17 #include "analysis/OrcaKinFit/SoftGaussMassConstraint.h"
18 #include "analysis/OrcaKinFit/ParticleFitObject.h"
19 #include <framework/logging/Logger.h>
32 namespace OrcaKinFit {
46 double totE[2] = {0, 0};
47 double totpx[2] = {0, 0};
48 double totpy[2] = {0, 0};
49 double totpz[2] = {0, 0};
50 for (
unsigned int i = 0; i <
fitobjects.size(); i++) {
51 int index = (
flags[i] == 1) ? 0 : 1;
57 double result = -
mass;
58 result +=
std::sqrt(std::abs(totE[0] * totE[0] - totpx[0] * totpx[0] - totpy[0] * totpy[0] - totpz[0] * totpz[0]));
59 result -=
std::sqrt(std::abs(totE[1] * totE[1] - totpx[1] * totpx[1] - totpy[1] * totpy[1] - totpz[1] * totpz[1]));
70 double totE[2] = {0, 0};
71 double totpx[2] = {0, 0};
72 double totpy[2] = {0, 0};
73 double totpz[2] = {0, 0};
74 bool valid[2] = {
false,
false};
75 for (
unsigned int i = 0; i <
fitobjects.size(); i++) {
76 int index = (
flags[i] == 1) ? 0 : 1;
84 double m_inv[2] = {0, 0};
85 for (
int index = 0; index < 2; ++index) {
86 m2[index] = totE[index] * totE[index] - totpx[index] * totpx[index]
87 - totpy[index] * totpy[index] - totpz[index] * totpz[index];
88 if (m2[index] < 0 && m2[index] > -1
E-9) m2[index] = 0;
89 if (m2[index] < 0 && valid[index]) {
90 B2ERROR(
"SoftGaussMassConstraint::getDerivatives: m2<0!");
91 for (
unsigned int j = 0; j <
fitobjects.size(); j++) {
92 int jndex = (
flags[j] == 1) ? 0 : 1;
98 B2ERROR(
"sum: E=" << totE[index] <<
", px=" << totpx[index]
99 <<
", py=" << totpy[index] <<
", pz=" << totpz[index] <<
", m2=" << m2[index]);
101 if (m2[index] != 0) m_inv[index] = 1 /
std::sqrt(std::abs(m2[index]));
104 for (
unsigned int i = 0; i <
fitobjects.size(); i++) {
105 int index = (
flags[i] == 1) ? 0 : 1;
106 for (
int ilocal = 0; ilocal <
fitobjects[i]->getNPar(); ilocal++) {
108 int iglobal =
fitobjects[i]->getGlobalParNum(ilocal);
109 assert(iglobal >= 0 && iglobal < idim);
110 if (m2[index] != 0) {
111 der[iglobal] = totE[index] *
fitobjects[i]->getDE(ilocal)
112 - totpx[index] *
fitobjects[i]->getDPx(ilocal)
113 - totpy[index] *
fitobjects[i]->getDPy(ilocal)
114 - totpz[index] *
fitobjects[i]->getDPz(ilocal);
115 der[iglobal] *= m_inv[index];
116 }
else der[iglobal] = 1;
117 if (index == 1) der[iglobal] *= -1.;
129 for (
unsigned int i = 0; i <
fitobjects.size(); i++) {
130 if (
flags[i] == flag) {
137 return std::sqrt(std::abs(totE * totE - totpx * totpx - totpy * totpy - totpz * totpz));
147 B2DEBUG(14,
"SoftGaussMassConstraint::secondDerivatives: i=" << i <<
", j=" << j);
148 int index = (
flags[i] == 1) ? 0 : 1;
149 int jndex = (
flags[j] == 1) ? 0 : 1;
150 if (index != jndex)
return false;
155 for (
unsigned int k = 0; k <
fitobjects.size(); ++k) {
156 int kndex = (
flags[k] == 1) ? 0 : 1;
159 if (index == kndex) {
161 totpx += fok->
getPx();
162 totpy += fok->
getPy();
163 totpz += fok->
getPz();
168 B2ERROR(
"SoftGaussMassConstraint::secondDerivatives: totE = " << totE);
171 double m2 = std::abs(totE * totE - totpx * totpx - totpy * totpy - totpz * totpz);
174 double minv3 = 1 / (m * m * m);
176 assert(dderivatives);
177 for (
int k = 0; k < 16; ++k) dderivatives[k] = 0;
178 dderivatives[4 * 0 + 0] = (m2 - totE * totE) * minv3;
179 dderivatives[4 * 0 + 1] = dderivatives[4 * 1 + 0] = totE * totpx * minv3;
180 dderivatives[4 * 0 + 2] = dderivatives[4 * 2 + 0] = totE * totpy * minv3;
181 dderivatives[4 * 0 + 3] = dderivatives[4 * 3 + 0] = totE * totpz * minv3;
182 dderivatives[4 * 1 + 1] = -(m2 + totpx * totpx) * minv3;
183 dderivatives[4 * 1 + 2] = dderivatives[4 * 2 + 1] = -totpx * totpy * minv3;
184 dderivatives[4 * 1 + 3] = dderivatives[4 * 3 + 1] = -totpx * totpz * minv3;
185 dderivatives[4 * 2 + 2] = -(m2 + totpy * totpy) * minv3;
186 dderivatives[4 * 2 + 3] = dderivatives[4 * 3 + 2] = -totpy * totpz * minv3;
187 dderivatives[4 * 3 + 3] = -(m2 + totpz * totpz) * minv3;
197 int index = (
flags[i] == 1) ? 0 : 1;
198 for (
unsigned int j = 0; j <
fitobjects.size(); ++j) {
199 int jndex = (
flags[j] == 1) ? 0 : 1;
202 if (index == jndex) {
204 totpx += foj->
getPx();
205 totpy += foj->
getPy();
206 totpz += foj->
getPz();
211 B2ERROR(
"SoftGaussMassConstraint::firstDerivatives: totE = " << totE);
214 double m =
std::sqrt(std::abs(totE * totE - totpx * totpx - totpy * totpy - totpz * totpz));
217 dderivatives[0] = totE / m;
218 dderivatives[1] = -totpx / m;
219 dderivatives[2] = -totpy / m;
220 dderivatives[3] = -totpz / m;
virtual const char * getName() const
Returns the name of the constraint.
virtual double getPx() const
Return px.
virtual double getPz() const
Return pz.
virtual double getPy() const
Return py.
virtual double getE() const
Return E.
virtual void getDerivatives(int idim, double der[]) const override
Get first order derivatives.
double mass
The mass difference between object sets 1 and 2.
virtual ~SoftGaussMassConstraint()
Virtual destructor.
virtual double getValue() const override
Returns the value of the constraint function.
virtual bool secondDerivatives(int i, int j, double *derivatives) const override
Second derivatives with respect to the 4-vectors of Fit objects i and j; result false if all derivati...
virtual void setMass(double mass_)
Sets the target mass of the constraint.
SoftGaussMassConstraint(double sigma_, double mass_=0.)
Constructor.
virtual double getMass(int flag=1)
Get the actual invariant mass of the fit objects with a given flag.
virtual bool firstDerivatives(int i, double *derivatives) const override
First derivatives with respect to the 4-vector of Fit objects i; result false if all derivatives are ...
Abstract base class for constraints of kinematic fits.
FitObjectContainer fitobjects
The FitObjectContainer.
std::vector< int > flags
The flags can be used to divide the FitObjectContainer into several subsets used for example to imple...
double sqrt(double a)
sqrt for double
Abstract base class for different kinds of events.