Belle II Software development
CDCFudgeFactorCalibrationCollectorModule Class Reference

Collect hit information for cdc calibration with CAF. More...

#include <CDCFudgeFactorCalibrationCollector.h>

Inheritance diagram for CDCFudgeFactorCalibrationCollectorModule:
CalibrationCollectorModule HistoModule Module PathElement

Public Types

enum  EModulePropFlags {
  c_Input = 1 ,
  c_Output = 2 ,
  c_ParallelProcessingCertified = 4 ,
  c_HistogramManager = 8 ,
  c_InternalSerializer = 16 ,
  c_TerminateInAllProcesses = 32 ,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

 CDCFudgeFactorCalibrationCollectorModule ()
 Constructor.
 
virtual ~CDCFudgeFactorCalibrationCollectorModule ()
 Destructor.
 
void prepare () override
 Initializes the Module.
 
void collect () override
 Event action, collect information for calibration.
 
void finish () override
 Termination action.
 
void initialize () final
 Set up a default RunRange object in datastore and call prepare()
 
void event () final
 Check current experiment and run and update if needed, fill into RunRange and collect()
 
void beginRun () final
 Reset the m_runCollectOnRun flag, if necessary, to begin collection again.
 
void endRun () final
 Write the current collector objects to a file and clear their memory.
 
void terminate () final
 Write the final objects to the file.
 
void defineHisto () final
 Runs due to HistoManager, allows us to discover the correct file.
 
template<class T >
void registerObject (std::string name, T *obj)
 Register object with a name, takes ownership, do not access the pointer beyond prepare()
 
template<class T >
T * getObjectPtr (std::string name)
 Calls the CalibObjManager to get the requested stored collector data.
 
virtual std::vector< std::string > getFileNames (bool outputFiles)
 Return a list of output filenames for this modules.
 
const std::string & getName () const
 Returns the name of the module.
 
const std::string & getType () const
 Returns the type of the module (i.e.
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module.
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties.
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level.
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module.
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module.
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module.
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true.
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished.
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module.
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter.
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module.
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module.
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters.
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Protected Member Functions

virtual void startRun ()
 Replacement for beginRun(). Do anything you would normally do in beginRun here.
 
virtual void closeRun ()
 Replacement for endRun(). Do anything you would normally do in endRun here.
 
virtual void inDefineHisto ()
 Replacement for defineHisto(). Do anything you would normally do in defineHisto here.
 
virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python.
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side.
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module.
 
void setType (const std::string &type)
 Set the module type.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module.
 
void setReturnValue (int value)
 Sets the return value for this module as integer.
 
void setReturnValue (bool value)
 Sets the return value for this module as bool.
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Protected Attributes

TDirectory * m_dir
 The top TDirectory that collector objects for this collector will be stored beneath.
 
CalibObjManager m_manager
 Controls the creation, collection and access to calibration objects.
 
RunRangem_runRange
 Overall list of runs processed.
 
Calibration::ExpRun m_expRun
 Current ExpRun for object retrieval (becomes -1,-1 for granularity=all)
 
StoreObjPtr< EventMetaDatam_emd
 Current EventMetaData.
 

Private Member Functions

bool getPreScaleChoice ()
 I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values.
 
std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects.
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary.
 

Private Attributes

StoreObjPtr< EventT0m_eventTimeStoreObject
 Event t0 object.
 
StoreArray< Trackm_Tracks
 Tracks.
 
StoreArray< TrackFitResultm_TrackFitResults
 Track fit results.
 
StoreObjPtr< ParticleListm_DiMuonList
 List of the reconstructed dimion.
 
std::string m_DiMuonListName
 List name for the reconstruted dimuon.
 
std::string m_GammaListName
 List name for the reconstruted dimuon.
 
std::string m_trackArrayName
 Belle2::Track StoreArray name.
 
std::string m_trackFitResultArrayName
 Belle2::TrackFitResult StoreArray name.
 
std::string m_treeName = "tree"
 Name of tree for the output file.
 
Double_t m_minCollinearityTheta = 10
 Minimum requirement for accolinear theta in c.m frame.
 
Double_t m_minCollinearityPhi0 = 10
 Minimum requirement for accolinear phi0 in c.m frame.
 
bool m_StoreNtuple
 Option to store ntuple, =true: tree with these variables will be stored.
 
Int_t expRun
 Exp and run numbers, encoded by exp*10^6+run.
 
Float_t ndfPos
 NDF of the positive track.
 
Float_t ndfNeg
 NDF of the negative track.
 
Float_t pvalPos
 P-value of the positive track.
 
Float_t pvalNeg
 P-value of the negative track.
 
Float_t ncdcPos
 Number of CDC hit of the positive track.
 
Float_t ncdcNeg
 Number of CDC hit of the negative track.
 
Float_t npxdPos
 Number of PXD hit of the positive track.
 
Float_t npxdNeg
 Number of PXD hit of the negative track.
 
Float_t nsvdPos
 Number of SVD hit of the positive track.
 
Float_t nsvdNeg
 Number of SVD hit of the negative track.
 
Float_t muidPos
 Muon ID for positive charged track.
 
Float_t muidNeg
 Muon ID for negative charged track.
 
Float_t eidPos
 Electron ID for positive charged track.
 
Float_t eidNeg
 Electron ID for negative charged track.
 
Float_t nExtraCDCHits
 Number of CDC hits not assigned to any tracks.
 
Float_t eclTrack
 sum of ECL associated to track
 
Float_t eclNeutral
 Sum of neutral ECL clusgter.
 
Float_t d0Pos
 d0 of the positive track

 
Float_t d0Neg
 d0 of the negative track

 
Float_t z0Pos
 z0 of the positive track

 
Float_t z0Neg
 z0 of the negative track

 
Float_t d0ipPos
 d0 w.r.t IP of the positive track

 
Float_t d0ipNeg
 d0 w.r.t IP of the negative track

 
Float_t z0ipPos
 z0 w.r.t IP of the positive track

 
Float_t z0ipNeg
 z0 w.r.t IP of the negative track

 
Float_t ptPos
 Transeverse momentum of the positive track

 
Float_t ptNeg
 Transeverse momentum of the negative track

 
Float_t pzPos
 Longitudinal momentum of the positive track

 
Float_t pzNeg
 Longitudinal momentum of the negative track

 
Float_t ptPosCm
 Transeverse momentum of the positive track in c.m frame.
 
Float_t ptNegCm
 Transeverse momentum of the negative track in c.m frame.
 
Float_t pzPosCm
 Longitudinal momentum of the positive track in c.m frame.
 
Float_t pzNegCm
 Longitudinal momentum of the negative track in c.m frame.
 
Float_t thetaPosCm
 theta of the positive track in c.m frame.
 
Float_t thetaNegCm
 theta of the negative track in c.m frame.
 
Float_t phi0PosCm
 phi0 of the positive track in c.m frame.
 
Float_t phi0NegCm
 phi0 of the negative track in c.m frame.
 
std::string m_granularity
 Granularity of data collection = run|all(= no granularity, exp,run=-1,-1)
 
int m_maxEventsPerRun
 Maximum number of events to be collected at the start of each run (-1 = no maximum)
 
float m_preScale
 Prescale module parameter, this fraction of events will have collect() run on them [0.0 -> 1.0].
 
StoreObjPtr< EventMetaDatam_evtMetaData
 Required input for EventMetaData.
 
bool m_runCollectOnRun = true
 Whether or not we will run the collect() at all this run, basically skips the event() function if false.
 
std::map< Calibration::ExpRun, int > m_expRunEvents
 How many events processed for each ExpRun so far, stops counting up once max is hit Only used/incremented if m_maxEventsPerRun > -1.
 
int * m_eventsCollectedInRun
 Will point at correct value in m_expRunEvents.
 
std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 

Detailed Description

Collect hit information for cdc calibration with CAF.

Definition at line 34 of file CDCFudgeFactorCalibrationCollector.h.

Member Typedef Documentation

◆ EAfterConditionPath

Forward the EAfterConditionPath definition from the ModuleCondition.

Definition at line 88 of file Module.h.

Member Enumeration Documentation

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 77 of file Module.h.

77 {
78 c_Input = 1,
79 c_Output = 2,
85 };
@ c_HistogramManager
This module is used to manage histograms accumulated by other modules.
Definition: Module.h:81
@ c_Input
This module is an input module (reads data).
Definition: Module.h:78
@ c_DontCollectStatistics
No statistics is collected for this module.
Definition: Module.h:84
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
Definition: Module.h:80
@ c_InternalSerializer
This module is an internal serializer/deserializer for parallel processing.
Definition: Module.h:82
@ c_Output
This module is an output module (writes data).
Definition: Module.h:79
@ c_TerminateInAllProcesses
When using parallel processing, call this module's terminate() function in all processes().
Definition: Module.h:83

Constructor & Destructor Documentation

◆ CDCFudgeFactorCalibrationCollectorModule()

Constructor.

Definition at line 30 of file CDCFudgeFactorCalibrationCollector.cc.

31{
32 setDescription("Collector module for cdc fudege calibration");
33 setPropertyFlags(c_ParallelProcessingCertified); // specify this flag if you need parallel processing
34 addParam("StoreNtuple", m_StoreNtuple, "Store ntuple other studies", true);
35 addParam("MinColinearityTheta", m_minCollinearityTheta, "cut on colinear of the two track by theta", 10.);
36 addParam("MinColinearityPhi0", m_minCollinearityPhi0, "cut on colinear of the two track by phi0", 10.);
37 addParam("DiMuonListName", m_DiMuonListName, "name of the di-muon list", std::string("vpho:mumu"));
38 addParam("GammaListName", m_GammaListName, "name of the gamma list", std::string("gamma:HLT"));
39
40}
Double_t m_minCollinearityTheta
Minimum requirement for accolinear theta in c.m frame.
Double_t m_minCollinearityPhi0
Minimum requirement for accolinear phi0 in c.m frame.
std::string m_DiMuonListName
List name for the reconstruted dimuon.
bool m_StoreNtuple
Option to store ntuple, =true: tree with these variables will be stored.
std::string m_GammaListName
List name for the reconstruted dimuon.
CalibrationCollectorModule()
Constructor. Sets the default prefix for calibration dataobjects.
void setDescription(const std::string &description)
Sets the description of the module.
Definition: Module.cc:214
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
Definition: Module.cc:208
void addParam(const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
Definition: Module.h:560

◆ ~CDCFudgeFactorCalibrationCollectorModule()

Destructor.

Definition at line 42 of file CDCFudgeFactorCalibrationCollector.cc.

43{
44}

Member Function Documentation

◆ beginRun()

void beginRun ( void  )
finalvirtualinherited

Reset the m_runCollectOnRun flag, if necessary, to begin collection again.

It seems that the beginRun() function is called in each basf2 subprocess when the run changes in each process. This is nice because it allows us to write the new (exp,run) object creation in the beginRun function as though the other processes don't exist.

Reimplemented from HistoModule.

Definition at line 77 of file CalibrationCollectorModule.cc.

78{
83 // Current (Exp,Run)
84 ExpRun expRun = make_pair(m_emd->getExperiment(), m_emd->getRun());
85 m_runRange->add(expRun.first, expRun.second);
86
87 // Do we care about the number of events collected in each (input data) ExpRun?
88 // If so, we want to create values for the events collected map
89 if (m_maxEventsPerRun > -1) {
90 // Do we have a count for this ExpRun yet? If not create one
91 auto i_eventsInExpRun = m_expRunEvents.find(expRun);
92 if (i_eventsInExpRun == m_expRunEvents.end()) {
93 m_expRunEvents[expRun] = 0;
94 }
95
96 // Set our pointer to the correct location for this ExpRun
98 // Want to reset our flag to start collection if necessary
100 B2INFO("New run has had less events than the maximum collected so far ("
102 << " < "
104 << "). Turning on collection.");
105 m_runCollectOnRun = true;
106 } else {
107 B2INFO("New run has had more events than the maximum collected so far ("
109 << " >= "
111 << "). Turning off collection.");
112 m_runCollectOnRun = false;
113 }
114 }
115 // Granularity=all removes data splitting by runs by setting
116 // always the same exp, run for calibration data objects
117 if (m_granularity == "all") {
118 m_expRun = { -1, -1};
119 } else {
120 m_expRun = expRun;
121 }
123 // Run the user's startRun() implementation if there is one
124 startRun();
125}
bool m_runCollectOnRun
Whether or not we will run the collect() at all this run, basically skips the event() function if fal...
virtual void startRun()
Replacement for beginRun(). Do anything you would normally do in beginRun here.
Calibration::ExpRun m_expRun
Current ExpRun for object retrieval (becomes -1,-1 for granularity=all)
CalibObjManager m_manager
Controls the creation, collection and access to calibration objects.
std::string m_granularity
Granularity of data collection = run|all(= no granularity, exp,run=-1,-1)
RunRange * m_runRange
Overall list of runs processed.
int * m_eventsCollectedInRun
Will point at correct value in m_expRunEvents.
StoreObjPtr< EventMetaData > m_emd
Current EventMetaData.
int m_maxEventsPerRun
Maximum number of events to be collected at the start of each run (-1 = no maximum)
std::map< Calibration::ExpRun, int > m_expRunEvents
How many events processed for each ExpRun so far, stops counting up once max is hit Only used/increme...
void add(int exp, int run)
Add an experiment and run number to the set.
Definition: RunRange.h:58
void createExpRunDirectories(Calibration::ExpRun &expRun) const
For each templated object, we create a new TDirectory for this exprun.
Struct containing exp number and run number.
Definition: Splitter.h:51

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 179 of file Module.cc.

180{
182 newModule->m_moduleParamList.setParameters(getParamList());
183 newModule->setName(getName());
184 newModule->m_package = m_package;
185 newModule->m_propertyFlags = m_propertyFlags;
186 newModule->m_logConfig = m_logConfig;
187 newModule->m_conditions = m_conditions;
188
189 return newModule;
190}
std::shared_ptr< Module > registerModule(const std::string &moduleName, std::string sharedLibPath="") noexcept(false)
Creates an instance of a module and registers it to the ModuleManager.
static ModuleManager & Instance()
Exception is thrown if the requested module could not be created by the ModuleManager.
const ModuleParamList & getParamList() const
Return module param list.
Definition: Module.h:363
const std::string & getName() const
Returns the name of the module.
Definition: Module.h:187
const std::string & getType() const
Returns the type of the module (i.e.
Definition: Module.cc:41
unsigned int m_propertyFlags
The properties of the module as bitwise or (with |) of EModulePropFlags.
Definition: Module.h:512
LogConfig m_logConfig
The log system configuration of the module.
Definition: Module.h:514
std::vector< ModuleCondition > m_conditions
Module condition, only non-null if set.
Definition: Module.h:521
std::string m_package
Package this module is found in (may be empty).
Definition: Module.h:510
std::shared_ptr< Module > ModulePtr
Defines a pointer to a module object as a boost shared pointer.
Definition: Module.h:43

◆ closeRun()

◆ collect()

void collect ( )
overridevirtual

Event action, collect information for calibration.

< Event metadata.

Calculate total energy of Ecl for neutral

Reimplemented from CalibrationCollectorModule.

Definition at line 144 of file CDCFudgeFactorCalibrationCollector.cc.

145{
146 int nCandidates = m_DiMuonList->getListSize();
147 B2DEBUG(29, "Number of muon canndiate:" << nCandidates);
148 if (nCandidates < 1) return;
149
150 // event with is fail to extract t0 will be exclude from analysis
151 if (m_eventTimeStoreObject.isValid() && m_eventTimeStoreObject->hasEventT0()) {
152 getObjectPtr<TH1F>("hEventT0")->Fill(m_eventTimeStoreObject->getEventT0());
153 } else {
154 return;
155 }
156 //store run/exp info
157 StoreObjPtr<EventMetaData> m_EventMetaData;
158 int run = m_EventMetaData->getRun();
159 int exp = m_EventMetaData->getExperiment();
160 expRun = exp * 1000000 + run;
161
162 /************************************/
165 int nG = gamma_list->getListSize();
166 B2DEBUG(29, "Number of gamma: " << nG);
167 for (int i = 0; i < nG; ++i) {
168 Particle* gamma = gamma_list->getParticle(i);
169 eclNeutral += gamma->getEnergy();
170 }
171 B2DEBUG(29, "Sum of neutral ECL " << eclNeutral);
172 /************************************/
174 //now start to collect dimuon parameters
175 double thetaPos(0), thetaNeg(0);
176 int charge_sum = 0;
177
178 for (int i = 0; i < nCandidates; ++i) {
179 Particle* part = m_DiMuonList->getParticle(i);
180 //vertex from vertex fit
181 ROOT::Math::XYZVector v0Vertex = part->getVertex();
182
183 //loop over its daugter
184 for (int j = 0; j < 2; ++j) {
185 //we have two daugters.
186 const Particle* d0 = part->getDaughter(j);
187 short chg = d0->getCharge();
188
189 const Belle2::TrackFitResult* fitresult = d0->getTrackFitResult();
190 if (!fitresult) {
191 B2WARNING("No track fit result found.");
192 break;
193 }
194 //get Cluter Energy
195 eclTrack += d0->getECLClusterEnergy();
196 double muid = Variable::muonID(d0);
197 double eid = Variable::muonID(d0);
198
199 if (chg > 0) {
200 ndfPos = fitresult->getNDF();
201 pvalPos = fitresult->getPValue();
202 ptPos = fitresult->getTransverseMomentum();
203 pzPos = fitresult->getMomentum().Z();
204 d0Pos = fitresult->getD0();
205 z0Pos = fitresult->getZ0();
206 thetaPos = fitresult->getMomentum().Theta() * 180 / M_PI;
207 ncdcPos = fitresult->getHitPatternCDC().getNHits();
208 nsvdPos = fitresult->getHitPatternVXD().getNSVDHits();
209 npxdPos = fitresult->getHitPatternVXD().getNPXDHits();
210 ROOT::Math::PxPyPzEVector P4_pos = T.rotateLabToCms() * fitresult->get4Momentum();
211 ptPosCm = P4_pos.Pt();
212 thetaPosCm = P4_pos.Theta() * 180 / M_PI;
213 phi0PosCm = P4_pos.Phi() * 180 / M_PI;
214 UncertainHelix helix_pos = fitresult->getUncertainHelix();
215 helix_pos.passiveMoveBy(v0Vertex);
216 d0ipPos = helix_pos.getD0();
217 z0ipPos = helix_pos.getZ0();
218 muidPos = muid; eidPos = eid;
219 } else if (chg < 0) {
220 ndfNeg = fitresult->getNDF();
221 pvalNeg = fitresult->getPValue();
222 ptNeg = fitresult->getTransverseMomentum();
223 pzNeg = fitresult->getMomentum().Z();
224 d0Neg = fitresult->getD0();
225 z0Neg = fitresult->getZ0();
226 thetaNeg = fitresult->getMomentum().Theta() * 180 / M_PI;
227 ncdcNeg = fitresult->getHitPatternCDC().getNHits();
228 nsvdNeg = fitresult->getHitPatternVXD().getNSVDHits();
229 npxdNeg = fitresult->getHitPatternVXD().getNPXDHits();
230
231 ROOT::Math::PxPyPzEVector P4_neg = T.rotateLabToCms() * fitresult->get4Momentum();
232 ptNegCm = P4_neg.Pt();
233 thetaNegCm = P4_neg.Theta() * 180 / M_PI;
234 phi0NegCm = P4_neg.Phi() * 180 / M_PI;
235 UncertainHelix helix_neg = fitresult->getUncertainHelix();
236 helix_neg.passiveMoveBy(v0Vertex);
237 d0ipNeg = helix_neg.getD0();
238 z0ipNeg = helix_neg.getZ0();
239 muidNeg = muid;
240 eidNeg = eid;
241 } else {
242 continue;
243 }
244 //count #good charged track and sum of charged
245 charge_sum += chg;
246 }
247 //save extra cdc hit for background monitoring
249 if (!elti) nExtraCDCHits = -1;
250 else nExtraCDCHits = elti->getNCDCHitsNotAssigned();
251 getObjectPtr<TH1F>("hExtraCDCHit")->Fill(nExtraCDCHits);
252 // cut good charged track
253 if (charge_sum != 0) {continue;}
254 //cut according to the Line400 in the plotMumu_4ff.C
255 if (ptPos < 2.5 || ptNeg < 2.5
256 || thetaPos < 45 || thetaPos > 125
257 || thetaNeg < 45 || thetaNeg > 125) {return;}
258
259 // cut on Energy deposite in ECL
260 // Keep the same as in the dimuon study script,
261 // Although it is not neccessary to keep this as cut on Etot is enough
262 double eclTot = eclNeutral + eclTrack;
263 if (eclTot > 2 || eclTrack > 2) return;
264
265 // B2INFO("Total Eecl_track = "<< Eecl_trk);
266 double dPt = (ptPos - ptNeg) / sqrt(2);
267 double dD0 = (d0Pos + d0Neg) / sqrt(2);
268 double dZ0 = (z0Pos - z0Neg) / sqrt(2);
269 double Pt_cm = (ptPosCm + ptNegCm) / 2;
270 double dPt_cm = (ptPosCm - ptNegCm) / sqrt(2);
271 double dPhi0_cm = (180 - fabs(phi0PosCm - phi0NegCm)) / sqrt(2);
272 double dTheta_cm = (180 - fabs(thetaPosCm + thetaNegCm)) / sqrt(2);
273
274 //require back to back
275 if (fabs(dPhi0_cm) > m_minCollinearityPhi0 || fabs(dTheta_cm) > m_minCollinearityTheta) return;
276
277 getObjectPtr<TH1F>("hPval_pos")->Fill(pvalPos);
278 getObjectPtr<TH1F>("hPval_neg")->Fill(pvalNeg);
279 getObjectPtr<TH1F>("hNDF_pos")->Fill(ndfPos);
280 getObjectPtr<TH1F>("hNDF_neg")->Fill(ndfNeg);
281 getObjectPtr<TH1F>("hnCDC_pos")->Fill(ncdcPos);
282 getObjectPtr<TH1F>("hnCDC_neg")->Fill(ncdcNeg);
283
284 getObjectPtr<TH1F>("hdPt")->Fill(dPt);
285 getObjectPtr<TH1F>("hdD0")->Fill(dD0);
286 getObjectPtr<TH1F>("hdZ0")->Fill(dZ0);
287
288 getObjectPtr<TH1F>("hdPt_cm")->Fill(dPt_cm);
289 getObjectPtr<TH2F>("hdPtPt_cm")->Fill(Pt_cm, dPt_cm);
290 getObjectPtr<TH1F>("hdPhi0_cm")->Fill(dPhi0_cm);
291 getObjectPtr<TH1F>("hdTheta_cm")->Fill(dTheta_cm);
292
293 if (m_StoreNtuple) {
294 getObjectPtr<TTree>(m_treeName.c_str())->Fill();
295 }
296 }
297}
Float_t pzPos
Longitudinal momentum of the positive track
Int_t expRun
Exp and run numbers, encoded by exp*10^6+run.
Float_t nExtraCDCHits
Number of CDC hits not assigned to any tracks.
Float_t ptNeg
Transeverse momentum of the negative track
Float_t thetaNegCm
theta of the negative track in c.m frame.
Float_t ptPos
Transeverse momentum of the positive track
StoreObjPtr< ParticleList > m_DiMuonList
List of the reconstructed dimion.
Float_t thetaPosCm
theta of the positive track in c.m frame.
Float_t ptPosCm
Transeverse momentum of the positive track in c.m frame.
Float_t ptNegCm
Transeverse momentum of the negative track in c.m frame.
Float_t pzNeg
Longitudinal momentum of the negative track
unsigned short getNHits() const
Get the total Number of CDC hits in the fit.
unsigned short getNPXDHits() const
Get total number of hits in the PXD.
unsigned short getNSVDHits() const
Get total number of hits in the SVD.
Class to hold Lorentz transformations from/to CMS and boost vector.
const ROOT::Math::LorentzRotation rotateLabToCms() const
Returns Lorentz transformation from Lab to CMS.
Class to store reconstructed particles.
Definition: Particle.h:75
double getEnergy() const
Returns total energy.
Definition: Particle.h:535
ROOT::Math::XYZVector getVertex() const
Returns vertex position (POCA for charged, IP for neutral FS particles)
Definition: Particle.h:631
const Particle * getDaughter(unsigned i) const
Returns a pointer to the i-th daughter particle.
Definition: Particle.cc:631
Type-safe access to single objects in the data store.
Definition: StoreObjPtr.h:96
Values of the result of a track fit with a given particle hypothesis.
float getNDF() const
Getter for number of degrees of freedom of the track fit.
double getPValue() const
Getter for Chi2 Probability of the track fit.
ROOT::Math::PxPyPzEVector get4Momentum() const
Getter for the 4Momentum at the closest approach of the track in the r/phi projection.
double getD0() const
Getter for d0.
double getTransverseMomentum() const
Getter for the absolute value of the transverse momentum at the perigee.
double getZ0() const
Getter for z0.
ROOT::Math::XYZVector getMomentum() const
Getter for vector of momentum at closest approach of track in r/phi projection.
HitPatternCDC getHitPatternCDC() const
Getter for the hit pattern in the CDC;.
UncertainHelix getUncertainHelix() const
Conversion to framework Uncertain Helix (i.e., with covariance).
HitPatternVXD getHitPatternVXD() const
Getter for the hit pattern in the VXD;.
This class represents an ideal helix in perigee parameterization including the covariance matrix of t...
double passiveMoveBy(const ROOT::Math::XYZVector &by)
Moves origin of the coordinate system (passive transformation) by the given vector.
double sqrt(double a)
sqrt for double
Definition: beamHelpers.h:28

◆ def_beginRun()

virtual void def_beginRun ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 426 of file Module.h.

426{ beginRun(); }
virtual void beginRun()
Called when entering a new run.
Definition: Module.h:147

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 439 of file Module.h.

439{ endRun(); }
virtual void endRun()
This method is called if the current run ends.
Definition: Module.h:166

◆ def_event()

virtual void def_event ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 432 of file Module.h.

432{ event(); }
virtual void event()
This method is the core of the module.
Definition: Module.h:157

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 420 of file Module.h.

420{ initialize(); }
virtual void initialize()
Initialize the Module.
Definition: Module.h:109

◆ def_terminate()

virtual void def_terminate ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 445 of file Module.h.

445{ terminate(); }
virtual void terminate()
This method is called at the end of the event processing.
Definition: Module.h:176

◆ defineHisto()

void defineHisto ( )
finalvirtualinherited

Runs due to HistoManager, allows us to discover the correct file.

Reimplemented from HistoModule.

Definition at line 127 of file CalibrationCollectorModule.cc.

128{
130 m_dir = gDirectory->mkdir(getName().c_str(), "", true);
132 B2INFO("Saving output to TDirectory " << m_dir->GetPath());
133 B2DEBUG(100, "Creating directories for individual collector objects.");
135 m_runRange = new RunRange();
137 m_runRange->SetName(Calibration::RUN_RANGE_OBJ_NAME.c_str());
138 m_dir->Add(m_runRange);
139 }
141}
void setDirectory(TDirectory *dir)
Change the directory that we will be using to find/store all our objects, we don't own it.
TDirectory * m_dir
The top TDirectory that collector objects for this collector will be stored beneath.
virtual void inDefineHisto()
Replacement for defineHisto(). Do anything you would normally do in defineHisto here.
static bool isWorkerProcess()
Return true if the process is a worker process.
Definition: ProcHandler.cc:230
static bool parallelProcessingUsed()
Returns true if multiple processes have been spawned, false in single-core mode.
Definition: ProcHandler.cc:226
Mergeable object holding (unique) set of (exp,run) pairs.
Definition: RunRange.h:25
void setGranularity(const std::string &granularity)
Set the m_granularity to an allowed value.
Definition: RunRange.h:100
void createDirectories()
Each object gets its own TDirectory under the main manager directory to store its objects.

◆ endRun()

void endRun ( void  )
finalvirtualinherited

Write the current collector objects to a file and clear their memory.

Reimplemented from HistoModule.

Definition at line 143 of file CalibrationCollectorModule.cc.

144{
145 closeRun();
146 // Moving between runs possibly creates new objects if getObjectPtr is called and granularity is run
147 // So we should write and clear the current memory objects.
148 if (m_granularity == "run") {
149 ExpRun expRun = make_pair(m_emd->getExperiment(), m_emd->getRun());
152 }
153}
virtual void closeRun()
Replacement for endRun(). Do anything you would normally do in endRun here.
void clearCurrentObjects(const Calibration::ExpRun &expRun)
Deletes all in-memory objects in the exprun directories for all the collector objects we know about.
void writeCurrentObjects(const Calibration::ExpRun &expRun)
For each templated object we know about, we find an in memory object for this exprun and write to the...

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 96 of file Module.cc.

97{
98 if (m_conditions.empty()) return false;
99
100 //okay, a condition was set for this Module...
101 if (!m_hasReturnValue) {
102 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
103 }
104
105 for (const auto& condition : m_conditions) {
106 if (condition.evaluate(m_returnValue)) {
107 return true;
108 }
109 }
110 return false;
111}
int m_returnValue
The return value.
Definition: Module.h:519
bool m_hasReturnValue
True, if the return value is set.
Definition: Module.h:518

◆ event()

void event ( void  )
finalvirtualinherited

Check current experiment and run and update if needed, fill into RunRange and collect()

Reimplemented from HistoModule.

Definition at line 52 of file CalibrationCollectorModule.cc.

53{
54 // Should we collect data this event based on the number collected in the run?
56 // If yes, does our preScale return true?
57 if (getPreScaleChoice()) {
58 collect();
59 // Since we collected, do we care about incrementing the number of events collected?
60 if (m_maxEventsPerRun > -1) {
61 (*m_eventsCollectedInRun) += 1;
62 // Now that we incremented, have we exceeded our maximum collected events in this run?
64 // If we have, we should skip collection until further notice
65 B2INFO("Reached maximum number of events processed by collector for this run ("
67 << " >= "
69 << "). Turning off collection.");
70 m_runCollectOnRun = false;
71 }
72 }
73 }
74 }
75}
virtual void collect()
Replacement for event(). Fill you calibration data objects here.
bool getPreScaleChoice()
I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values.

◆ exposePythonAPI()

void exposePythonAPI ( )
staticinherited

Exposes methods of the Module class to Python.

Definition at line 325 of file Module.cc.

326{
327 // to avoid confusion between std::arg and boost::python::arg we want a shorthand namespace as well
328 namespace bp = boost::python;
329
330 docstring_options options(true, true, false); //userdef, py sigs, c++ sigs
331
332 void (Module::*setReturnValueInt)(int) = &Module::setReturnValue;
333
334 enum_<Module::EAfterConditionPath>("AfterConditionPath",
335 R"(Determines execution behaviour after a conditional path has been executed:
336
337.. attribute:: END
338
339 End processing of this path after the conditional path. (this is the default for if_value() etc.)
340
341.. attribute:: CONTINUE
342
343 After the conditional path, resume execution after this module.)")
344 .value("END", Module::EAfterConditionPath::c_End)
345 .value("CONTINUE", Module::EAfterConditionPath::c_Continue)
346 ;
347
348 /* Do not change the names of >, <, ... we use them to serialize conditional pathes */
349 enum_<Belle2::ModuleCondition::EConditionOperators>("ConditionOperator")
356 ;
357
358 enum_<Module::EModulePropFlags>("ModulePropFlags",
359 R"(Flags to indicate certain low-level features of modules, see :func:`Module.set_property_flags()`, :func:`Module.has_properties()`. Most useful flags are:
360
361.. attribute:: PARALLELPROCESSINGCERTIFIED
362
363 This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)
364
365.. attribute:: HISTOGRAMMANAGER
366
367 This module is used to manage histograms accumulated by other modules
368
369.. attribute:: TERMINATEINALLPROCESSES
370
371 When using parallel processing, call this module's terminate() function in all processes. This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.
372)")
373 .value("INPUT", Module::EModulePropFlags::c_Input)
374 .value("OUTPUT", Module::EModulePropFlags::c_Output)
375 .value("PARALLELPROCESSINGCERTIFIED", Module::EModulePropFlags::c_ParallelProcessingCertified)
376 .value("HISTOGRAMMANAGER", Module::EModulePropFlags::c_HistogramManager)
377 .value("INTERNALSERIALIZER", Module::EModulePropFlags::c_InternalSerializer)
378 .value("TERMINATEINALLPROCESSES", Module::EModulePropFlags::c_TerminateInAllProcesses)
379 ;
380
381 //Python class definition
382 class_<Module, PyModule> module("Module", R"(
383Base class for Modules.
384
385A module is the smallest building block of the framework.
386A typical event processing chain consists of a Path containing
387modules. By inheriting from this base class, various types of
388modules can be created. To use a module, please refer to
389:func:`Path.add_module()`. A list of modules is available by running
390``basf2 -m`` or ``basf2 -m package``, detailed information on parameters is
391given by e.g. ``basf2 -m RootInput``.
392
393The 'Module Development' section in the manual provides detailed information
394on how to create modules, setting parameters, or using return values/conditions:
395https://xwiki.desy.de/xwiki/rest/p/f4fa4/#HModuleDevelopment
396
397)");
398 module
399 .def("__str__", &Module::getPathString)
400 .def("name", &Module::getName, return_value_policy<copy_const_reference>(),
401 "Returns the name of the module. Can be changed via :func:`set_name() <Module.set_name()>`, use :func:`type() <Module.type()>` for identifying a particular module class.")
402 .def("type", &Module::getType, return_value_policy<copy_const_reference>(),
403 "Returns the type of the module (i.e. class name minus 'Module')")
404 .def("set_name", &Module::setName, args("name"), R"(
405Set custom name, e.g. to distinguish multiple modules of the same type.
406
407>>> path.add_module('EventInfoSetter')
408>>> ro = path.add_module('RootOutput', branchNames=['EventMetaData'])
409>>> ro.set_name('RootOutput_metadata_only')
410>>> print(path)
411[EventInfoSetter -> RootOutput_metadata_only]
412
413)")
414 .def("description", &Module::getDescription, return_value_policy<copy_const_reference>(),
415 "Returns the description of this module.")
416 .def("package", &Module::getPackage, return_value_policy<copy_const_reference>(),
417 "Returns the package this module belongs to.")
418 .def("available_params", &_getParamInfoListPython,
419 "Return list of all module parameters as `ModuleParamInfo` instances")
420 .def("has_properties", &Module::hasProperties, (bp::arg("properties")),
421 R"DOCSTRING(Allows to check if the module has the given properties out of `ModulePropFlags` set.
422
423>>> if module.has_properties(ModulePropFlags.PARALLELPROCESSINGCERTIFIED):
424>>> ...
425
426Parameters:
427 properties (int): bitmask of `ModulePropFlags` to check for.
428)DOCSTRING")
429 .def("set_property_flags", &Module::setPropertyFlags, args("property_mask"),
430 "Set module properties in the form of an OR combination of `ModulePropFlags`.");
431 {
432 // python signature is too crowded, make ourselves
433 docstring_options subOptions(true, false, false); //userdef, py sigs, c++ sigs
434 module
435 .def("if_value", &Module::if_value,
436 (bp::arg("expression"), bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
437 R"DOCSTRING(if_value(expression, condition_path, after_condition_path=AfterConditionPath.END)
438
439Sets a conditional sub path which will be executed after this
440module if the return value set in the module passes the given ``expression``.
441
442Modules can define a return value (int or bool) using ``setReturnValue()``,
443which can be used in the steering file to split the Path based on this value, for example
444
445>>> module_with_condition.if_value("<1", another_path)
446
447In case the return value of the ``module_with_condition`` for a given event is
448less than 1, the execution will be diverted into ``another_path`` for this event.
449
450You could for example set a special return value if an error occurs, and divert
451the execution into a path containing :b2:mod:`RootOutput` if it is found;
452saving only the data producing/produced by the error.
453
454After a conditional path has executed, basf2 will by default stop processing
455the path for this event. This behaviour can be changed by setting the
456``after_condition_path`` argument.
457
458Parameters:
459 expression (str): Expression to determine if the conditional path should be executed.
460 This should be one of the comparison operators ``<``, ``>``, ``<=``,
461 ``>=``, ``==``, or ``!=`` followed by a numerical value for the return value
462 condition_path (Path): path to execute in case the expression is fulfilled
463 after_condition_path (AfterConditionPath): What to do once the ``condition_path`` has been executed.
464)DOCSTRING")
465 .def("if_false", &Module::if_false,
466 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
467 R"DOC(if_false(condition_path, after_condition_path=AfterConditionPath.END)
468
469Sets a conditional sub path which will be executed after this module if
470the return value of the module evaluates to False. This is equivalent to
471calling `if_value` with ``expression=\"<1\"``)DOC")
472 .def("if_true", &Module::if_true,
473 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
474 R"DOC(if_true(condition_path, after_condition_path=AfterConditionPath.END)
475
476Sets a conditional sub path which will be executed after this module if
477the return value of the module evaluates to True. It is equivalent to
478calling `if_value` with ``expression=\">=1\"``)DOC");
479 }
480 module
481 .def("has_condition", &Module::hasCondition,
482 "Return true if a conditional path has been set for this module "
483 "using `if_value`, `if_true` or `if_false`")
484 .def("get_all_condition_paths", &_getAllConditionPathsPython,
485 "Return a list of all conditional paths set for this module using "
486 "`if_value`, `if_true` or `if_false`")
487 .def("get_all_conditions", &_getAllConditionsPython,
488 "Return a list of all conditional path expressions set for this module using "
489 "`if_value`, `if_true` or `if_false`")
490 .add_property("logging", make_function(&Module::getLogConfig, return_value_policy<reference_existing_object>()),
@ c_GE
Greater or equal than: ">=".
@ c_SE
Smaller or equal than: "<=".
@ c_GT
Greater than: ">"
@ c_NE
Not equal: "!=".
@ c_EQ
Equal: "=" or "=="
@ c_ST
Smaller than: "<"
Base class for Modules.
Definition: Module.h:72
LogConfig & getLogConfig()
Returns the log system configuration.
Definition: Module.h:225
void if_value(const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
Add a condition to the module.
Definition: Module.cc:79
void if_true(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to set the condition of the module.
Definition: Module.cc:90
void setReturnValue(int value)
Sets the return value for this module as integer.
Definition: Module.cc:220
void setLogConfig(const LogConfig &logConfig)
Set the log system configuration.
Definition: Module.h:230
const std::string & getDescription() const
Returns the description of the module.
Definition: Module.h:202
void if_false(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to add a condition to the module.
Definition: Module.cc:85
bool hasCondition() const
Returns true if at least one condition was set for the module.
Definition: Module.h:311
const std::string & getPackage() const
Returns the package this module is in.
Definition: Module.h:197
void setName(const std::string &name)
Set the name of the module.
Definition: Module.h:214
bool hasProperties(unsigned int propertyFlags) const
Returns true if all specified property flags are available in this module.
Definition: Module.cc:160
std::string getPathString() const override
return the module name.
Definition: Module.cc:192

◆ finish()

void finish ( )
overridevirtual

Termination action.

Reimplemented from CalibrationCollectorModule.

Definition at line 299 of file CDCFudgeFactorCalibrationCollector.cc.

300{
301}

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 133 of file Module.cc.

134{
135 if (m_conditions.empty()) return EAfterConditionPath::c_End;
136
137 //okay, a condition was set for this Module...
138 if (!m_hasReturnValue) {
139 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
140 }
141
142 for (const auto& condition : m_conditions) {
143 if (condition.evaluate(m_returnValue)) {
144 return condition.getAfterConditionPath();
145 }
146 }
147
148 return EAfterConditionPath::c_End;
149}

◆ getAllConditionPaths()

std::vector< std::shared_ptr< Path > > getAllConditionPaths ( ) const
inherited

Return all condition paths currently set (no matter if the condition is true or not).

Definition at line 150 of file Module.cc.

151{
152 std::vector<std::shared_ptr<Path>> allConditionPaths;
153 for (const auto& condition : m_conditions) {
154 allConditionPaths.push_back(condition.getPath());
155 }
156
157 return allConditionPaths;
158}

◆ getAllConditions()

const std::vector< ModuleCondition > & getAllConditions ( ) const
inlineinherited

Return all set conditions for this module.

Definition at line 324 of file Module.h.

325 {
326 return m_conditions;
327 }

◆ getCondition()

const ModuleCondition * getCondition ( ) const
inlineinherited

Return a pointer to the first condition (or nullptr, if none was set)

Definition at line 314 of file Module.h.

315 {
316 if (m_conditions.empty()) {
317 return nullptr;
318 } else {
319 return &m_conditions.front();
320 }
321 }

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 113 of file Module.cc.

114{
115 PathPtr p;
116 if (m_conditions.empty()) return p;
117
118 //okay, a condition was set for this Module...
119 if (!m_hasReturnValue) {
120 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
121 }
122
123 for (const auto& condition : m_conditions) {
124 if (condition.evaluate(m_returnValue)) {
125 return condition.getPath();
126 }
127 }
128
129 // if none of the conditions were true, return a null pointer.
130 return p;
131}
std::shared_ptr< Path > PathPtr
Defines a pointer to a path object as a boost shared pointer.
Definition: Path.h:35

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Returns the description of the module.

Definition at line 202 of file Module.h.

202{return m_description;}
std::string m_description
The description of the module.
Definition: Module.h:511

◆ getFileNames()

virtual std::vector< std::string > getFileNames ( bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Reimplemented in RootInputModule, StorageRootOutputModule, and RootOutputModule.

Definition at line 134 of file Module.h.

135 {
136 return std::vector<std::string>();
137 }

◆ getLogConfig()

LogConfig & getLogConfig ( )
inlineinherited

Returns the log system configuration.

Definition at line 225 of file Module.h.

225{return m_logConfig;}

◆ getModules()

std::list< ModulePtr > getModules ( ) const
inlineoverrideprivatevirtualinherited

no submodules, return empty list

Implements PathElement.

Definition at line 506 of file Module.h.

506{ return std::list<ModulePtr>(); }

◆ getName()

const std::string & getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 187 of file Module.h.

187{return m_name;}
std::string m_name
The name of the module, saved as a string (user-modifiable)
Definition: Module.h:508

◆ getObjectPtr()

T * getObjectPtr ( std::string  name)
inlineinherited

Calls the CalibObjManager to get the requested stored collector data.

Definition at line 64 of file CalibrationCollectorModule.h.

65 {
66 return m_manager.getObject<T>(name, m_expRun);
67 }
T * getObject(const std::string &name, const Belle2::Calibration::ExpRun expRun)
Gets the collector object of this name for the given exprun.

◆ getPackage()

const std::string & getPackage ( ) const
inlineinherited

Returns the package this module is in.

Definition at line 197 of file Module.h.

197{return m_package;}

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 279 of file Module.cc.

280{
282}
std::shared_ptr< boost::python::list > getParamInfoListPython() const
Returns a python list of all parameters.
ModuleParamList m_moduleParamList
List storing and managing all parameter of the module.
Definition: Module.h:516

◆ getParamList()

const ModuleParamList & getParamList ( ) const
inlineinherited

Return module param list.

Definition at line 363 of file Module.h.

363{ return m_moduleParamList; }

◆ getPathString()

std::string getPathString ( ) const
overrideprivatevirtualinherited

return the module name.

Implements PathElement.

Definition at line 192 of file Module.cc.

193{
194
195 std::string output = getName();
196
197 for (const auto& condition : m_conditions) {
198 output += condition.getString();
199 }
200
201 return output;
202}

◆ getPreScaleChoice()

bool getPreScaleChoice ( )
inlineprivateinherited

I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values.

But since a user will have set them (or left them as default) as exactly equal to 0.0 or 1.0 rather than calculating them in almost every case, I think we can assume that the equalities hold.

Definition at line 122 of file CalibrationCollectorModule.h.

123 {
124 if (m_preScale == 1.) {
125 return true;
126 } else if (m_preScale == 0.) {
127 return false;
128 } else {
129 const double randomNumber = gRandom->Uniform();
130 return randomNumber < m_preScale;
131 }
132 }
float m_preScale
Prescale module parameter, this fraction of events will have collect() run on them [0....

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 381 of file Module.h.

381{ return m_returnValue; }

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 41 of file Module.cc.

42{
43 if (m_type.empty())
44 B2FATAL("Module type not set for " << getName());
45 return m_type;
46}
std::string m_type
The type of the module, saved as a string.
Definition: Module.h:509

◆ hasCondition()

bool hasCondition ( ) const
inlineinherited

Returns true if at least one condition was set for the module.

Definition at line 311 of file Module.h.

311{ return not m_conditions.empty(); };

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 160 of file Module.cc.

161{
162 return (propertyFlags & m_propertyFlags) == propertyFlags;
163}

◆ hasReturnValue()

bool hasReturnValue ( ) const
inlineinherited

Return true if this module has a valid return value set.

Definition at line 378 of file Module.h.

378{ return m_hasReturnValue; }

◆ hasUnsetForcedParams()

bool hasUnsetForcedParams ( ) const
inherited

Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.

Definition at line 166 of file Module.cc.

167{
169 std::string allMissing = "";
170 for (const auto& s : missing)
171 allMissing += s + " ";
172 if (!missing.empty())
173 B2ERROR("The following required parameters of Module '" << getName() << "' were not specified: " << allMissing <<
174 "\nPlease add them to your steering file.");
175 return !missing.empty();
176}
std::vector< std::string > getUnsetForcedParams() const
Returns list of unset parameters (if they are required to have a value.

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 85 of file Module.cc.

86{
87 if_value("<1", path, afterConditionPath);
88}

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 90 of file Module.cc.

91{
92 if_value(">=1", path, afterConditionPath);
93}

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://xwiki.desy.de/xwiki/rest/p/a94f2 or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 79 of file Module.cc.

80{
81 m_conditions.emplace_back(expression, path, afterConditionPath);
82}

◆ inDefineHisto()

virtual void inDefineHisto ( )
inlineprotectedvirtualinherited

◆ initialize()

void initialize ( void  )
finalvirtualinherited

Set up a default RunRange object in datastore and call prepare()

Reimplemented from HistoModule.

Definition at line 44 of file CalibrationCollectorModule.cc.

45{
46 m_evtMetaData.isRequired();
47 REG_HISTOGRAM
48 prepare();
49}
virtual void prepare()
Replacement for initialize(). Register calibration dataobjects here as well.
StoreObjPtr< EventMetaData > m_evtMetaData
Required input for EventMetaData.

◆ prepare()

void prepare ( )
overridevirtual

Initializes the Module.

Reimplemented from CalibrationCollectorModule.

Definition at line 46 of file CDCFudgeFactorCalibrationCollector.cc.

47{
48 m_Tracks.isRequired(m_trackArrayName);
51
52 if (m_StoreNtuple) {
53 auto m_tree = new TTree(m_treeName.c_str(), "tree for cdc calibration");
54 m_tree->Branch<Int_t>("exp_run", &expRun);
55 m_tree->Branch<Float_t>("pt_pos", &ptPos);
56 m_tree->Branch<Float_t>("pt_neg", &ptNeg);
57 m_tree->Branch<Float_t>("pz_pos", &pzPos);
58 m_tree->Branch<Float_t>("pz_neg", &pzNeg);
59
60 m_tree->Branch<Float_t>("pt_pos_cm", &ptPosCm);
61 m_tree->Branch<Float_t>("pt_neg_cm", &ptNegCm);
62 m_tree->Branch<Float_t>("pz_pos_cm", &pzPosCm);
63 m_tree->Branch<Float_t>("pz_neg_cm", &pzNegCm);
64
65 m_tree->Branch<Float_t>("theta_pos_cm", &thetaPosCm);
66 m_tree->Branch<Float_t>("theta_neg_cm", &thetaNegCm);
67
68 m_tree->Branch<Float_t>("phi0_pos_cm", &phi0PosCm);
69 m_tree->Branch<Float_t>("theta_neg_cm", &phi0NegCm);
70
71 m_tree->Branch<Float_t>("Pval_pos", &pvalPos);
72 m_tree->Branch<Float_t>("Pval_neg", &pvalNeg);
73
74 m_tree->Branch<Float_t>("ndf_pos", &ndfPos);
75 m_tree->Branch<Float_t>("ndf_neg", &ndfNeg);
76
77 m_tree->Branch<Float_t>("ncdc_pos", &ncdcPos);
78 m_tree->Branch<Float_t>("ncdc_neg", &ncdcNeg);
79 m_tree->Branch<Float_t>("npxd_pos", &npxdPos);
80 m_tree->Branch<Float_t>("npxd_neg", &npxdNeg);
81 m_tree->Branch<Float_t>("nsvd_pos", &nsvdPos);
82 m_tree->Branch<Float_t>("nsvd_neg", &nsvdNeg);
83
84 m_tree->Branch<Float_t>("nextra_cdchit", &nExtraCDCHits);
85 m_tree->Branch<Float_t>("ecl_track", &eclTrack);
86 m_tree->Branch<Float_t>("ecl_neutral", &eclNeutral);
87
88 m_tree->Branch<Float_t>("d0_pos", &d0Pos);
89 m_tree->Branch<Float_t>("d0_neg", &d0Neg);
90 m_tree->Branch<Float_t>("z0_pos", &z0Pos);
91 m_tree->Branch<Float_t>("z0_neg", &z0Neg);
92 m_tree->Branch<Float_t>("d0ip_pos", &d0ipPos);
93 m_tree->Branch<Float_t>("d0ip_neg", &d0ipNeg);
94 m_tree->Branch<Float_t>("z0ip_pos", &z0ipPos);
95 m_tree->Branch<Float_t>("z0ip_neg", &z0ipNeg);
96 m_tree->Branch<Float_t>("muid_pos", &muidPos);
97 m_tree->Branch<Float_t>("muid_neg", &muidNeg);
98 m_tree->Branch<Float_t>("eid_pos", &eidPos);
99 m_tree->Branch<Float_t>("eid_neg", &eidNeg);
100
101 registerObject<TTree>(m_treeName.c_str(), m_tree);
102 }
103 auto m_hEventT0 = new TH1F("hEventT0", "Event T0", 200, -100, 100);
104 auto m_hExtraCDCHit = new TH1F("hExtraCDCHit", "Extra cdc hits", 500, 0, 5000);
105 auto m_hNDF_pos = new TH1F("hNDF_pos", "NDF of positive track;NDF;Tracks", 71, -1, 70);
106 auto m_hNDF_neg = new TH1F("hNDF_neg", "NDF of negative track;NDF;Tracks", 71, -1, 70);
107 auto m_hPval_pos = new TH1F("hPval_pos", "p-values of pos tracks;pVal;Tracks", 1000, 0, 1);
108 auto m_hPval_neg = new TH1F("hPval_neg", "p-values of neg tra cks;pVal;Tracks", 1000, 0, 1);
109 auto m_hnCDC_pos = new TH1F("hnCDC_pos", "nCDC hit of positive track ; nCDC ; Tracks", 71, -1, 70);
110 auto m_hnCDC_neg = new TH1F("hnCDC_neg", "nCDC hit of negative track ; nCDC ; Tracks", 71, -1, 70);
111
112 auto m_hdPt = new TH1F("hdPt", "#DeltaP_{t} ; #DeltaP_{t} ; Events ", 200, -0.5, 0.5);
113 auto m_hdD0 = new TH1F("hdD0", "#DeltaD_{0} ; #DeltaD_{0} ; Events ", 200, -0.1, 0.1);
114 auto m_hdZ0 = new TH1F("hdZ0", "#DeltaZ_{0} ; #DeltaD_{0} ; Events ", 200, -1.5, 1.5);
115
116 auto m_hdPt_cm = new TH1F("hdPt_cm", "#DeltaP_{t} in c.m frame ; #DeltaP_{t} (c.m) ; Events ", 200, -0.5, 0.5);
117 auto m_hdPtPt_cm = new TH2F("hdPtPt_cm", "#DeltaP_{t}:P_{t} in c.m frame ;P_{t} GeV/c ; #DeltaP_{t} (c.m) ", 50, 2., 7., 200, -0.5,
118 0.5);
119
120 auto m_hdPhi0_cm = new TH1F("hdPhi0_cm", "#DeltaPhi_{0} in c.m frame ; #Delta#Phi_{0} in c.m ; Events ", 200, -0.7, 0.7);
121 auto m_hdTheta_cm = new TH1F("hdTheta_cm", "#Delta#theta in c.m frame ; #Delta#theta in c.m ; Events ", 200, -3.0, 3.0);
122
123 registerObject<TH1F>("hEventT0", m_hEventT0);
124 registerObject<TH1F>("hExtraCDCHit", m_hExtraCDCHit);
125 registerObject<TH1F>("hNDF_pos", m_hNDF_pos);
126 registerObject<TH1F>("hNDF_neg", m_hNDF_neg);
127 registerObject<TH1F>("hnCDC_pos", m_hnCDC_pos);
128 registerObject<TH1F>("hnCDC_neg", m_hnCDC_neg);
129
130 registerObject<TH1F>("hPval_pos", m_hPval_pos);
131 registerObject<TH1F>("hPval_neg", m_hPval_neg);
132
133
134 registerObject<TH1F>("hdPt", m_hdPt);
135 registerObject<TH1F>("hdD0", m_hdD0);
136 registerObject<TH1F>("hdZ0", m_hdZ0);
137
138 registerObject<TH1F>("hdPt_cm", m_hdPt_cm);
139 registerObject<TH2F>("hdPtPt_cm", m_hdPtPt_cm);
140 registerObject<TH1F>("hdPhi0_cm", m_hdPhi0_cm);
141 registerObject<TH1F>("hdTheta_cm", m_hdTheta_cm);
142}
StoreArray< TrackFitResult > m_TrackFitResults
Track fit results.
Float_t pzPosCm
Longitudinal momentum of the positive track in c.m frame.
std::string m_trackFitResultArrayName
Belle2::TrackFitResult StoreArray name.
Float_t pzNegCm
Longitudinal momentum of the negative track in c.m frame.

◆ registerObject()

void registerObject ( std::string  name,
T *  obj 
)
inlineinherited

Register object with a name, takes ownership, do not access the pointer beyond prepare()

Definition at line 55 of file CalibrationCollectorModule.h.

56 {
57 std::shared_ptr<T> calObj(obj);
58 calObj->SetName(name.c_str());
59 m_manager.addObject(name, calObj);
60 }
void addObject(const std::string &name, std::shared_ptr< TNamed > object)
Add a new object to manage, this is used as a template for creating future/missing objects.

◆ setAbortLevel()

void setAbortLevel ( int  abortLevel)
inherited

Configure the abort log level.

Definition at line 67 of file Module.cc.

68{
69 m_logConfig.setAbortLevel(static_cast<LogConfig::ELogLevel>(abortLevel));
70}
ELogLevel
Definition of the supported log levels.
Definition: LogConfig.h:26
void setAbortLevel(ELogLevel abortLevel)
Configure the abort level.
Definition: LogConfig.h:112

◆ setDebugLevel()

void setDebugLevel ( int  debugLevel)
inherited

Configure the debug messaging level.

Definition at line 61 of file Module.cc.

62{
63 m_logConfig.setDebugLevel(debugLevel);
64}
void setDebugLevel(int debugLevel)
Configure the debug messaging level.
Definition: LogConfig.h:98

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 214 of file Module.cc.

215{
216 m_description = description;
217}

◆ setLogConfig()

void setLogConfig ( const LogConfig logConfig)
inlineinherited

Set the log system configuration.

Definition at line 230 of file Module.h.

230{m_logConfig = logConfig;}

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 73 of file Module.cc.

74{
75 m_logConfig.setLogInfo(static_cast<LogConfig::ELogLevel>(logLevel), logInfo);
76}
void setLogInfo(ELogLevel logLevel, unsigned int logInfo)
Configure the printed log information for the given level.
Definition: LogConfig.h:127

◆ setLogLevel()

void setLogLevel ( int  logLevel)
inherited

Configure the log level.

Definition at line 55 of file Module.cc.

56{
57 m_logConfig.setLogLevel(static_cast<LogConfig::ELogLevel>(logLevel));
58}
void setLogLevel(ELogLevel logLevel)
Configure the log level.
Definition: LogConfig.cc:25

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 214 of file Module.h.

214{ m_name = name; };

◆ setParamList()

void setParamList ( const ModuleParamList params)
inlineprotectedinherited

Replace existing parameter list.

Definition at line 501 of file Module.h.

501{ m_moduleParamList = params; }

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 234 of file Module.cc.

235{
236 LogSystem& logSystem = LogSystem::Instance();
237 logSystem.updateModule(&(getLogConfig()), getName());
238 try {
240 } catch (std::runtime_error& e) {
241 throw std::runtime_error("Cannot set parameter '" + name + "' for module '"
242 + m_name + "': " + e.what());
243 }
244
245 logSystem.updateModule(nullptr);
246}
Class for logging debug, info and error messages.
Definition: LogSystem.h:46
void updateModule(const LogConfig *moduleLogConfig=nullptr, const std::string &moduleName="")
Sets the log configuration to the given module log configuration and sets the module name This method...
Definition: LogSystem.h:191
static LogSystem & Instance()
Static method to get a reference to the LogSystem instance.
Definition: LogSystem.cc:31
void setParamPython(const std::string &name, const PythonObject &pyObj)
Implements a method for setting boost::python objects.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 249 of file Module.cc.

250{
251
252 LogSystem& logSystem = LogSystem::Instance();
253 logSystem.updateModule(&(getLogConfig()), getName());
254
255 boost::python::list dictKeys = dictionary.keys();
256 int nKey = boost::python::len(dictKeys);
257
258 //Loop over all keys in the dictionary
259 for (int iKey = 0; iKey < nKey; ++iKey) {
260 boost::python::object currKey = dictKeys[iKey];
261 boost::python::extract<std::string> keyProxy(currKey);
262
263 if (keyProxy.check()) {
264 const boost::python::object& currValue = dictionary[currKey];
265 setParamPython(keyProxy, currValue);
266 } else {
267 B2ERROR("Setting the module parameters from a python dictionary: invalid key in dictionary!");
268 }
269 }
270
271 logSystem.updateModule(nullptr);
272}
void setParamPython(const std::string &name, const boost::python::object &pyObj)
Implements a method for setting boost::python objects.
Definition: Module.cc:234

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 208 of file Module.cc.

209{
210 m_propertyFlags = propertyFlags;
211}

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 227 of file Module.cc.

228{
229 m_hasReturnValue = true;
230 m_returnValue = value;
231}

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 220 of file Module.cc.

221{
222 m_hasReturnValue = true;
223 m_returnValue = value;
224}

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 48 of file Module.cc.

49{
50 if (!m_type.empty())
51 B2FATAL("Trying to change module type from " << m_type << " is not allowed, the value is assumed to be fixed.");
52 m_type = type;
53}

◆ startRun()

◆ terminate()

void terminate ( void  )
finalvirtualinherited

Write the final objects to the file.

Reimplemented from HistoModule.

Definition at line 155 of file CalibrationCollectorModule.cc.

156{
157 finish();
158 // actually this should be done by the write() called by HistoManager....
159
160 // Haven't written objects yet if collecting with granularity == all
161 // Write them now that everything is done.
162// if (m_granularity == "all") {
163// m_manager.writeCurrentObjects(m_expRun);
164// m_manager.clearCurrentObjects(m_expRun);
165// }
167}
virtual void finish()
Replacement for terminate(). Do anything you would normally do in terminate here.
void deleteHeldObjects()
Clears the map of templated objects -> causing their destruction.

Member Data Documentation

◆ d0ipNeg

Float_t d0ipNeg
private

d0 w.r.t IP of the negative track

Definition at line 107 of file CDCFudgeFactorCalibrationCollector.h.

◆ d0ipPos

Float_t d0ipPos
private

d0 w.r.t IP of the positive track

Definition at line 106 of file CDCFudgeFactorCalibrationCollector.h.

◆ d0Neg

Float_t d0Neg
private

d0 of the negative track

Definition at line 103 of file CDCFudgeFactorCalibrationCollector.h.

◆ d0Pos

Float_t d0Pos
private

d0 of the positive track

Definition at line 102 of file CDCFudgeFactorCalibrationCollector.h.

◆ eclNeutral

Float_t eclNeutral
private

Sum of neutral ECL clusgter.

Definition at line 100 of file CDCFudgeFactorCalibrationCollector.h.

◆ eclTrack

Float_t eclTrack
private

sum of ECL associated to track

Definition at line 99 of file CDCFudgeFactorCalibrationCollector.h.

◆ eidNeg

Float_t eidNeg
private

Electron ID for negative charged track.

Definition at line 95 of file CDCFudgeFactorCalibrationCollector.h.

◆ eidPos

Float_t eidPos
private

Electron ID for positive charged track.

Definition at line 94 of file CDCFudgeFactorCalibrationCollector.h.

◆ expRun

Int_t expRun
private

Exp and run numbers, encoded by exp*10^6+run.

Definition at line 81 of file CDCFudgeFactorCalibrationCollector.h.

◆ m_conditions

std::vector<ModuleCondition> m_conditions
privateinherited

Module condition, only non-null if set.

Definition at line 521 of file Module.h.

◆ m_description

std::string m_description
privateinherited

The description of the module.

Definition at line 511 of file Module.h.

◆ m_DiMuonList

StoreObjPtr<ParticleList> m_DiMuonList
private

List of the reconstructed dimion.

Definition at line 70 of file CDCFudgeFactorCalibrationCollector.h.

◆ m_DiMuonListName

std::string m_DiMuonListName
private

List name for the reconstruted dimuon.

Definition at line 72 of file CDCFudgeFactorCalibrationCollector.h.

◆ m_dir

TDirectory* m_dir
protectedinherited

The top TDirectory that collector objects for this collector will be stored beneath.

Definition at line 84 of file CalibrationCollectorModule.h.

◆ m_emd

StoreObjPtr<EventMetaData> m_emd
protectedinherited

Current EventMetaData.

Definition at line 96 of file CalibrationCollectorModule.h.

◆ m_eventsCollectedInRun

int* m_eventsCollectedInRun
privateinherited

Will point at correct value in m_expRunEvents.

Definition at line 117 of file CalibrationCollectorModule.h.

◆ m_eventTimeStoreObject

StoreObjPtr<EventT0> m_eventTimeStoreObject
private

Event t0 object.

Definition at line 67 of file CDCFudgeFactorCalibrationCollector.h.

◆ m_evtMetaData

StoreObjPtr<EventMetaData> m_evtMetaData
privateinherited

Required input for EventMetaData.

Definition at line 108 of file CalibrationCollectorModule.h.

◆ m_expRun

Calibration::ExpRun m_expRun
protectedinherited

Current ExpRun for object retrieval (becomes -1,-1 for granularity=all)

Definition at line 93 of file CalibrationCollectorModule.h.

◆ m_expRunEvents

std::map<Calibration::ExpRun, int> m_expRunEvents
privateinherited

How many events processed for each ExpRun so far, stops counting up once max is hit Only used/incremented if m_maxEventsPerRun > -1.

Definition at line 115 of file CalibrationCollectorModule.h.

◆ m_GammaListName

std::string m_GammaListName
private

List name for the reconstruted dimuon.

Definition at line 73 of file CDCFudgeFactorCalibrationCollector.h.

◆ m_granularity

std::string m_granularity
privateinherited

Granularity of data collection = run|all(= no granularity, exp,run=-1,-1)

Definition at line 101 of file CalibrationCollectorModule.h.

◆ m_hasReturnValue

bool m_hasReturnValue
privateinherited

True, if the return value is set.

Definition at line 518 of file Module.h.

◆ m_logConfig

LogConfig m_logConfig
privateinherited

The log system configuration of the module.

Definition at line 514 of file Module.h.

◆ m_manager

CalibObjManager m_manager
protectedinherited

Controls the creation, collection and access to calibration objects.

Definition at line 87 of file CalibrationCollectorModule.h.

◆ m_maxEventsPerRun

int m_maxEventsPerRun
privateinherited

Maximum number of events to be collected at the start of each run (-1 = no maximum)

Definition at line 103 of file CalibrationCollectorModule.h.

◆ m_minCollinearityPhi0

Double_t m_minCollinearityPhi0 = 10
private

Minimum requirement for accolinear phi0 in c.m frame.

Definition at line 79 of file CDCFudgeFactorCalibrationCollector.h.

◆ m_minCollinearityTheta

Double_t m_minCollinearityTheta = 10
private

Minimum requirement for accolinear theta in c.m frame.

Definition at line 78 of file CDCFudgeFactorCalibrationCollector.h.

◆ m_moduleParamList

ModuleParamList m_moduleParamList
privateinherited

List storing and managing all parameter of the module.

Definition at line 516 of file Module.h.

◆ m_name

std::string m_name
privateinherited

The name of the module, saved as a string (user-modifiable)

Definition at line 508 of file Module.h.

◆ m_package

std::string m_package
privateinherited

Package this module is found in (may be empty).

Definition at line 510 of file Module.h.

◆ m_preScale

float m_preScale
privateinherited

Prescale module parameter, this fraction of events will have collect() run on them [0.0 -> 1.0].

Definition at line 105 of file CalibrationCollectorModule.h.

◆ m_propertyFlags

unsigned int m_propertyFlags
privateinherited

The properties of the module as bitwise or (with |) of EModulePropFlags.

Definition at line 512 of file Module.h.

◆ m_returnValue

int m_returnValue
privateinherited

The return value.

Definition at line 519 of file Module.h.

◆ m_runCollectOnRun

bool m_runCollectOnRun = true
privateinherited

Whether or not we will run the collect() at all this run, basically skips the event() function if false.

Definition at line 111 of file CalibrationCollectorModule.h.

◆ m_runRange

RunRange* m_runRange
protectedinherited

Overall list of runs processed.

Definition at line 90 of file CalibrationCollectorModule.h.

◆ m_StoreNtuple

bool m_StoreNtuple
private

Option to store ntuple, =true: tree with these variables will be stored.

Definition at line 80 of file CDCFudgeFactorCalibrationCollector.h.

◆ m_trackArrayName

std::string m_trackArrayName
private

◆ m_trackFitResultArrayName

std::string m_trackFitResultArrayName
private

◆ m_TrackFitResults

StoreArray<TrackFitResult> m_TrackFitResults
private

Track fit results.

Definition at line 69 of file CDCFudgeFactorCalibrationCollector.h.

◆ m_Tracks

StoreArray<Track> m_Tracks
private

Tracks.

Definition at line 68 of file CDCFudgeFactorCalibrationCollector.h.

◆ m_treeName

std::string m_treeName = "tree"
private

Name of tree for the output file.

Definition at line 76 of file CDCFudgeFactorCalibrationCollector.h.

◆ m_type

std::string m_type
privateinherited

The type of the module, saved as a string.

Definition at line 509 of file Module.h.

◆ muidNeg

Float_t muidNeg
private

Muon ID for negative charged track.

Definition at line 93 of file CDCFudgeFactorCalibrationCollector.h.

◆ muidPos

Float_t muidPos
private

Muon ID for positive charged track.

Definition at line 92 of file CDCFudgeFactorCalibrationCollector.h.

◆ ncdcNeg

Float_t ncdcNeg
private

Number of CDC hit of the negative track.

Definition at line 87 of file CDCFudgeFactorCalibrationCollector.h.

◆ ncdcPos

Float_t ncdcPos
private

Number of CDC hit of the positive track.

Definition at line 86 of file CDCFudgeFactorCalibrationCollector.h.

◆ ndfNeg

Float_t ndfNeg
private

NDF of the negative track.

Definition at line 83 of file CDCFudgeFactorCalibrationCollector.h.

◆ ndfPos

Float_t ndfPos
private

NDF of the positive track.

Definition at line 82 of file CDCFudgeFactorCalibrationCollector.h.

◆ nExtraCDCHits

Float_t nExtraCDCHits
private

Number of CDC hits not assigned to any tracks.

Definition at line 98 of file CDCFudgeFactorCalibrationCollector.h.

◆ npxdNeg

Float_t npxdNeg
private

Number of PXD hit of the negative track.

Definition at line 89 of file CDCFudgeFactorCalibrationCollector.h.

◆ npxdPos

Float_t npxdPos
private

Number of PXD hit of the positive track.

Definition at line 88 of file CDCFudgeFactorCalibrationCollector.h.

◆ nsvdNeg

Float_t nsvdNeg
private

Number of SVD hit of the negative track.

Definition at line 91 of file CDCFudgeFactorCalibrationCollector.h.

◆ nsvdPos

Float_t nsvdPos
private

Number of SVD hit of the positive track.

Definition at line 90 of file CDCFudgeFactorCalibrationCollector.h.

◆ phi0NegCm

Float_t phi0NegCm
private

phi0 of the negative track in c.m frame.

Definition at line 123 of file CDCFudgeFactorCalibrationCollector.h.

◆ phi0PosCm

Float_t phi0PosCm
private

phi0 of the positive track in c.m frame.

Definition at line 122 of file CDCFudgeFactorCalibrationCollector.h.

◆ ptNeg

Float_t ptNeg
private

Transeverse momentum of the negative track

Definition at line 111 of file CDCFudgeFactorCalibrationCollector.h.

◆ ptNegCm

Float_t ptNegCm
private

Transeverse momentum of the negative track in c.m frame.

Definition at line 116 of file CDCFudgeFactorCalibrationCollector.h.

◆ ptPos

Float_t ptPos
private

Transeverse momentum of the positive track

Definition at line 110 of file CDCFudgeFactorCalibrationCollector.h.

◆ ptPosCm

Float_t ptPosCm
private

Transeverse momentum of the positive track in c.m frame.

Definition at line 115 of file CDCFudgeFactorCalibrationCollector.h.

◆ pvalNeg

Float_t pvalNeg
private

P-value of the negative track.

Definition at line 85 of file CDCFudgeFactorCalibrationCollector.h.

◆ pvalPos

Float_t pvalPos
private

P-value of the positive track.

Definition at line 84 of file CDCFudgeFactorCalibrationCollector.h.

◆ pzNeg

Float_t pzNeg
private

Longitudinal momentum of the negative track

Definition at line 113 of file CDCFudgeFactorCalibrationCollector.h.

◆ pzNegCm

Float_t pzNegCm
private

Longitudinal momentum of the negative track in c.m frame.

Definition at line 118 of file CDCFudgeFactorCalibrationCollector.h.

◆ pzPos

Float_t pzPos
private

Longitudinal momentum of the positive track

Definition at line 112 of file CDCFudgeFactorCalibrationCollector.h.

◆ pzPosCm

Float_t pzPosCm
private

Longitudinal momentum of the positive track in c.m frame.

Definition at line 117 of file CDCFudgeFactorCalibrationCollector.h.

◆ thetaNegCm

Float_t thetaNegCm
private

theta of the negative track in c.m frame.

Definition at line 121 of file CDCFudgeFactorCalibrationCollector.h.

◆ thetaPosCm

Float_t thetaPosCm
private

theta of the positive track in c.m frame.

Definition at line 120 of file CDCFudgeFactorCalibrationCollector.h.

◆ z0ipNeg

Float_t z0ipNeg
private

z0 w.r.t IP of the negative track

Definition at line 109 of file CDCFudgeFactorCalibrationCollector.h.

◆ z0ipPos

Float_t z0ipPos
private

z0 w.r.t IP of the positive track

Definition at line 108 of file CDCFudgeFactorCalibrationCollector.h.

◆ z0Neg

Float_t z0Neg
private

z0 of the negative track

Definition at line 105 of file CDCFudgeFactorCalibrationCollector.h.

◆ z0Pos

Float_t z0Pos
private

z0 of the positive track

Definition at line 104 of file CDCFudgeFactorCalibrationCollector.h.


The documentation for this class was generated from the following files: