam_evtMetaData
 Required input for EventMetaData.
 
bool m_runCollectOnRun = true
 Whether or not we will run the collect() at all this run, basically skips the event() function if false.
 
std::map< Calibration::ExpRun, int > m_expRunEvents
 How many events processed for each ExpRun so far, stops counting up once max is hit Only used/incremented if m_maxEventsPerRun > -1.
 
int * m_eventsCollectedInRun
 Will point at correct value in m_expRunEvents.
 
std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 

Detailed Description

This module generates 'TimevsCrys' histogram to later (in eclBhabhaTAlgorithm) find time offset from bhabha events.

Definition at line 41 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

Member Typedef Documentation

◆ EAfterConditionPath

Forward the EAfterConditionPath definition from the ModuleCondition.

Definition at line 88 of file Module.h.

Member Enumeration Documentation

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 77 of file Module.h.

77 {
78 c_Input = 1,
79 c_Output = 2,
85 };
@ c_HistogramManager
This module is used to manage histograms accumulated by other modules.
Definition: Module.h:81
@ c_Input
This module is an input module (reads data).
Definition: Module.h:78
@ c_DontCollectStatistics
No statistics is collected for this module.
Definition: Module.h:84
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
Definition: Module.h:80
@ c_InternalSerializer
This module is an internal serializer/deserializer for parallel processing.
Definition: Module.h:82
@ c_Output
This module is an output module (writes data).
Definition: Module.h:79
@ c_TerminateInAllProcesses
When using parallel processing, call this module's terminate() function in all processes().
Definition: Module.h:83

Constructor & Destructor Documentation

◆ eclBhabhaTimeCalibrationValidationCollectorModule()

Module constructor.

Definition at line 59 of file eclBhabhaTimeCalibrationValidationCollectorModule.cc.

59 :
64 m_CrateTimeDB("ECLCrateTimeOffset"),
65 m_channelMapDB("ECLChannelMap")//,
66{
67 setDescription("This module validates the ECL cluster times");
68
69 addParam("timeAbsMax", m_timeAbsMax, // (Time in ns)
70 "Events with fabs(getTimeFit) > m_timeAbsMax "
71 "are excluded", (short)80);
72
73 addParam("saveTree", m_saveTree,
74 "If true, TTree 'tree' with more detailed event info is saved in "
75 "the output file specified by HistoManager",
76 false);
77
78 addParam("looseTrkZ0", m_looseTrkZ0, "max Z0 for loose tracks (cm)", 10.);
79 addParam("tightTrkZ0", m_tightTrkZ0, "max Z0 for tight tracks (cm)", 2.);
80 addParam("looseTrkD0", m_looseTrkD0, "max D0 for loose tracks (cm)", 2.);
81 addParam("tightTrkD0", m_tightTrkD0, "max D0 for tight tracks (cm)", 0.5); // beam pipe radius = 1cm in 2019
82 addParam("skipTrgSel", skipTrgSel, "boolean to skip the trigger skim selection", false);
83
84
85 // specify this flag if you need parallel processing
87}
CalibrationCollectorModule()
Constructor. Sets the default prefix for calibration dataobjects.
void setDescription(const std::string &description)
Sets the description of the module.
Definition: Module.cc:214
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
Definition: Module.cc:208
short m_timeAbsMax
Events with abs(time) > m_timeAbsMax are excluded, mostly for histogram x-range purposes.
DBObjPtr< Belle2::ECLChannelMap > m_channelMapDB
Mapper of ecl channels to various other objects, like crates.
void addParam(const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
Definition: Module.h:560

◆ ~eclBhabhaTimeCalibrationValidationCollectorModule()

Member Function Documentation

◆ beginRun()

void beginRun ( void  )
finalvirtualinherited

Reset the m_runCollectOnRun flag, if necessary, to begin collection again.

It seems that the beginRun() function is called in each basf2 subprocess when the run changes in each process. This is nice because it allows us to write the new (exp,run) object creation in the beginRun function as though the other processes don't exist.

Reimplemented from HistoModule.

Definition at line 77 of file CalibrationCollectorModule.cc.

78{
83 // Current (Exp,Run)
84 ExpRun expRun = make_pair(m_emd->getExperiment(), m_emd->getRun());
85 m_runRange->add(expRun.first, expRun.second);
86
87 // Do we care about the number of events collected in each (input data) ExpRun?
88 // If so, we want to create values for the events collected map
89 if (m_maxEventsPerRun > -1) {
90 // Do we have a count for this ExpRun yet? If not create one
91 auto i_eventsInExpRun = m_expRunEvents.find(expRun);
92 if (i_eventsInExpRun == m_expRunEvents.end()) {
93 m_expRunEvents[expRun] = 0;
94 }
95
96 // Set our pointer to the correct location for this ExpRun
98 // Want to reset our flag to start collection if necessary
100 B2INFO("New run has had less events than the maximum collected so far ("
102 << " < "
104 << "). Turning on collection.");
105 m_runCollectOnRun = true;
106 } else {
107 B2INFO("New run has had more events than the maximum collected so far ("
109 << " >= "
111 << "). Turning off collection.");
112 m_runCollectOnRun = false;
113 }
114 }
115 // Granularity=all removes data spliting by runs by setting
116 // always the same exp, run for calibration data objects
117 if (m_granularity == "all") {
118 m_expRun = { -1, -1};
119 } else {
120 m_expRun = expRun;
121 }
123 // Run the user's startRun() implementation if there is one
124 startRun();
125}
bool m_runCollectOnRun
Whether or not we will run the collect() at all this run, basically skips the event() function if fal...
virtual void startRun()
Replacement for beginRun(). Do anything you would normally do in beginRun here.
Calibration::ExpRun m_expRun
Current ExpRun for object retrieval (becomes -1,-1 for granularity=all)
CalibObjManager m_manager
Controls the creation, collection and access to calibration objects.
std::string m_granularity
Granularity of data collection = run|all(= no granularity, exp,run=-1,-1)
RunRange * m_runRange
Overall list of runs processed.
int * m_eventsCollectedInRun
Will point at correct value in m_expRunEvents.
StoreObjPtr< EventMetaData > m_emd
Current EventMetaData.
int m_maxEventsPerRun
Maximum number of events to be collected at the start of each run (-1 = no maximum)
std::map< Calibration::ExpRun, int > m_expRunEvents
How many events processed for each ExpRun so far, stops counting up once max is hit Only used/increme...
void add(int exp, int run)
Add an experiment and run number to the set.
Definition: RunRange.h:58
void createExpRunDirectories(Calibration::ExpRun &expRun) const
For each templated object, we create a new TDirectory for this exprun.
Struct containing exp number and run number.
Definition: Splitter.h:51

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 179 of file Module.cc.

180{
182 newModule->m_moduleParamList.setParameters(getParamList());
183 newModule->setName(getName());
184 newModule->m_package = m_package;
185 newModule->m_propertyFlags = m_propertyFlags;
186 newModule->m_logConfig = m_logConfig;
187 newModule->m_conditions = m_conditions;
188
189 return newModule;
190}
std::shared_ptr< Module > registerModule(const std::string &moduleName, std::string sharedLibPath="") noexcept(false)
Creates an instance of a module and registers it to the ModuleManager.
static ModuleManager & Instance()
Exception is thrown if the requested module could not be created by the ModuleManager.
const ModuleParamList & getParamList() const
Return module param list.
Definition: Module.h:363
const std::string & getName() const
Returns the name of the module.
Definition: Module.h:187
const std::string & getType() const
Returns the type of the module (i.e.
Definition: Module.cc:41
unsigned int m_propertyFlags
The properties of the module as bitwise or (with |) of EModulePropFlags.
Definition: Module.h:512
LogConfig m_logConfig
The log system configuration of the module.
Definition: Module.h:514
std::vector< ModuleCondition > m_conditions
Module condition, only non-null if set.
Definition: Module.h:521
std::string m_package
Package this module is found in (may be empty).
Definition: Module.h:510
std::shared_ptr< Module > ModulePtr
Defines a pointer to a module object as a boost shared pointer.
Definition: Module.h:43

◆ closeRun()

◆ collect()

void collect ( )
overridevirtual

Select events and crystals and accumulate histograms.

< vector derived from DB object

< vector derived from DB object

< number of loose tracks

< number of tight tracks

Reimplemented from CalibrationCollectorModule.

Definition at line 208 of file eclBhabhaTimeCalibrationValidationCollectorModule.cc.

209{
210 int cutIndexPassed = 0;
211 getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
212 B2DEBUG(22, "Cutflow: no cuts: index = " << cutIndexPassed);
213
214
215 // --- Check the trigger skim is the type that has two tracks
216
217 /* If we skip the trigger skim selection then still fill the cutflow histogram
218 just so that the positions don't change. */
219 if (!skipTrgSel) {
220 if (!m_TrgResult.isValid()) {
221 B2WARNING("SoftwareTriggerResult required to select bhabha event is not found");
222 return;
223 }
224
225 /* Release05: bhabha_all is grand skim = bhabha+bhabhaecl+radee. We only want
226 to look at the 2 track bhabha events. */
227 const std::map<std::string, int>& fresults = m_TrgResult->getResults();
228 if (fresults.find("software_trigger_cut&skim&accept_bhabha") == fresults.end()) {
229 B2WARNING("Can't find required bhabha trigger identifier");
230 return;
231 }
232
233 const bool eBhabha = (m_TrgResult->getResult("software_trigger_cut&skim&accept_bhabha") ==
235 B2DEBUG(22, "eBhabha (trigger passed) = " << eBhabha);
236
237 if (!eBhabha) {
238 return;
239 }
240 }
241
242 /* Fill the histgram showing that the trigger skim cut passed OR that we
243 are skipping this selection. */
244 cutIndexPassed++;
245 getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
246 B2DEBUG(22, "Cutflow: Trigger cut passed: index = " << cutIndexPassed);
247
248
249
250
251
252 /* Use ECLChannelMapper to get other detector indices for the crystals
253 For conversion from CellID to crate, shaper, and channel ids.
254 The initialization function automatically checks to see if the
255 object has been initialized and ifthe payload has changed and
256 thus needs updating. */
257 bool ECLchannelMapHasChanged = m_channelMapDB.hasChanged();
258 if (ECLchannelMapHasChanged) {
259 B2INFO("eclBhabhaTimeCalibrationValidationCollectorModule::collect() " << LogVar("ECLchannelMapHasChanged",
260 ECLchannelMapHasChanged));
261 if (!m_crystalMapper->initFromDB()) {
262 B2FATAL("eclBhabhaTimeCalibrationValidationCollectorModule::collect() : Can't initialize eclChannelMapper!");
263 }
264 }
265
266
267
268
269
270 B2DEBUG(29, "Finished checking if previous crystal time payload has changed");
271
272 if (m_CrateTimeDB.hasChanged()) {
273 m_CrateTime = m_CrateTimeDB->getCalibVector();
274 m_CrateTimeUnc = m_CrateTimeDB->getCalibUncVector();
275 }
276
277 B2DEBUG(25, "eclBhabhaTimeCalibrationValidationCollector:: loaded ECLCrateTimeOffset from the database"
278 << LogVar("IoV", m_CrateTimeDB.getIoV())
279 << LogVar("Checksum", m_CrateTimeDB.getChecksum()));
280
281 // Conversion coefficient from ADC ticks to nanoseconds
282 // TICKS_TO_NS ~ 0.4931 ns/clock tick
283 // 1/(4fRF) = 0.4913 ns/clock tick, where fRF is the accelerator RF frequency
284 const double TICKS_TO_NS = 1.0 / (4.0 * EclConfiguration::getRF()) * 1e3;
285
286
287 vector<float> Crate_time_ns(52, 0.0);
288 vector<float> Crate_time_unc_ns(52, 0.0);
290 // Make a crate time offset vector with an entry per crate (instead of per crystal) and convert from ADC counts to ns.
291 for (int crysID = 1; crysID <= ECLElementNumbers::c_NCrystals; crysID++) {
292 int crateID_temp = m_crystalMapper->getCrateID(crysID);
293 Crate_time_ns[crateID_temp - 1] = m_CrateTime[crysID] * TICKS_TO_NS;
294 Crate_time_unc_ns[crateID_temp - 1] = m_CrateTimeUnc[crysID] * TICKS_TO_NS;
295 }
296
297
298
299 // Storage crystal energies
301 for (auto& eclCalDigit : m_eclCalDigitArray) {
302 int tempCrysID = eclCalDigit.getCellId() - 1;
303 m_EperCrys[tempCrysID] = eclCalDigit.getEnergy();
304 }
305
306
307 // Getting the event t0 using the full event t0 rather than from the CDC specifically
308
309 double evt_t0 = -1000 ;
310 double evt_t0_unc = -1000 ;
311
312 // Determine if there is an event t0 to use and then extract the information about it
313 if (m_eventT0.isOptional()) {
314 if (!m_eventT0.isValid()) {
315 return;
316 }
317 if (!m_eventT0->hasEventT0()) {
318 return;
319 } else {
320 // Overall event t0 (combination of multiple event t0s from different detectors)
321 evt_t0 = m_eventT0->getEventT0() ;
322 evt_t0_unc = m_eventT0->getEventT0Uncertainty() ;
323 }
324 B2DEBUG(26, "Found event t0") ;
325 }
326
327
328 //---------------------------------------------------------------------
329 //..Some utilities
330 PCmsLabTransform boostrotate;
331
332 //---------------------------------------------------------------------
333 //..Track properties. Use pion (211) mass hypothesis,
334 // which is the only particle hypothesis currently available???
335 double maxp[2] = {0., 0.};
336 int maxiTrk[2] = { -1, -1};
337 int nTrkAll = tracks.getEntries() ;
338
339 int nTrkLoose = 0 ;
340 int nTrkTight = 0 ;
343 /* Loop over all the tracks to define the tight and loose selection tracks
344 We will select events with only 2 tight tracks and no additional loose tracks.
345 Tight tracks are a subset of looses tracks. */
346 for (int iTrk = 0 ; iTrk < nTrkAll ; iTrk++) {
347 // Get track biasing towards the particle being a pion based on what particle types
348 // are used for reconstruction at this stage.
349 const TrackFitResult* tempTrackFit = tracks[iTrk]->getTrackFitResultWithClosestMass(Const::pion);
350 if (not tempTrackFit) {continue ;}
351
352 // Collect track info to be used for categorizing
353 short charge = tempTrackFit->getChargeSign() ;
354 double z0 = tempTrackFit->getZ0() ;
355 double d0 = tempTrackFit->getD0() ;
356 int nCDChits = tempTrackFit->getHitPatternCDC().getNHits() ;
357 double p = tempTrackFit->getMomentum().R() ;
358
359 /* Test if loose track */
360
361 // d0 and z0 cuts
362 if (fabs(d0) > m_looseTrkD0) {
363 continue;
364 }
365 if (fabs(z0) > m_looseTrkZ0) {
366 continue;
367 }
368 // Number of hits in the CDC
369 if (nCDChits < 1) {
370 continue;
371 }
372 nTrkLoose++;
373
374
375
376 /* Test if the loose track is also a tight track */
377
378 // Number of hits in the CDC
379 if (nCDChits < 20) {
380 continue;
381 }
382 // d0 and z0 cuts
383 if (fabs(d0) > m_tightTrkD0) {
384 continue;
385 }
386 if (fabs(z0) > m_tightTrkZ0) {
387 continue;
388 }
389 nTrkTight++;
390
391 // Sorting of tight tracks. Not really required as we only want two tight tracks (at the moment) but okay.
392 //..Find the maximum p negative [0] and positive [1] tracks
393 int icharge = 0;
394 if (charge > 0) {icharge = 1;}
395 if (p > maxp[icharge]) {
396 maxp[icharge] = p;
397 maxiTrk[icharge] = iTrk;
398 }
399
400 }
401 /* After that last section the numbers of loose and tight tracks are known as well as the
402 index of the loose tracks that have the highest p negatively charged and highest p positively
403 charged tracks as measured in the centre of mass frame */
404
405
406 if (nTrkTight != 2) {
407 return;
408 }
409 // There are exactly two tight tracks
410 cutIndexPassed++;
411 getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
412 B2DEBUG(22, "Cutflow: Two tight tracks: index = " << cutIndexPassed);
413
414
415 if (nTrkLoose != 2) {
416 return;
417 }
418 // There are exactly two loose tracks as well, i.e. no additional loose tracks
419 cutIndexPassed++ ;
420 getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed) ;
421 B2DEBUG(22, "Cutflow: No additional loose tracks: index = " << cutIndexPassed) ;
422 /* Determine if the two tracks have the opposite electric charge.
423 We know this because the track indices stores the max pt track in [0] for negatively charged track
424 and [1] fo the positively charged track. If both are filled then both a negatively charged
425 and positively charged track were found. */
426 bool oppositelyChargedTracksPassed = maxiTrk[0] != -1 && maxiTrk[1] != -1;
427 if (!oppositelyChargedTracksPassed) {
428 return;
429 }
430 // The two tracks have the opposite electric charges.
431 cutIndexPassed++;
432 getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
433 B2DEBUG(22, "Cutflow: Oppositely charged tracks: index = " << cutIndexPassed);
434
435
436
437 //---------------------------------------------------------------------
438 /* Determine associated energy clusters to each of the two tracks. Sum the energies of the
439 multiple clusters to each track and find the crystal with the maximum energy within all
440 the sets of clusters associated to the tracks. Extract the good cluster times.*/
441 double trkEClustLab[2] = {0., 0.};
442 double trkEClustCOM[2] = {0., 0.};
443 double trkpLab[2];
444 double trkpCOM[2];
445 ROOT::Math::PxPyPzEVector trkp4Lab[2];
446 ROOT::Math::PxPyPzEVector trkp4COM[2];
447
448 // Index of the cluster and the crystal that has the highest energy crystal for the two tracks
449 int numClustersPerTrack[2] = { 0, 0 };
450 double E_DIV_p[2];
451
452 vector<double> goodClustTimes ;
453 vector<double> goodClust_dt99 ;
454 vector<double> goodClustE ;
455 vector<int> goodClustMaxEcrys_cid ;
456
457 for (int icharge = 0; icharge < 2; icharge++) {
458 if (maxiTrk[icharge] > -1) {
459 B2DEBUG(22, "looping over the 2 max pt tracks");
460
461 const TrackFitResult* tempTrackFit = tracks[maxiTrk[icharge]]->getTrackFitResultWithClosestMass(Const::pion);
462 if (not tempTrackFit) {continue ;}
463
464 trkp4Lab[icharge] = tempTrackFit->get4Momentum();
465 trkp4COM[icharge] = boostrotate.rotateLabToCms() * trkp4Lab[icharge];
466 trkpLab[icharge] = trkp4Lab[icharge].P();
467 trkpCOM[icharge] = trkp4COM[icharge].P();
468
469
470 /* For each cluster associated to the current track, sum up the energies to get the total
471 energy of all clusters associated to the track and find which crystal has the highest
472 energy from all those clusters*/
473 auto eclClusterRelationsFromTracks = tracks[maxiTrk[icharge]]->getRelationsTo<ECLCluster>();
474 for (unsigned int clusterIdx = 0; clusterIdx < eclClusterRelationsFromTracks.size(); clusterIdx++) {
475
476 B2DEBUG(22, "Looking at clusters. index = " << clusterIdx);
477 auto cluster = eclClusterRelationsFromTracks[clusterIdx];
478
479 if (cluster->hasHypothesis(Belle2::ECLCluster::EHypothesisBit::c_nPhotons)) {
480 numClustersPerTrack[icharge]++;
481 double eClust = cluster->getEnergy(Belle2::ECLCluster::EHypothesisBit::c_nPhotons);
482 double electronTime = cluster->getTime();
483 bool badElectronTime = cluster->hasFailedFitTime();
484 bool badElectronTimeResolution = cluster->hasFailedTimeResolution();
485 if ((fabs(electronTime) < m_timeAbsMax) &&
486 (!badElectronTime) &&
487 (!badElectronTimeResolution)) {
488 trkEClustLab[icharge] += eClust ;
489 short cid = cluster->getMaxECellId() ;
490 goodClustMaxEcrys_cid.push_back(cid) ;
491 goodClustTimes.push_back(electronTime) ;
492 goodClust_dt99.push_back(cluster->getDeltaTime99()) ;
493 goodClustE.push_back(eClust);
494 }
495 }
496 }
497 trkEClustCOM[icharge] = trkEClustLab[icharge] * trkpCOM[icharge] / trkpLab[icharge];
498
499 // Check both electrons to see if their cluster energy / track momentum is good.
500 // The Belle II physics book shows that this is the main way of separating electrons from other particles
501 // Done in the centre of mass reference frame although I believe E/p is invariant under a boost.
502 E_DIV_p[icharge] = trkEClustCOM[icharge] / trkpCOM[icharge];
503
504 }
505 }
506 /* At the end of this section the 3-momenta magnitudes and the cluster energies are known
507 for the two saved track indices for both the lab and COM frames.
508 The crystal with the maximum energy, one associated to each track, is recorded*/
509 B2DEBUG(26, "Extracted time information and E/p for the tracks") ;
510
511
512
513 /* Cut on the number of ECL cluster connected to tracks
514
515 THIS IS DIFFERENT FROM THE CODE THAT PERFORMS THE CALIBRATIONS. THIS VALIDATIONS REQUIRES
516 THAT THERE ARE EXACTLY TWO CLUSTERS ASSOCIATED TO THE TRACKS WHILE THE CALIBRATION
517 CODE ALLOWS FOR MORE THAN ONE CLUSTER PER TRACK. THIS VALIDATION ALSO DOES NOT CUT ON THE
518 NUMBER OF EXTRA CLUSTERS NOT ASSOCIATED TO THE 2 TRACKS, WHICH IS A LOOSER CUT THAN USED
519 TO PERFORM THE CALIBRATION. */
520 long unsigned int numGoodElectronClusters_cut = 2 ;
521 if (goodClustTimes.size() != numGoodElectronClusters_cut) {
522 return ;
523 }
524 // There is exactly two ECL clusters connected to tracks in the event
525 cutIndexPassed++ ;
526 getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed) ;
527 B2DEBUG(22, "Cutflow: Exactly " << numGoodElectronClusters_cut
528 << " good clusters connected to tracks: index = " << cutIndexPassed);
529
530
531 // Check both electrons to see if their cluster energy / track momentum is good.
532 // The Belle II physics book shows that this is the main way of separating electrons from other particles
533 // Done in the centre of mass reference frame although I believe E/p is invariant under a boost.
534 bool E_DIV_p_instance_passed[2] = {false, false};
535 double E_DIV_p_CUT = 0.7;
536 for (int icharge = 0; icharge < 2; icharge++) {
537 E_DIV_p_instance_passed[icharge] = E_DIV_p[icharge] > E_DIV_p_CUT;
538 }
539 if (!E_DIV_p_instance_passed[0] || !E_DIV_p_instance_passed[1]) {
540 return;
541 }
542 // E/p sufficiently large
543 cutIndexPassed++;
544 getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
545 B2DEBUG(22, "Cutflow: E_i/p_i > " << E_DIV_p_CUT << ": index = " << cutIndexPassed);
546
547
548
549 // Cut on the invariant mass of the tracks in the event
550 double invMassTrk = (trkp4Lab[0] + trkp4Lab[1]).M();
551 double invMass_CUT = 0.9;
552
553 bool invMassCutsPassed = invMassTrk > (invMass_CUT * boostrotate.getCMSEnergy());
554 if (!invMassCutsPassed) {
555 return;
556 }
557 // Invariable mass of the two tracks are above the minimum
558 cutIndexPassed++;
559 getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
560 B2DEBUG(22, "Cutflow: m(track 1+2) > " << invMass_CUT << "*E_COM = " << invMass_CUT << " * " << boostrotate.getCMSEnergy() <<
561 " : index = " << cutIndexPassed);
562
563
564 B2DEBUG(22, "Event passed all cuts");
565
566
567 // Fill the histogram for the event level variables
568 getObjectPtr<TH1F>("eventT0")->Fill(evt_t0) ;
569
570 bool isCDCt0 = m_eventT0->isCDCEventT0();
571 bool isECLt0 = m_eventT0->isECLEventT0();
572 string t0Detector = "UNKNOWN... WHY?";
573 if (isCDCt0) {
574 t0Detector = "CDC" ;
575 } else if (isECLt0) {
576 t0Detector = "ECL" ;
577 }
578
579 B2DEBUG(26, "t0 = " << evt_t0 << " ns. t0 is from CDC?=" << isCDCt0 << ", t0 is from ECL?=" << isECLt0 << " t0 from " <<
580 t0Detector);
581
582
583 //=== For each good electron cluster in the processed event and fill histogram.
584 for (long unsigned int i = 0 ; i < goodClustTimes.size() ; i++) {
585 getObjectPtr<TH1F>("clusterTime")->Fill(goodClustTimes[i]) ;
586 getObjectPtr<TH2F>("clusterTime_cid")->Fill(goodClustMaxEcrys_cid[i] + 0.001, goodClustTimes[i], 1) ;
587 getObjectPtr<TH2F>("clusterTime_run")->Fill(m_EventMetaData->getRun() + 0.001, goodClustTimes[i], 1) ;
588 getObjectPtr<TH2F>("clusterTimeClusterE")->Fill(goodClustE[i], goodClustTimes[i], 1) ;
589 getObjectPtr<TH2F>("dt99_clusterE")->Fill(goodClustE[i], goodClust_dt99[i], 1) ;
590
591
592 //== Save debug TTree with detailed information if necessary.
593 if (m_saveTree) {
594
595 m_tree_time = goodClustTimes[i] ;
596 m_tree_t0 = evt_t0 ;
597 m_tree_t0_unc = evt_t0_unc ;
598 m_E_electron_clust = goodClustE[i] ;
599 m_NtightTracks = nTrkTight ;
600 m_tree_evt_num = m_EventMetaData->getEvent() ;
601 m_tree_run = m_EventMetaData->getRun() ;
602 m_tree_cid = goodClustMaxEcrys_cid[i] ;
603 m_tree_dt99 = goodClust_dt99[i] ;
604
606
607 }
608 }
609 B2DEBUG(26, "Filled cluster tree") ;
610
611 //=== Fill histogram for cluster time difference of the two electrons
612 double tDiff;
613 if (goodClustE[0] > goodClustE[1]) {
614 tDiff = goodClustTimes[0] - goodClustTimes[1];
615 } else {
616 tDiff = goodClustTimes[1] - goodClustTimes[0];
617 }
618
619 getObjectPtr<TH1F>("clusterTimeE0E1diff")->Fill(tDiff) ;
620
621
622
623 if (m_saveTree) {
624 m_tree_t0 = evt_t0 ;
625 m_tree_t0_unc = evt_t0_unc ;
626 m_tree_evt_num = m_EventMetaData->getEvent() ;
627 m_tree_run = m_EventMetaData->getRun() ;
628 m_NtightTracks = nTrkTight ;
629 m_tree_E0 = goodClustE[0] ;
630 m_tree_E1 = goodClustE[1] ;
631 m_tree_time_fromE0 = goodClustTimes[0] ;
632 m_tree_time_fromE1 = goodClustTimes[1] ;
633
634 m_dbg_tree_event->Fill() ;
635
636
637 int runNum = m_EventMetaData->getRun();
638 if (m_tree_PreviousRun != runNum) {
639 for (int icrate = 1; icrate <= 52; icrate++) {
640 m_tree_run = runNum ;
641 m_tree_crateid = icrate ;
642 m_tree_tcrate = Crate_time_ns[icrate] ;
643 m_tree_tcrate_unc = Crate_time_unc_ns[icrate] ;
644
645 m_dbg_tree_run->Fill() ;
646 }
648 }
649 }
650
651 B2DEBUG(26, "Filled event tree") ;
652
653}
static const ChargedStable pion
charged pion particle
Definition: Const.h:661
bool hasChanged()
Check whether the object has changed since the last call to hasChanged of the accessor).
ECL cluster data.
Definition: ECLCluster.h:27
@ c_nPhotons
CR is split into n photons (N1)
static double getRF()
See m_rf.
Class to hold Lorentz transformations from/to CMS and boost vector.
double getCMSEnergy() const
Returns CMS energy of e+e- (aka.
const ROOT::Math::LorentzRotation rotateLabToCms() const
Returns Lorentz transformation from Lab to CMS.
Values of the result of a track fit with a given particle hypothesis.
int m_tree_PreviousRun
Run number for the previous run for debug TTree output.
int m_tree_cid
ECL Cell ID (1..ECLElementNumbers::c_NCrystals) for debug TTree output.
std::vector< float > m_CrateTimeUnc
uncertainty vector obtained from DB object
StoreArray< ECLCalDigit > m_eclCalDigitArray
Required input array of ECLCalDigits.
std::unique_ptr< Belle2::ECL::ECLChannelMapper > m_crystalMapper
ECL object for keeping track of mapping between crystals and crates etc.
StoreObjPtr< SoftwareTriggerResult > m_TrgResult
Store array for Trigger selection.
Class to store variables with their name which were sent to the logging service.
@ c_accept
Accept this event.
const int c_NCrystals
Number of crystals.
double charge(int pdgCode)
Returns electric charge of a particle with given pdg code.
Definition: EvtPDLUtil.cc:44

◆ def_beginRun()

virtual void def_beginRun ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 426 of file Module.h.

426{ beginRun(); }
virtual void beginRun()
Called when entering a new run.
Definition: Module.h:147

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 439 of file Module.h.

439{ endRun(); }
virtual void endRun()
This method is called if the current run ends.
Definition: Module.h:166

◆ def_event()

virtual void def_event ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 432 of file Module.h.

432{ event(); }
virtual void event()
This method is the core of the module.
Definition: Module.h:157

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 420 of file Module.h.

420{ initialize(); }
virtual void initialize()
Initialize the Module.
Definition: Module.h:109

◆ def_terminate()

virtual void def_terminate ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 445 of file Module.h.

445{ terminate(); }
virtual void terminate()
This method is called at the end of the event processing.
Definition: Module.h:176

◆ defineHisto()

void defineHisto ( )
finalvirtualinherited

Runs due to HistoManager, allows us to discover the correct file.

Reimplemented from HistoModule.

Definition at line 127 of file CalibrationCollectorModule.cc.

128{
130 m_dir = gDirectory->mkdir(getName().c_str(), "", true);
132 B2INFO("Saving output to TDirectory " << m_dir->GetPath());
133 B2DEBUG(100, "Creating directories for individual collector objects.");
135 m_runRange = new RunRange();
137 m_runRange->SetName(Calibration::RUN_RANGE_OBJ_NAME.c_str());
138 m_dir->Add(m_runRange);
139 }
141}
void setDirectory(TDirectory *dir)
Change the directory that we will be using to find/store all our objects, we don't own it.
TDirectory * m_dir
The top TDirectory that collector objects for this collector will be stored beneath.
virtual void inDefineHisto()
Replacement for defineHisto(). Do anything you would normally do in defineHisto here.
static bool isWorkerProcess()
Return true if the process is a worker process.
Definition: ProcHandler.cc:230
static bool parallelProcessingUsed()
Returns true if multiple processes have been spawned, false in single-core mode.
Definition: ProcHandler.cc:226
Mergeable object holding (unique) set of (exp,run) pairs.
Definition: RunRange.h:25
void setGranularity(const std::string &granularity)
Set the m_granularity to an allowed value.
Definition: RunRange.h:100
void createDirectories()
Each object gets its own TDirectory under the main manager directory to store its objects.

◆ endRun()

void endRun ( void  )
finalvirtualinherited

Write the current collector objects to a file and clear their memory.

Reimplemented from HistoModule.

Definition at line 143 of file CalibrationCollectorModule.cc.

144{
145 closeRun();
146 // Moving between runs possibly creates new objects if getObjectPtr is called and granularity is run
147 // So we should write and clear the current memory objects.
148 if (m_granularity == "run") {
149 ExpRun expRun = make_pair(m_emd->getExperiment(), m_emd->getRun());
152 }
153}
virtual void closeRun()
Replacement for endRun(). Do anything you would normally do in endRun here.
void clearCurrentObjects(const Calibration::ExpRun &expRun)
Deletes all in-memory objects in the exprun directories for all the collector objects we know about.
void writeCurrentObjects(const Calibration::ExpRun &expRun)
For each templated object we know about, we find an in memory object for this exprun and write to the...

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 96 of file Module.cc.

97{
98 if (m_conditions.empty()) return false;
99
100 //okay, a condition was set for this Module...
101 if (!m_hasReturnValue) {
102 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
103 }
104
105 for (const auto& condition : m_conditions) {
106 if (condition.evaluate(m_returnValue)) {
107 return true;
108 }
109 }
110 return false;
111}
int m_returnValue
The return value.
Definition: Module.h:519
bool m_hasReturnValue
True, if the return value is set.
Definition: Module.h:518

◆ event()

void event ( void  )
finalvirtualinherited

Check current experiment and run and update if needed, fill into RunRange and collect()

Reimplemented from HistoModule.

Definition at line 52 of file CalibrationCollectorModule.cc.

53{
54 // Should we collect data this event based on the number collected in the run?
56 // If yes, does our preScale return true?
57 if (getPreScaleChoice()) {
58 collect();
59 // Since we collected, do we care about incrementing the number of events collected?
60 if (m_maxEventsPerRun > -1) {
61 (*m_eventsCollectedInRun) += 1;
62 // Now that we incremented, have we exceeded our maximum collected events in this run?
64 // If we have, we should skip collection until further notice
65 B2INFO("Reached maximum number of events processed by collector for this run ("
67 << " >= "
69 << "). Turning off collection.");
70 m_runCollectOnRun = false;
71 }
72 }
73 }
74 }
75}
virtual void collect()
Replacement for event(). Fill you calibration data objects here.
bool getPreScaleChoice()
I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values.

◆ exposePythonAPI()

void exposePythonAPI ( )
staticinherited

Exposes methods of the Module class to Python.

Definition at line 325 of file Module.cc.

326{
327 // to avoid confusion between std::arg and boost::python::arg we want a shorthand namespace as well
328 namespace bp = boost::python;
329
330 docstring_options options(true, true, false); //userdef, py sigs, c++ sigs
331
332 void (Module::*setReturnValueInt)(int) = &Module::setReturnValue;
333
334 enum_<Module::EAfterConditionPath>("AfterConditionPath",
335 R"(Determines execution behaviour after a conditional path has been executed:
336
337.. attribute:: END
338
339 End processing of this path after the conditional path. (this is the default for if_value() etc.)
340
341.. attribute:: CONTINUE
342
343 After the conditional path, resume execution after this module.)")
344 .value("END", Module::EAfterConditionPath::c_End)
345 .value("CONTINUE", Module::EAfterConditionPath::c_Continue)
346 ;
347
348 /* Do not change the names of >, <, ... we use them to serialize conditional pathes */
349 enum_<Belle2::ModuleCondition::EConditionOperators>("ConditionOperator")
356 ;
357
358 enum_<Module::EModulePropFlags>("ModulePropFlags",
359 R"(Flags to indicate certain low-level features of modules, see :func:`Module.set_property_flags()`, :func:`Module.has_properties()`. Most useful flags are:
360
361.. attribute:: PARALLELPROCESSINGCERTIFIED
362
363 This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)
364
365.. attribute:: HISTOGRAMMANAGER
366
367 This module is used to manage histograms accumulated by other modules
368
369.. attribute:: TERMINATEINALLPROCESSES
370
371 When using parallel processing, call this module's terminate() function in all processes. This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.
372)")
373 .value("INPUT", Module::EModulePropFlags::c_Input)
374 .value("OUTPUT", Module::EModulePropFlags::c_Output)
375 .value("PARALLELPROCESSINGCERTIFIED", Module::EModulePropFlags::c_ParallelProcessingCertified)
376 .value("HISTOGRAMMANAGER", Module::EModulePropFlags::c_HistogramManager)
377 .value("INTERNALSERIALIZER", Module::EModulePropFlags::c_InternalSerializer)
378 .value("TERMINATEINALLPROCESSES", Module::EModulePropFlags::c_TerminateInAllProcesses)
379 ;
380
381 //Python class definition
382 class_<Module, PyModule> module("Module", R"(
383Base class for Modules.
384
385A module is the smallest building block of the framework.
386A typical event processing chain consists of a Path containing
387modules. By inheriting from this base class, various types of
388modules can be created. To use a module, please refer to
389:func:`Path.add_module()`. A list of modules is available by running
390``basf2 -m`` or ``basf2 -m package``, detailed information on parameters is
391given by e.g. ``basf2 -m RootInput``.
392
393The 'Module Development' section in the manual provides detailed information
394on how to create modules, setting parameters, or using return values/conditions:
395https://confluence.desy.de/display/BI/Software+Basf2manual#Module_Development
396
397)");
398 module
399 .def("__str__", &Module::getPathString)
400 .def("name", &Module::getName, return_value_policy<copy_const_reference>(),
401 "Returns the name of the module. Can be changed via :func:`set_name() <Module.set_name()>`, use :func:`type() <Module.type()>` for identifying a particular module class.")
402 .def("type", &Module::getType, return_value_policy<copy_const_reference>(),
403 "Returns the type of the module (i.e. class name minus 'Module')")
404 .def("set_name", &Module::setName, args("name"), R"(
405Set custom name, e.g. to distinguish multiple modules of the same type.
406
407>>> path.add_module('EventInfoSetter')
408>>> ro = path.add_module('RootOutput', branchNames=['EventMetaData'])
409>>> ro.set_name('RootOutput_metadata_only')
410>>> print(path)
411[EventInfoSetter -> RootOutput_metadata_only]
412
413)")
414 .def("description", &Module::getDescription, return_value_policy<copy_const_reference>(),
415 "Returns the description of this module.")
416 .def("package", &Module::getPackage, return_value_policy<copy_const_reference>(),
417 "Returns the package this module belongs to.")
418 .def("available_params", &_getParamInfoListPython,
419 "Return list of all module parameters as `ModuleParamInfo` instances")
420 .def("has_properties", &Module::hasProperties, (bp::arg("properties")),
421 R"DOCSTRING(Allows to check if the module has the given properties out of `ModulePropFlags` set.
422
423>>> if module.has_properties(ModulePropFlags.PARALLELPROCESSINGCERTIFIED):
424>>> ...
425
426Parameters:
427 properties (int): bitmask of `ModulePropFlags` to check for.
428)DOCSTRING")
429 .def("set_property_flags", &Module::setPropertyFlags, args("property_mask"),
430 "Set module properties in the form of an OR combination of `ModulePropFlags`.");
431 {
432 // python signature is too crowded, make ourselves
433 docstring_options subOptions(true, false, false); //userdef, py sigs, c++ sigs
434 module
435 .def("if_value", &Module::if_value,
436 (bp::arg("expression"), bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
437 R"DOCSTRING(if_value(expression, condition_path, after_condition_path=AfterConditionPath.END)
438
439Sets a conditional sub path which will be executed after this
440module if the return value set in the module passes the given ``expression``.
441
442Modules can define a return value (int or bool) using ``setReturnValue()``,
443which can be used in the steering file to split the Path based on this value, for example
444
445>>> module_with_condition.if_value("<1", another_path)
446
447In case the return value of the ``module_with_condition`` for a given event is
448less than 1, the execution will be diverted into ``another_path`` for this event.
449
450You could for example set a special return value if an error occurs, and divert
451the execution into a path containing :b2:mod:`RootOutput` if it is found;
452saving only the data producing/produced by the error.
453
454After a conditional path has executed, basf2 will by default stop processing
455the path for this event. This behaviour can be changed by setting the
456``after_condition_path`` argument.
457
458Parameters:
459 expression (str): Expression to determine if the conditional path should be executed.
460 This should be one of the comparison operators ``<``, ``>``, ``<=``,
461 ``>=``, ``==``, or ``!=`` followed by a numerical value for the return value
462 condition_path (Path): path to execute in case the expression is fulfilled
463 after_condition_path (AfterConditionPath): What to do once the ``condition_path`` has been executed.
464)DOCSTRING")
465 .def("if_false", &Module::if_false,
466 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
467 R"DOC(if_false(condition_path, after_condition_path=AfterConditionPath.END)
468
469Sets a conditional sub path which will be executed after this module if
470the return value of the module evaluates to False. This is equivalent to
471calling `if_value` with ``expression=\"<1\"``)DOC")
472 .def("if_true", &Module::if_true,
473 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
474 R"DOC(if_true(condition_path, after_condition_path=AfterConditionPath.END)
475
476Sets a conditional sub path which will be executed after this module if
477the return value of the module evaluates to True. It is equivalent to
478calling `if_value` with ``expression=\">=1\"``)DOC");
479 }
480 module
481 .def("has_condition", &Module::hasCondition,
482 "Return true if a conditional path has been set for this module "
483 "using `if_value`, `if_true` or `if_false`")
484 .def("get_all_condition_paths", &_getAllConditionPathsPython,
485 "Return a list of all conditional paths set for this module using "
486 "`if_value`, `if_true` or `if_false`")
487 .def("get_all_conditions", &_getAllConditionsPython,
488 "Return a list of all conditional path expressions set for this module using "
489 "`if_value`, `if_true` or `if_false`")
490 .add_property("logging", make_function(&Module::getLogConfig, return_value_policy<reference_existing_object>()),
@ c_GE
Greater or equal than: ">=".
@ c_SE
Smaller or equal than: "<=".
@ c_GT
Greater than: ">"
@ c_NE
Not equal: "!=".
@ c_EQ
Equal: "=" or "=="
@ c_ST
Smaller than: "<"
Base class for Modules.
Definition: Module.h:72
LogConfig & getLogConfig()
Returns the log system configuration.
Definition: Module.h:225
void if_value(const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
Add a condition to the module.
Definition: Module.cc:79
void if_true(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to set the condition of the module.
Definition: Module.cc:90
void setReturnValue(int value)
Sets the return value for this module as integer.
Definition: Module.cc:220
void setLogConfig(const LogConfig &logConfig)
Set the log system configuration.
Definition: Module.h:230
const std::string & getDescription() const
Returns the description of the module.
Definition: Module.h:202
void if_false(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to add a condition to the module.
Definition: Module.cc:85
bool hasCondition() const
Returns true if at least one condition was set for the module.
Definition: Module.h:311
const std::string & getPackage() const
Returns the package this module is in.
Definition: Module.h:197
void setName(const std::string &name)
Set the name of the module.
Definition: Module.h:214
bool hasProperties(unsigned int propertyFlags) const
Returns true if all specified property flags are available in this module.
Definition: Module.cc:160
std::string getPathString() const override
return the module name.
Definition: Module.cc:192

◆ finish()

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 133 of file Module.cc.

134{
135 if (m_conditions.empty()) return EAfterConditionPath::c_End;
136
137 //okay, a condition was set for this Module...
138 if (!m_hasReturnValue) {
139 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
140 }
141
142 for (const auto& condition : m_conditions) {
143 if (condition.evaluate(m_returnValue)) {
144 return condition.getAfterConditionPath();
145 }
146 }
147
148 return EAfterConditionPath::c_End;
149}

◆ getAllConditionPaths()

std::vector< std::shared_ptr< Path > > getAllConditionPaths ( ) const
inherited

Return all condition paths currently set (no matter if the condition is true or not).

Definition at line 150 of file Module.cc.

151{
152 std::vector<std::shared_ptr<Path>> allConditionPaths;
153 for (const auto& condition : m_conditions) {
154 allConditionPaths.push_back(condition.getPath());
155 }
156
157 return allConditionPaths;
158}

◆ getAllConditions()

const std::vector< ModuleCondition > & getAllConditions ( ) const
inlineinherited

Return all set conditions for this module.

Definition at line 324 of file Module.h.

325 {
326 return m_conditions;
327 }

◆ getCondition()

const ModuleCondition * getCondition ( ) const
inlineinherited

Return a pointer to the first condition (or nullptr, if none was set)

Definition at line 314 of file Module.h.

315 {
316 if (m_conditions.empty()) {
317 return nullptr;
318 } else {
319 return &m_conditions.front();
320 }
321 }

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 113 of file Module.cc.

114{
115 PathPtr p;
116 if (m_conditions.empty()) return p;
117
118 //okay, a condition was set for this Module...
119 if (!m_hasReturnValue) {
120 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
121 }
122
123 for (const auto& condition : m_conditions) {
124 if (condition.evaluate(m_returnValue)) {
125 return condition.getPath();
126 }
127 }
128
129 // if none of the conditions were true, return a null pointer.
130 return p;
131}
std::shared_ptr< Path > PathPtr
Defines a pointer to a path object as a boost shared pointer.
Definition: Path.h:35

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Returns the description of the module.

Definition at line 202 of file Module.h.

202{return m_description;}
std::string m_description
The description of the module.
Definition: Module.h:511

◆ getFileNames()

virtual std::vector< std::string > getFileNames ( bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Reimplemented in RootInputModule, StorageRootOutputModule, and RootOutputModule.

Definition at line 134 of file Module.h.

135 {
136 return std::vector<std::string>();
137 }

◆ getLogConfig()

LogConfig & getLogConfig ( )
inlineinherited

Returns the log system configuration.

Definition at line 225 of file Module.h.

225{return m_logConfig;}

◆ getModules()

std::list< ModulePtr > getModules ( ) const
inlineoverrideprivatevirtualinherited

no submodules, return empty list

Implements PathElement.

Definition at line 506 of file Module.h.

506{ return std::list<ModulePtr>(); }

◆ getName()

const std::string & getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 187 of file Module.h.

187{return m_name;}
std::string m_name
The name of the module, saved as a string (user-modifiable)
Definition: Module.h:508

◆ getObjectPtr()

T * getObjectPtr ( std::string  name)
inlineinherited

Calls the CalibObjManager to get the requested stored collector data.

Definition at line 64 of file CalibrationCollectorModule.h.

65 {
66 return m_manager.getObject<T>(name, m_expRun);
67 }
T * getObject(const std::string &name, const Belle2::Calibration::ExpRun expRun)
Gets the collector object of this name for the given exprun.

◆ getPackage()

const std::string & getPackage ( ) const
inlineinherited

Returns the package this module is in.

Definition at line 197 of file Module.h.

197{return m_package;}

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 279 of file Module.cc.

280{
282}
std::shared_ptr< boost::python::list > getParamInfoListPython() const
Returns a python list of all parameters.
ModuleParamList m_moduleParamList
List storing and managing all parameter of the module.
Definition: Module.h:516

◆ getParamList()

const ModuleParamList & getParamList ( ) const
inlineinherited

Return module param list.

Definition at line 363 of file Module.h.

363{ return m_moduleParamList; }

◆ getPathString()

std::string getPathString ( ) const
overrideprivatevirtualinherited

return the module name.

Implements PathElement.

Definition at line 192 of file Module.cc.

193{
194
195 std::string output = getName();
196
197 for (const auto& condition : m_conditions) {
198 output += condition.getString();
199 }
200
201 return output;
202}

◆ getPreScaleChoice()

bool getPreScaleChoice ( )
inlineprivateinherited

I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values.

But since a user will have set them (or left them as default) as exactly equal to 0.0 or 1.0 rather than calculating them in almost every case, I think we can assume that the equalities hold.

Definition at line 122 of file CalibrationCollectorModule.h.

123 {
124 if (m_preScale == 1.) {
125 return true;
126 } else if (m_preScale == 0.) {
127 return false;
128 } else {
129 const double randomNumber = gRandom->Uniform();
130 return randomNumber < m_preScale;
131 }
132 }
float m_preScale
Prescale module parameter, this fraction of events will have collect() run on them [0....

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 381 of file Module.h.

381{ return m_returnValue; }

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 41 of file Module.cc.

42{
43 if (m_type.empty())
44 B2FATAL("Module type not set for " << getName());
45 return m_type;
46}
std::string m_type
The type of the module, saved as a string.
Definition: Module.h:509

◆ hasCondition()

bool hasCondition ( ) const
inlineinherited

Returns true if at least one condition was set for the module.

Definition at line 311 of file Module.h.

311{ return not m_conditions.empty(); };

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 160 of file Module.cc.

161{
162 return (propertyFlags & m_propertyFlags) == propertyFlags;
163}

◆ hasReturnValue()

bool hasReturnValue ( ) const
inlineinherited

Return true if this module has a valid return value set.

Definition at line 378 of file Module.h.

378{ return m_hasReturnValue; }

◆ hasUnsetForcedParams()

bool hasUnsetForcedParams ( ) const
inherited

Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.

Definition at line 166 of file Module.cc.

167{
169 std::string allMissing = "";
170 for (const auto& s : missing)
171 allMissing += s + " ";
172 if (!missing.empty())
173 B2ERROR("The following required parameters of Module '" << getName() << "' were not specified: " << allMissing <<
174 "\nPlease add them to your steering file.");
175 return !missing.empty();
176}
std::vector< std::string > getUnsetForcedParams() const
Returns list of unset parameters (if they are required to have a value.

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 85 of file Module.cc.

86{
87 if_value("<1", path, afterConditionPath);
88}

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 90 of file Module.cc.

91{
92 if_value(">=1", path, afterConditionPath);
93}

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://confluence.desy.de/display/BI/Software+ModCondTut or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 79 of file Module.cc.

80{
81 m_conditions.emplace_back(expression, path, afterConditionPath);
82}

◆ inDefineHisto()

void inDefineHisto ( )
overridevirtual

Replacement for defineHisto() in CalibrationCollector modules.

Reimplemented from CalibrationCollectorModule.

Definition at line 93 of file eclBhabhaTimeCalibrationValidationCollectorModule.cc.

94{
95
96}

◆ initialize()

void initialize ( void  )
finalvirtualinherited

Set up a default RunRange object in datastore and call prepare()

Reimplemented from HistoModule.

Definition at line 44 of file CalibrationCollectorModule.cc.

45{
46 m_evtMetaData.isRequired();
47 REG_HISTOGRAM
48 prepare();
49}
virtual void prepare()
Replacement for initialize(). Register calibration dataobjects here as well.
StoreObjPtr< EventMetaData > m_evtMetaData
Required input for EventMetaData.

◆ prepare()

void prepare ( )
overridevirtual

Define histograms and read payloads from DB.

Reimplemented from CalibrationCollectorModule.

Definition at line 98 of file eclBhabhaTimeCalibrationValidationCollectorModule.cc.

99{
100 //=== Prepare TTree for debug output
101 if (m_saveTree) {
102 // Per electron cluster
103 m_dbg_tree_electronClusters = new TTree("tree_electronClusters",
104 "Validating crystal and crate time calibrations using electron clusters in events with lots of tracks and clusters") ;
105 m_dbg_tree_electronClusters->Branch("EventNum", &m_tree_evt_num) ->SetTitle("Event number") ;
106 m_dbg_tree_electronClusters->Branch("cluster_time", &m_tree_time) ->SetTitle("Cluster time t (calibrated), ns") ;
107 m_dbg_tree_electronClusters->Branch("clust_E", &m_E_electron_clust) ->SetTitle("Electron type cluster energy, GeV") ;
108 m_dbg_tree_electronClusters->Branch("t0", &m_tree_t0) ->SetTitle("T0, ns") ;
109 m_dbg_tree_electronClusters->Branch("t0_unc", &m_tree_t0_unc) ->SetTitle("T0 uncertainty, ns") ;
110 m_dbg_tree_electronClusters->Branch("runNum", &m_tree_run) ->SetTitle("Run number") ;
111 m_dbg_tree_electronClusters->Branch("CrystalCellID", &m_tree_cid) ->SetTitle("Cell ID, 1..8736") ;
112 m_dbg_tree_electronClusters->Branch("dt99", &m_tree_dt99) ->SetTitle("Cluster dt99, ns") ;
113 m_dbg_tree_electronClusters->SetAutoSave(10) ;
114
115 // Per event
116 m_dbg_tree_event = new TTree("tree_event",
117 "Validating crystal and crate time calibrations using electron clusters in events with lots of tracks and clusters") ;
118 m_dbg_tree_event->Branch("EventNum", &m_tree_evt_num) ->SetTitle("Event number") ;
119 m_dbg_tree_event->Branch("t0", &m_tree_t0) ->SetTitle("T0, ns") ;
120 m_dbg_tree_event->Branch("t0_unc", &m_tree_t0_unc) ->SetTitle("T0 uncertainty, ns") ;
121 m_dbg_tree_event->Branch("runNum", &m_tree_run) ->SetTitle("Run number") ;
122 m_dbg_tree_event->Branch("E0", &m_tree_E0) ->SetTitle("Highest E cluster E") ;
123 m_dbg_tree_event->Branch("E1", &m_tree_E1) ->SetTitle("2nd highest E cluster E") ;
124 m_dbg_tree_event->Branch("time_E0", &m_tree_time_fromE0) ->SetTitle("Cluster time of highest E cluster") ;
125 m_dbg_tree_event->Branch("time_E1", &m_tree_time_fromE1) ->SetTitle("Cluster time of 2nd highest E cluster") ;
126 m_dbg_tree_event->SetAutoSave(10) ;
127
128
129 // Per run
130 m_dbg_tree_run = new TTree("tree_run", "Storing crate time constants") ;
131 m_dbg_tree_run->Branch("runNum", &m_tree_run) ->SetTitle("Run number") ;
132 m_dbg_tree_run->Branch("crateid", &m_tree_crateid) ->SetTitle("Crate ID") ;
133 m_dbg_tree_run->Branch("tcrate", &m_tree_tcrate) ->SetTitle("Crate time") ;
134 m_dbg_tree_run->Branch("tcrate_unc", &m_tree_tcrate_unc) ->SetTitle("Crate time uncertainty") ;
135 m_dbg_tree_run->SetAutoSave(10) ;
136
137 }
138
139
140 //=== MetaData
141 B2INFO("eclBhabhaTimeCalibrationValidationCollector: Experiment = " << m_EventMetaData->getExperiment() <<
142 " run = " << m_EventMetaData->getRun()) ;
143
144 //=== Create histograms and register them in the data store
145
146 // Define the bin size, which is equivalent to the
147 double binSize = 2000.0 / pow(2, 12);
148 double halfBinSize = binSize / 2.0;
149
150 /* Determine the number of bins required to go from the edge of the bin centred
151 on zero to a value just larger than the negative cut off */
152 double nBinsNeg = floor((m_timeAbsMax - halfBinSize) / binSize);
153 double min_t = -nBinsNeg * binSize - halfBinSize; // lower edge value of left most bin
154 int nbins = nBinsNeg * 2 + 1; // number of negative time bins + t=0 bin + number of positive time bins
155 double max_t = min_t + nbins * binSize; // upper edge value of right most bin
156
157 /* Variable bin width information for the time information vs energy since
158 the time width should vary as a function of 1/E */
159 const Int_t N_E_BIN_EDGES = 64;
160 const Int_t N_E_BINS = N_E_BIN_EDGES - 1;
161 Double_t energyBinEdges[N_E_BIN_EDGES] = {0, 0.05, 0.051, 0.052, 0.053, 0.054, 0.055, 0.056, 0.057, 0.058, 0.059, 0.06, 0.062, 0.064, 0.066, 0.068, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.25, 2.5, 2.8, 3.2, 3.6, 4, 4.4, 4.8, 5.2, 5.6, 6, 6.4, 6.8, 7.2, 7.6, 8};
162
163
164 auto cutflow = new TH1F("cutflow", " ;Cut label number ;Number of events passing cut", 10, 0, 10) ;
165 registerObject<TH1F>("cutflow", cutflow) ;
166
167 auto clusterTime = new TH1F("clusterTime", ";Electron ECL cluster time [ns]; number of ECL clusters", nbins, min_t, max_t) ;
168 registerObject<TH1F>("clusterTime", clusterTime) ;
169
170 auto clusterTime_cid = new TH2F("clusterTime_cid",
171 ";crystal Cell ID ;Electron ECL cluster time [ns]", ECLElementNumbers::c_NCrystals, 1, ECLElementNumbers::c_NCrystals + 1, nbins,
172 min_t, max_t) ;
173 registerObject<TH2F>("clusterTime_cid", clusterTime_cid) ;
174
175 auto clusterTime_run = new TH2F("clusterTime_run",
176 ";Run number ;Electron ECL cluster time [ns]", 7000, 0, 7000, nbins, min_t, max_t) ;
177 registerObject<TH2F>("clusterTime_run", clusterTime_run) ;
178
179
180 auto clusterTimeClusterE = new TH2F("clusterTimeClusterE",
181 ";Electron cluster energy [GeV];Electron cluster time [ns]", N_E_BINS, energyBinEdges, nbins, min_t, max_t) ;
182 registerObject<TH2F>("clusterTimeClusterE", clusterTimeClusterE) ;
183
184 auto dt99_clusterE = new TH2F("dt99_clusterE",
185 ";Electron cluster energy [GeV];dt99 [ns]", N_E_BINS, energyBinEdges, nbins, 0, max_t) ;
186 registerObject<TH2F>("dt99_clusterE", dt99_clusterE) ;
187
188
189 auto eventT0 = new TH1F("eventT0", ";event t0 [ns]; number of events", nbins, min_t, max_t) ;
190 registerObject<TH1F>("eventT0", eventT0) ;
191
192 auto clusterTimeE0E1diff = new TH1F("clusterTimeE0E1diff",
193 ";ECL cluster time of max E electron - ECL cluster time of 2nd max E electron [ns]; number of electron ECL cluster time differences",
194 nbins, min_t, max_t) ;
195 registerObject<TH1F>("clusterTimeE0E1diff", clusterTimeE0E1diff) ;
196
197
198 //=== Required data objects
199 tracks.isRequired() ;
200 m_eclClusterArray.isRequired() ;
201 m_eclCalDigitArray.isRequired() ;
202
203
204 B2INFO("skipTrgSel = " << skipTrgSel);
205
206}
StoreArray< ECLCluster > m_eclClusterArray
Required input array of ECLClusters.

◆ registerObject()

void registerObject ( std::string  name,
T *  obj 
)
inlineinherited

Register object with a name, takes ownership, do not access the pointer beyond prepare()

Definition at line 55 of file CalibrationCollectorModule.h.

56 {
57 std::shared_ptr<T> calObj(obj);
58 calObj->SetName(name.c_str());
59 m_manager.addObject(name, calObj);
60 }
void addObject(const std::string &name, std::shared_ptr< TNamed > object)
Add a new object to manage, this is used as a template for creating future/missing objects.

◆ setAbortLevel()

void setAbortLevel ( int  abortLevel)
inherited

Configure the abort log level.

Definition at line 67 of file Module.cc.

68{
69 m_logConfig.setAbortLevel(static_cast<LogConfig::ELogLevel>(abortLevel));
70}
ELogLevel
Definition of the supported log levels.
Definition: LogConfig.h:26
void setAbortLevel(ELogLevel abortLevel)
Configure the abort level.
Definition: LogConfig.h:112

◆ setDebugLevel()

void setDebugLevel ( int  debugLevel)
inherited

Configure the debug messaging level.

Definition at line 61 of file Module.cc.

62{
63 m_logConfig.setDebugLevel(debugLevel);
64}
void setDebugLevel(int debugLevel)
Configure the debug messaging level.
Definition: LogConfig.h:98

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 214 of file Module.cc.

215{
216 m_description = description;
217}

◆ setLogConfig()

void setLogConfig ( const LogConfig logConfig)
inlineinherited

Set the log system configuration.

Definition at line 230 of file Module.h.

230{m_logConfig = logConfig;}

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 73 of file Module.cc.

74{
75 m_logConfig.setLogInfo(static_cast<LogConfig::ELogLevel>(logLevel), logInfo);
76}
void setLogInfo(ELogLevel logLevel, unsigned int logInfo)
Configure the printed log information for the given level.
Definition: LogConfig.h:127

◆ setLogLevel()

void setLogLevel ( int  logLevel)
inherited

Configure the log level.

Definition at line 55 of file Module.cc.

56{
57 m_logConfig.setLogLevel(static_cast<LogConfig::ELogLevel>(logLevel));
58}
void setLogLevel(ELogLevel logLevel)
Configure the log level.
Definition: LogConfig.cc:25

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 214 of file Module.h.

214{ m_name = name; };

◆ setParamList()

void setParamList ( const ModuleParamList params)
inlineprotectedinherited

Replace existing parameter list.

Definition at line 501 of file Module.h.

501{ m_moduleParamList = params; }

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 234 of file Module.cc.

235{
236 LogSystem& logSystem = LogSystem::Instance();
237 logSystem.updateModule(&(getLogConfig()), getName());
238 try {
240 } catch (std::runtime_error& e) {
241 throw std::runtime_error("Cannot set parameter '" + name + "' for module '"
242 + m_name + "': " + e.what());
243 }
244
245 logSystem.updateModule(nullptr);
246}
Class for logging debug, info and error messages.
Definition: LogSystem.h:46
void updateModule(const LogConfig *moduleLogConfig=nullptr, const std::string &moduleName="")
Sets the log configuration to the given module log configuration and sets the module name This method...
Definition: LogSystem.h:191
static LogSystem & Instance()
Static method to get a reference to the LogSystem instance.
Definition: LogSystem.cc:31
void setParamPython(const std::string &name, const PythonObject &pyObj)
Implements a method for setting boost::python objects.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 249 of file Module.cc.

250{
251
252 LogSystem& logSystem = LogSystem::Instance();
253 logSystem.updateModule(&(getLogConfig()), getName());
254
255 boost::python::list dictKeys = dictionary.keys();
256 int nKey = boost::python::len(dictKeys);
257
258 //Loop over all keys in the dictionary
259 for (int iKey = 0; iKey < nKey; ++iKey) {
260 boost::python::object currKey = dictKeys[iKey];
261 boost::python::extract<std::string> keyProxy(currKey);
262
263 if (keyProxy.check()) {
264 const boost::python::object& currValue = dictionary[currKey];
265 setParamPython(keyProxy, currValue);
266 } else {
267 B2ERROR("Setting the module parameters from a python dictionary: invalid key in dictionary!");
268 }
269 }
270
271 logSystem.updateModule(nullptr);
272}
void setParamPython(const std::string &name, const boost::python::object &pyObj)
Implements a method for setting boost::python objects.
Definition: Module.cc:234

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 208 of file Module.cc.

209{
210 m_propertyFlags = propertyFlags;
211}

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 227 of file Module.cc.

228{
229 m_hasReturnValue = true;
230 m_returnValue = value;
231}

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 220 of file Module.cc.

221{
222 m_hasReturnValue = true;
223 m_returnValue = value;
224}

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 48 of file Module.cc.

49{
50 if (!m_type.empty())
51 B2FATAL("Trying to change module type from " << m_type << " is not allowed, the value is assumed to be fixed.");
52 m_type = type;
53}

◆ startRun()

◆ terminate()

void terminate ( void  )
finalvirtualinherited

Write the final objects to the file.

Reimplemented from HistoModule.

Definition at line 155 of file CalibrationCollectorModule.cc.

156{
157 finish();
158 // actually this should be done by the write() called by HistoManager....
159
160 // Haven't written objects yet if collecting with granularity == all
161 // Write them now that everything is done.
162// if (m_granularity == "all") {
163// m_manager.writeCurrentObjects(m_expRun);
164// m_manager.clearCurrentObjects(m_expRun);
165// }
167}
virtual void finish()
Replacement for terminate(). Do anything you would normally do in terminate here.
void deleteHeldObjects()
Clears the map of templated objects -> causing their destruction.

Member Data Documentation

◆ m_channelMapDB

DBObjPtr<Belle2::ECLChannelMap> m_channelMapDB
private

Mapper of ecl channels to various other objects, like crates.

database object

Definition at line 116 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_conditions

std::vector<ModuleCondition> m_conditions
privateinherited

Module condition, only non-null if set.

Definition at line 521 of file Module.h.

◆ m_CrateTime

std::vector<float> m_CrateTime
private

vector obtained from DB object

Definition at line 112 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_CrateTimeDB

DBObjPtr<ECLCrystalCalib> m_CrateTimeDB
private

database object

Definition at line 111 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_CrateTimeUnc

std::vector<float> m_CrateTimeUnc
private

uncertainty vector obtained from DB object

Definition at line 113 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_crystalMapper

std::unique_ptr< Belle2::ECL::ECLChannelMapper> m_crystalMapper
private
Initial value:
=
std::make_unique<Belle2::ECL::ECLChannelMapper>()

ECL object for keeping track of mapping between crystals and crates etc.

Definition at line 75 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_dbg_tree_electronClusters

TTree* m_dbg_tree_electronClusters
private

debug output tree for per electron cluster

Definition at line 87 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_dbg_tree_event

TTree* m_dbg_tree_event
private

debug output tree for per event

Definition at line 88 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_dbg_tree_run

TTree* m_dbg_tree_run
private

debug output tree for per run

Definition at line 89 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_description

std::string m_description
privateinherited

The description of the module.

Definition at line 511 of file Module.h.

◆ m_dir

TDirectory* m_dir
protectedinherited

The top TDirectory that collector objects for this collector will be stored beneath.

Definition at line 84 of file CalibrationCollectorModule.h.

◆ m_E_electron_clust

double m_E_electron_clust = -1
private

Electron cluster energy.

Definition at line 127 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_eclCalDigitArray

StoreArray<ECLCalDigit> m_eclCalDigitArray
private

Required input array of ECLCalDigits.

Definition at line 69 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_eclClusterArray

StoreArray<ECLCluster> m_eclClusterArray
private

Required input array of ECLClusters.

Definition at line 68 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_emd

StoreObjPtr<EventMetaData> m_emd
protectedinherited

Current EventMetaData.

Definition at line 96 of file CalibrationCollectorModule.h.

◆ m_EperCrys

std::vector<float> m_EperCrys
private

ECL Cal digit energy for each crystal.

Definition at line 125 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_EventMetaData

StoreObjPtr<EventMetaData> m_EventMetaData
private

Event metadata.

Definition at line 79 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_eventsCollectedInRun

int* m_eventsCollectedInRun
privateinherited

Will point at correct value in m_expRunEvents.

Definition at line 117 of file CalibrationCollectorModule.h.

◆ m_eventT0

StoreObjPtr<EventT0> m_eventT0
private

StoreObjPtr for T0.

The event t0 class has an overall event t0 so use that as presumably some code has been run to determine what the best t0 is to use.

Definition at line 85 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_evtMetaData

StoreObjPtr<EventMetaData> m_evtMetaData
privateinherited

Required input for EventMetaData.

Definition at line 108 of file CalibrationCollectorModule.h.

◆ m_expRun

Calibration::ExpRun m_expRun
protectedinherited

Current ExpRun for object retrieval (becomes -1,-1 for granularity=all)

Definition at line 93 of file CalibrationCollectorModule.h.

◆ m_expRunEvents

std::map<Calibration::ExpRun, int> m_expRunEvents
privateinherited

How many events processed for each ExpRun so far, stops counting up once max is hit Only used/incremented if m_maxEventsPerRun > -1.

Definition at line 115 of file CalibrationCollectorModule.h.

◆ m_granularity

std::string m_granularity
privateinherited

Granularity of data collection = run|all(= no granularity, exp,run=-1,-1)

Definition at line 101 of file CalibrationCollectorModule.h.

◆ m_hasReturnValue

bool m_hasReturnValue
privateinherited

True, if the return value is set.

Definition at line 518 of file Module.h.

◆ m_logConfig

LogConfig m_logConfig
privateinherited

The log system configuration of the module.

Definition at line 514 of file Module.h.

◆ m_looseTrkD0

double m_looseTrkD0
private

Loose track d0 minimum cut.

Definition at line 135 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_looseTrkZ0

double m_looseTrkZ0
private

Loose track z0 minimum cut.

Definition at line 133 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_manager

CalibObjManager m_manager
protectedinherited

Controls the creation, collection and access to calibration objects.

Definition at line 87 of file CalibrationCollectorModule.h.

◆ m_maxEventsPerRun

int m_maxEventsPerRun
privateinherited

Maximum number of events to be collected at the start of each run (-1 = no maximum)

Definition at line 103 of file CalibrationCollectorModule.h.

◆ m_moduleParamList

ModuleParamList m_moduleParamList
privateinherited

List storing and managing all parameter of the module.

Definition at line 516 of file Module.h.

◆ m_name

std::string m_name
privateinherited

The name of the module, saved as a string (user-modifiable)

Definition at line 508 of file Module.h.

◆ m_NtightTracks

int m_NtightTracks = -1
private

Number of tight tracks.

Definition at line 107 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_package

std::string m_package
privateinherited

Package this module is found in (may be empty).

Definition at line 510 of file Module.h.

◆ m_preScale

float m_preScale
privateinherited

Prescale module parameter, this fraction of events will have collect() run on them [0.0 -> 1.0].

Definition at line 105 of file CalibrationCollectorModule.h.

◆ m_propertyFlags

unsigned int m_propertyFlags
privateinherited

The properties of the module as bitwise or (with |) of EModulePropFlags.

Definition at line 512 of file Module.h.

◆ m_returnValue

int m_returnValue
privateinherited

The return value.

Definition at line 519 of file Module.h.

◆ m_runCollectOnRun

bool m_runCollectOnRun = true
privateinherited

Whether or not we will run the collect() at all this run, basically skips the event() function if false.

Definition at line 111 of file CalibrationCollectorModule.h.

◆ m_runRange

RunRange* m_runRange
protectedinherited

Overall list of runs processed.

Definition at line 90 of file CalibrationCollectorModule.h.

◆ m_saveTree

bool m_saveTree
private

If true, save TTree with more detailed event info.

Definition at line 65 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_tightTrkD0

double m_tightTrkD0
private

Tight track d0 minimum cut.

Definition at line 136 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_tightTrkZ0

double m_tightTrkZ0
private

Tight track z0 minimum cut.

Definition at line 134 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_timeAbsMax

short m_timeAbsMax
private

Events with abs(time) > m_timeAbsMax are excluded, mostly for histogram x-range purposes.

Definition at line 131 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_tree_cid

int m_tree_cid = -1
private

ECL Cell ID (1..ECLElementNumbers::c_NCrystals) for debug TTree output.

Definition at line 95 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_tree_crateid

int m_tree_crateid = -1
private

Crate ID for debug TTree output.

Definition at line 118 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_tree_dt99

double m_tree_dt99 = -1
private

dt99 for cluster

Definition at line 96 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_tree_E0

double m_tree_E0 = -1
private

Highest E cluster energy.

Definition at line 101 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_tree_E1

double m_tree_E1 = -1
private

second highest E cluster energy

Definition at line 102 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_tree_evt_num

int m_tree_evt_num = -1
private

Event number for debug TTree output.

Definition at line 93 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_tree_PreviousRun

int m_tree_PreviousRun = -1
private

Run number for the previous run for debug TTree output.

Definition at line 121 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_tree_run

int m_tree_run = -1
private

Run number for debug TTree output.

Definition at line 94 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_tree_t0

double m_tree_t0 = -1
private

EventT0 (not from ECL) for debug TTree output.

Definition at line 104 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_tree_t0_unc

double m_tree_t0_unc = -1
private

EventT0 uncertainty for debug TTree output.

Definition at line 105 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_tree_tcrate

double m_tree_tcrate = -1
private

Crate time for debug TTree output.

Definition at line 119 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_tree_tcrate_unc

double m_tree_tcrate_unc = -1
private

Crate time uncertainty for debug TTree output.

Definition at line 120 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_tree_time

double m_tree_time = -1
private

Calibrated time.

Definition at line 97 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_tree_time_fromE0

double m_tree_time_fromE0 = -1
private

Calibrated time - highest E cluster.

Definition at line 99 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_tree_time_fromE1

double m_tree_time_fromE1 = -1
private

Calibrated time - second highest E cluster.

Definition at line 100 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_TrgResult

StoreObjPtr<SoftwareTriggerResult> m_TrgResult
private

Store array for Trigger selection.

Definition at line 81 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ m_type

std::string m_type
privateinherited

The type of the module, saved as a string.

Definition at line 509 of file Module.h.

◆ skipTrgSel

bool skipTrgSel
private

flag to skip the trigger skim selection in the module

Definition at line 138 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.

◆ tracks

StoreArray<Track> tracks
private

Required input array of tracks.

Definition at line 67 of file eclBhabhaTimeCalibrationValidationCollectorModule.h.


The documentation for this class was generated from the following files: