Belle II Software  release-08-01-10
HitXPModule.cc
1 /**************************************************************************
2  * basf2 (Belle II Analysis Software Framework) *
3  * Author: The Belle II Collaboration *
4  * *
5  * See git log for contributors and copyright holders. *
6  * This file is licensed under LGPL-3.0, see LICENSE.md. *
7  **************************************************************************/
8 
9 #include <tracking/modules/trackingPerformanceEvaluation/HitXPModule.h>
10 #include <framework/datastore/StoreArray.h>
11 #include <framework/datastore/RelationArray.h>
12 #include <mdst/dataobjects/MCParticle.h>
13 #include <svd/dataobjects/SVDCluster.h>
14 #include <svd/dataobjects/SVDTrueHit.h>
15 #include <TFile.h>
16 #include <tracking/dataobjects/RecoTrack.h>
17 #include <tracking/dataobjects/hitXPDerivate.h>
18 
19 #include <string>
20 
21 using namespace Belle2;
22 
23 REG_MODULE(HitXP);
24 
26 {
27  setDescription("This module builds a ttree with true hit informations (momentum, position, PDGID, and track parameters hit per hit) running over simulated and reconstructed events.");
28 
30  addParam("additionalTree", c_addTree,
31  "produce two additional tree with reduced date: selTree (track with at least one hit per layer), tiSelTree (track with one hit per layer)",
32  false);
33 
34 }
35 
36 
37 HitXPModule::~HitXPModule()
38 {
39 }
40 
41 
42 
44 {
45 
48  StoreArray<RecoTrack> storeRecoTracks("");
49  StoreArray<SVDCluster> storeClusters("");
50  StoreArray<SVDTrueHit> storeTrueHits("");
51  storeRecoTracks.isRequired();
52  storeClusters.isRequired();
53  storeTrueHits.isRequired();
54 
55  RelationArray relClusterTrueHits(storeClusters, storeTrueHits);
56  RelationArray relClusterMCParticles(storeClusters, m_MCParticles);
57  RelationArray recoTracksToMCParticles(storeRecoTracks, m_MCParticles);
58 
59 
68  m_outputFile = new TFile("TFile_hitXP.root", "RECREATE");
69  m_tree = new TTree("TTree_hitXP", "TTree_hitXP");
70 
71  m_tree->Branch("hitXP", &m_hitXP);
72  m_tree->Branch("trackNumber", &m_trackNumber);
73  m_tree->Branch("eventNumber", &m_eventNumber);
74  m_tree->Branch("numberHitPerTrack", &m_numberHitPerTrack);
75 
76  m_trackIterator = 0;
77  m_eventIterator = 0;
78 
79  //-------------------------------------------------------------------------------------------------//
80  //------------------------------------selected Tree creation--------------------------------------//
81  //-------------------------------------------------------------------------------------------------//
82  if (c_addTree) m_outputFileSel = new TFile("TFile_hitXPSel.root", "RECREATE");
83  m_treeSel = new TTree("TTree_hitXPSel", "TTree_hitXPSel");
84 
85  m_treeSel->Branch("hitXP", &m_hitXPSel);
86  m_treeSel->Branch("trackNumber", &m_trackNumberSel);
87  m_treeSel->Branch("eventNumber", &m_eventNumberSel);
88  m_treeSel->Branch("numberHitPerTrack", &m_numberHitPerTrackSel);
89 
90 
91  //-------------------------------------------------------------------------------------------------//
92  //------------------------------------tight selected Tree creation--------------------------------------//
93  //-------------------------------------------------------------------------------------------------//
94  if (c_addTree) m_outputFileTiSel = new TFile("TFile_hitXPTiSel.root", "RECREATE");
95  m_treeTiSel = new TTree("TTree_hitXPTiSel", "TTree_hitXPTiSel");
96 
97  m_treeTiSel->Branch("hitXP", &m_hitXPTiSel);
98  m_treeTiSel->Branch("trackNumber", &m_trackNumberTiSel);
99  m_treeTiSel->Branch("eventNumber", &m_eventNumberTiSel);
100  m_treeTiSel->Branch("numberHitPerTrack", &m_numberHitPerTrackTiSel);
101 
102 
103 //-------------------------------------------------------------------------------------------------//
104 //------------------------------------External Tree creation--------------------------------------//
105 //-------------------------------------------------------------------------------------------------//
106 
108  m_outputFileExt = new TFile("TFile_hitXP_ext.root", "RECREATE");
109  m_treeExt = new TTree("TTree_hitXP_ext", "TTree_hitXP_ext");
110 
111  m_treeExt->Branch("positionEntryX", &m_EpositionEntryX);
112  m_treeExt->Branch("positionEntryY", &m_EpositionEntryY);
113  m_treeExt->Branch("positionEntryZ", &m_EpositionEntryZ);
114  m_treeExt->Branch("momentumEntryX", &m_EmomentumEntryX);
115  m_treeExt->Branch("momentumEntryY", &m_EmomentumEntryY);
116  m_treeExt->Branch("momentumEntryZ", &m_EmomentumEntryZ);
117  m_treeExt->Branch("positionLocalEntryX", &m_EpositionLocalEntryX);
118  m_treeExt->Branch("positionLocalEntryY", &m_EpositionLocalEntryY);
119  m_treeExt->Branch("positionLocalEntryZ", &m_EpositionLocalEntryZ);
120  m_treeExt->Branch("PDGID", &m_EPDGID);
121  m_treeExt->Branch("position0X", &m_Eposition0X);
122  m_treeExt->Branch("position0Y", &m_Eposition0Y);
123  m_treeExt->Branch("position0Z", &m_Eposition0Z);
124  m_treeExt->Branch("momentum0X", &m_Emomentum0X);
125  m_treeExt->Branch("momentum0Y", &m_Emomentum0Y);
126  m_treeExt->Branch("momentum0Z", &m_Emomentum0Z);
127  m_treeExt->Branch("time", &m_Etime);
128  m_treeExt->Branch("sensorSensor", &m_EsensorSensor);
129  m_treeExt->Branch("sensorLayer", &m_EsensorLayer);
130  m_treeExt->Branch("sensorLadder", &m_EsensorLadder);
131  m_treeExt->Branch("reconstructed", &m_Ereconstructed);
132  m_treeExt->Branch("clusterU", &m_EclusterU);
133  m_treeExt->Branch("clusterV", &m_EclusterV);
134  m_treeExt->Branch("charge", &m_Echarge);
135  m_treeExt->Branch("trackNumber", &m_EtrackNumber);
136  m_treeExt->Branch("eventNumber", &m_EeventNumber);
137  m_treeExt->Branch("numberHitPerTrack", &m_EnumberHitPerTrack);
138  m_treeExt->Branch("omegaEntry", &m_EomegaEntry);
139  m_treeExt->Branch("omega0", &m_Eomega0);
140  m_treeExt->Branch("d0Entry", &m_Ed0Entry);
141  m_treeExt->Branch("d00", &m_Ed00);
142  m_treeExt->Branch("phi0Entry", &m_Ephi0Entry);
143  m_treeExt->Branch("phi00", &m_Ephi00);
144  m_treeExt->Branch("z0Entry", &m_Ez0Entry);
145  m_treeExt->Branch("z00", &m_Ez00);
146  m_treeExt->Branch("tanlambdaEntry", &m_EtanlambdaEntry);
147  m_treeExt->Branch("tanlambda0", &m_Etanlambda0);
148  m_treeExt->Branch("primary", &m_Eprimary);
149 
150 }
151 
153 
155 {
157  m_EeventNumber = m_eventIterator; //------------External Tree---------//
159 
160 
161  for (const MCParticle& particle : m_MCParticles) {
162  m_Eprimary = particle.getStatus();
163  for (const SVDTrueHit& hit : particle.getRelationsTo<SVDTrueHit>()) {
164  if (hit.getRelationsFrom<SVDCluster>().size() > 0) {
165  VxdID trueHitSensorID = hit.getSensorID();
166  const VXD::SensorInfoBase& sensorInfo = VXD::GeoCache::getInstance().getSensorInfo(trueHitSensorID);
167  const SVDCluster* cluster = hit.getRelationsFrom<SVDCluster>()[0];
168  hitXPDerivate entry(hit, *cluster, particle, sensorInfo);
169  int NClusterU = 0;
170  int NClusterV = 0;
171  for (SVDCluster Ncluster : hit.getRelationsFrom<SVDCluster>()) {
172  if (Ncluster.isUCluster()) NClusterU++;
173  else NClusterV++;
174  }
175  entry.setClusterU(NClusterU);
176  entry.setClusterV(NClusterV);
177 
178  bool isReconstructed(false);
179  for (const RecoTrack& aRecoTrack : particle.getRelationsFrom<RecoTrack>())
180  isReconstructed |= aRecoTrack.hasSVDHits();
181  entry.setReconstructed(isReconstructed);
182  m_hitXPSet.insert(entry);
183  }
184  }
186  m_EtrackNumber = m_trackIterator; //----------------External Tree ----------------//
188 
189  for (auto element : m_hitXPSet) {
190  m_hitXP.push_back(element);
191 
192  //-----------------External Tree ---------------------------- //
193  m_EpositionEntryX.push_back(element.m_positionEntry.x());
194  m_EpositionEntryY.push_back(element.m_positionEntry.y());
195  m_EpositionEntryZ.push_back(element.m_positionEntry.z());
196  m_EmomentumEntryX.push_back(element.m_momentumEntry.x());
197  m_EmomentumEntryY.push_back(element.m_momentumEntry.y());
198  m_EmomentumEntryZ.push_back(element.m_momentumEntry.z());
199  m_EpositionLocalEntryX.push_back(element.m_positionLocalEntry.x());
200  m_EpositionLocalEntryY.push_back(element.m_positionLocalEntry.y());
201  m_EpositionLocalEntryZ.push_back(element.m_positionLocalEntry.z());
202  m_EPDGID.push_back(element.m_PDGID);
203  m_Eposition0X.push_back(element.m_position0.x());
204  m_Eposition0Y.push_back(element.m_position0.y());
205  m_Eposition0Z.push_back(element.m_position0.z());
206  m_Emomentum0X.push_back(element.m_momentum0.x());
207  m_Emomentum0Y.push_back(element.m_momentum0.y());
208  m_Emomentum0Z.push_back(element.m_momentum0.z());
209  m_Etime.push_back(element.m_time);
210  m_EsensorSensor.push_back(element.m_sensorSensor);
211  m_EsensorLayer.push_back(element.m_sensorLayer);
212  m_EsensorLadder.push_back(element.m_sensorLadder);
213  m_Ereconstructed.push_back(element.m_reconstructed);
214  m_EclusterU.push_back(element.m_clusterU);
215  m_EclusterV.push_back(element.m_clusterV);
216  m_Echarge.push_back(element.m_charge);
217  m_EomegaEntry.push_back(element.getOmegaEntry());
218  m_Eomega0.push_back(element.getOmega0());
219  m_Ed0Entry.push_back(element.getD0Entry());
220  m_Ed00.push_back(element.getD00());
221  m_Ephi0Entry.push_back(element.getPhi0Entry());
222  m_Ephi00.push_back(element.getPhi00());
223  m_Ez0Entry.push_back(element.getZ0Entry());
224  m_Ez00.push_back(element.getZ00());
225  m_EtanlambdaEntry.push_back(element.getTanLambdaEntry());
226  m_Etanlambda0.push_back(element.getTanLambda0());
227  }
228  m_numberHitPerTrack = m_hitXP.size();
229  m_EnumberHitPerTrack = m_hitXP.size(); //-------external tree--------------//
230 
231 
232  m_tree->Fill();
233 
234  //-------external tree--------------//
235  m_treeExt->Fill();
236  m_EpositionEntryX.clear();
237  m_EpositionEntryY.clear();
238  m_EpositionEntryZ.clear();
239  m_EmomentumEntryX.clear();
240  m_EmomentumEntryY.clear();
241  m_EmomentumEntryZ.clear();
242  m_EpositionLocalEntryX.clear();
243  m_EpositionLocalEntryY.clear();
244  m_EpositionLocalEntryZ.clear();
245  m_EPDGID.clear();
246  m_Eposition0X.clear();
247  m_Eposition0Y.clear();
248  m_Eposition0Z.clear();
249  m_Emomentum0X.clear();
250  m_Emomentum0Y.clear();
251  m_Emomentum0Z.clear();
252  m_Etime.clear();
253  m_EsensorSensor.clear();
254  m_EsensorLayer.clear();
255  m_EsensorLadder.clear();
256  m_Ereconstructed.clear();
257  m_EclusterU.clear();
258  m_EclusterV.clear();
259  m_Echarge.clear();
260  m_EomegaEntry.clear();
261  m_Eomega0.clear();
262  m_Ed0Entry.clear();
263  m_Ed00.clear();
264  m_Ephi0Entry.clear();
265  m_Ephi00.clear();
266  m_Ez0Entry.clear();
267  m_Ez00.clear();
268  m_EtanlambdaEntry.clear();
269  m_Etanlambda0.clear();
270 
271 
272 
273  //-------------------------------------------------------------------------------------------------//
274  //------------------------------------Selected Tree creation--------------------------------------//
275  //-------------------------------------------------------------------------------------------------//
277  int f3 = 0, f4 = 0, f5 = 0, f6 = 0;
278  int layer_flag = 0;
279  unsigned int j = 0;
280  int brk = 0;
281  std::vector<hitXP> temp_hitXP;
282  while (j < m_hitXP.size() && brk == 0) {
283  if (m_hitXP[j].m_sensorLayer == 3) {
284  f3 = 1;
285  temp_hitXP.push_back(m_hitXP[j]);
286  j++;
287  while (j < m_hitXP.size() && brk == 0) {
288  if (m_hitXP[j].m_sensorLayer == 4) {
289  f4 = 1;
290  temp_hitXP.push_back(m_hitXP[j]);
291  j++;
292  while (j < m_hitXP.size() && brk == 0) {
293  if (m_hitXP[j].m_sensorLayer == 5) {
294  f5 = 1;
295  temp_hitXP.push_back(m_hitXP[j]);
296  j++;
297  while (j < m_hitXP.size() && brk == 0) {
298  if (m_hitXP[j].m_sensorLayer == 6) {
299  f6 = 1;
300  temp_hitXP.push_back(m_hitXP[j]);
301  brk = 1;
302  j++;
303  }
304  j++;
305  }
306  }
307  j++;
308  }
309  }
310  j++;
311  }
312  }
313  j++;
314  }
315  layer_flag = f3 * f4 * f5 * f6;
316  if (layer_flag != 0) {
317  int k;
318  for (k = 0; k < 4; k = k + 1) {
319  m_hitXPSel.push_back(temp_hitXP[k]);
320  }
324  m_treeSel->Fill();
325  m_hitXPSel.erase(m_hitXPSel.begin(), m_hitXPSel.end());
326  }
327 
328 
329 
330  //-------------------------------------------------------------------------------------------------//
331  //------------------------------------Tight Selected Tree creation--------------------------------------//
332  //-------------------------------------------------------------------------------------------------//
334  if (m_numberHitPerTrack == 4 && m_hitXP[0].m_sensorLayer == 3 && m_hitXP[1].m_sensorLayer == 4
335  && m_hitXP[2].m_sensorLayer == 5 && m_hitXP[3].m_sensorLayer == 6) {
336  int h = 0;
337  for (h = 0; h < 4; h = h + 1) {
338  m_hitXPTiSel.push_back(m_hitXP[h]);
339  }
343  m_treeTiSel->Fill();
344  m_hitXPTiSel.erase(m_hitXPTiSel.begin(), m_hitXPTiSel.end());
345  }
346  m_hitXP.erase(m_hitXP.begin(), m_hitXP.end());
347  m_hitXPSet.clear();
348  }
349 }
350 
351 
352 
354 {
355  m_outputFile->cd();
356  m_tree->Write();
357  m_outputFile->Close();
358 
359  if (c_addTree) {
360  //-------------------------------------------------------------------------------------------------//
361  //------------------------------------selected Tree storage--------------------------------------//
362  //-------------------------------------------------------------------------------------------------//
363  m_outputFileSel->cd();
364  m_treeSel->Write();
365  m_outputFileSel->Close();
366 
367 
368  //-------------------------------------------------------------------------------------------------//
369  //------------------------------------tight selected Tree storage--------------------------------------//
370  //-------------------------------------------------------------------------------------------------//
371  m_outputFileTiSel->cd();
372  m_treeTiSel->Write();
373  m_outputFileTiSel->Close();
374  }
375 
376 
377  //-------------------------------------------------------------------------------------------------//
378  //------------------------------------external Tree storage--------------------------------------//
379  //-------------------------------------------------------------------------------------------------//
380  m_outputFileExt->cd();
381  m_treeExt->Write();
382  m_outputFileExt->Close();
383 }
384 
std::vector< double > m_EmomentumEntryX
exteral momentum at entry point, coordinate x
Definition: HitXPModule.h:97
std::vector< int > m_EclusterV
external flag of v-cluster
Definition: HitXPModule.h:116
TFile * m_outputFile
output file
Definition: HitXPModule.h:67
std::vector< double > m_EomegaEntry
external omega parameter at entry point
Definition: HitXPModule.h:121
std::vector< hitXP > m_hitXPSel
selected vector of hitXP
Definition: HitXPModule.h:80
TTree * m_treeTiSel
tight selected output tree
Definition: HitXPModule.h:85
TTree * m_tree
full output tree
Definition: HitXPModule.h:66
std::vector< double > m_Etanlambda0
external tanlambda parameter at IP
Definition: HitXPModule.h:130
std::vector< double > m_EtanlambdaEntry
external tanlambda parameter at entry point
Definition: HitXPModule.h:129
TTree * m_treeExt
external output tree
Definition: HitXPModule.h:93
std::vector< int > m_EPDGID
external PDGID
Definition: HitXPModule.h:103
std::vector< int > m_EsensorLayer
external layer of the hit
Definition: HitXPModule.h:112
int m_Eprimary
external flag for primary particles
Definition: HitXPModule.h:131
std::vector< double > m_EmomentumEntryY
exteral momentum at entry point, coordinate x
Definition: HitXPModule.h:98
void initialize() override
Initialize the Module.
Definition: HitXPModule.cc:43
int m_eventNumberTiSel
tight selected interative number of the event in the run
Definition: HitXPModule.h:89
bool c_addTree
parameter to produce additional tree
Definition: HitXPModule.h:70
void event() override
This method is the core of the module.
Definition: HitXPModule.cc:154
TFile * m_outputFileSel
selected output file
Definition: HitXPModule.h:79
TTree * m_treeSel
selected output tree
Definition: HitXPModule.h:78
std::vector< double > m_EpositionLocalEntryZ
exteral local position at entry point, coordinate z
Definition: HitXPModule.h:102
std::vector< int > m_Ereconstructed
external flag of track-reconstruction or not
Definition: HitXPModule.h:114
std::vector< double > m_EmomentumEntryZ
exteral momentum at entry point, coordinate x
Definition: HitXPModule.h:99
std::vector< double > m_Etime
external time of the hit
Definition: HitXPModule.h:110
void endRun() override
This method is called if the current run ends.
Definition: HitXPModule.cc:353
std::vector< double > m_Ephi0Entry
external phi0 parameter at entry point
Definition: HitXPModule.h:125
std::vector< double > m_Ed00
external d0 parameter at IP
Definition: HitXPModule.h:124
std::vector< int > m_EsensorSensor
external sensor of the hit
Definition: HitXPModule.h:111
int m_trackNumberSel
selected iterative number of the track in the run
Definition: HitXPModule.h:81
void terminate() override
This method is called at the end of the event processing.
Definition: HitXPModule.cc:385
std::vector< double > m_Emomentum0X
extral momentum at IP, coordinate x
Definition: HitXPModule.h:107
std::vector< double > m_Eposition0X
extral position at IP, coordinate x
Definition: HitXPModule.h:104
std::vector< double > m_EpositionLocalEntryY
exteral local position at entry point, coordinate y
Definition: HitXPModule.h:101
int m_trackIterator
iterator used to count track (m_trackNumber)
Definition: HitXPModule.h:75
std::vector< int > m_EsensorLadder
external ladder of the hit
Definition: HitXPModule.h:113
std::vector< double > m_EpositionLocalEntryX
exteral local position at entry point, coordinate x
Definition: HitXPModule.h:100
std::vector< double > m_Emomentum0Y
extral momentum at IP, coordinate y
Definition: HitXPModule.h:108
std::vector< int > m_EclusterU
external flag of u-cluster
Definition: HitXPModule.h:115
int m_EeventNumber
external iterator of event in the run
Definition: HitXPModule.h:119
std::vector< double > m_EpositionEntryX
exteral position at entry point, coordinate x
Definition: HitXPModule.h:94
int m_numberHitPerTrackTiSel
tight selected counter of the number of the hit for each track
Definition: HitXPModule.h:90
std::vector< hitXP > m_hitXPTiSel
tight selected vector of hitXP
Definition: HitXPModule.h:87
int m_eventNumber
interative number of the event in the run
Definition: HitXPModule.h:73
int m_numberHitPerTrack
counter of the number of the hit for each track
Definition: HitXPModule.h:74
TFile * m_outputFileTiSel
tight selected output file
Definition: HitXPModule.h:86
void beginRun() override
Called when entering a new run.
Definition: HitXPModule.cc:152
int m_trackNumber
iterative number of the track in the run
Definition: HitXPModule.h:72
std::set< hitXP, hitXP::timeCompare > m_hitXPSet
set of the hitXP, used to order tn time he hit
Definition: HitXPModule.h:69
TFile * m_outputFileExt
external output file
Definition: HitXPModule.h:92
std::vector< double > m_EpositionEntryZ
exteral position at entry point, coordinate z
Definition: HitXPModule.h:96
int m_eventNumberSel
selected interative number of the event in the run
Definition: HitXPModule.h:82
std::vector< double > m_Emomentum0Z
extral momentum at IP, coordinate z
Definition: HitXPModule.h:109
int m_trackNumberTiSel
tight selected iterative number of the track in the run
Definition: HitXPModule.h:88
std::vector< double > m_Ephi00
external phi0 parameter at IP
Definition: HitXPModule.h:126
std::vector< double > m_Echarge
external charge
Definition: HitXPModule.h:117
int m_numberHitPerTrackSel
selected counter of the number of the hit for each track
Definition: HitXPModule.h:83
std::vector< hitXP > m_hitXP
vector of the hitXP, used to fill the output tree
Definition: HitXPModule.h:68
int m_EtrackNumber
external iterator of track in the run
Definition: HitXPModule.h:118
std::vector< double > m_EpositionEntryY
exteral position at entry point, coordinate y
Definition: HitXPModule.h:95
int m_eventIterator
iterator used to count event number (m_eventNumber)
Definition: HitXPModule.h:76
std::vector< double > m_Ed0Entry
external d0 parameter at entry point
Definition: HitXPModule.h:123
StoreArray< MCParticle > m_MCParticles
MCParticles StoreArray.
Definition: HitXPModule.h:133
std::vector< double > m_Ez00
external z0 parameter at IP
Definition: HitXPModule.h:128
std::vector< double > m_Eomega0
external omega parameter at IP
Definition: HitXPModule.h:122
std::vector< double > m_Eposition0Z
extral position at IP, coordinate z
Definition: HitXPModule.h:106
int m_EnumberHitPerTrack
external numer of the hit for each track
Definition: HitXPModule.h:120
std::vector< double > m_Eposition0Y
extral position at IP, coordinate y
Definition: HitXPModule.h:105
std::vector< double > m_Ez0Entry
external z0 parameter at entry point
Definition: HitXPModule.h:127
A Class to store the Monte Carlo particle information.
Definition: MCParticle.h:32
Base class for Modules.
Definition: Module.h:72
void setDescription(const std::string &description)
Sets the description of the module.
Definition: Module.cc:214
This is the Reconstruction Event-Data Model Track.
Definition: RecoTrack.h:79
Low-level class to create/modify relations between StoreArrays.
Definition: RelationArray.h:62
The SVD Cluster class This class stores all information about reconstructed SVD clusters.
Definition: SVDCluster.h:29
Class SVDTrueHit - Records of tracks that either enter or leave the sensitive volume.
Definition: SVDTrueHit.h:33
bool isRequired(const std::string &name="")
Ensure this array/object has been registered previously.
const SensorInfoBase & getSensorInfo(Belle2::VxdID id) const
Return a referecne to the SensorInfo of a given SensorID.
Definition: GeoCache.cc:67
static GeoCache & getInstance()
Return a reference to the singleton instance.
Definition: GeoCache.cc:214
Base class to provide Sensor Information for PXD and SVD.
Class to uniquely identify a any structure of the PXD and SVD.
Definition: VxdID.h:33
This class is the derivate of HitXP, and complete it with a constructor that use all other complex ty...
Definition: hitXPDerivate.h:27
REG_MODULE(arichBtest)
Register the Module.
void addParam(const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
Definition: Module.h:560
Abstract base class for different kinds of events.