Belle II Software development
ECLDataAnalysisModule.cc
1/**************************************************************************
2 * basf2 (Belle II Analysis Software Framework) *
3 * Author: The Belle II Collaboration *
4 * *
5 * See git log for contributors and copyright holders. *
6 * This file is licensed under LGPL-3.0, see LICENSE.md. *
7 **************************************************************************/
8
9/* Own header. */
10#include <ecl/modules/eclDataAnalysis/ECLDataAnalysisModule.h>
11
12/* ECL headers. */
13#include <ecl/dataobjects/ECLCalDigit.h>
14#include <ecl/dataobjects/ECLConnectedRegion.h>
15#include <ecl/dataobjects/ECLDigit.h>
16#include <ecl/dataobjects/ECLHit.h>
17#include <ecl/dataobjects/ECLLocalMaximum.h>
18#include <ecl/dataobjects/ECLPidLikelihood.h>
19#include <ecl/dataobjects/ECLShower.h>
20#include <ecl/dataobjects/ECLSimHit.h>
21
22/* Basf2 headers. */
23#include <framework/dataobjects/EventMetaData.h>
24#include <framework/datastore/RelationVector.h>
25#include <framework/gearbox/Const.h>
26#include <framework/logging/Logger.h>
27#include <mdst/dataobjects/ECLCluster.h>
28#include <mdst/dataobjects/EventLevelClusteringInfo.h>
29#include <mdst/dataobjects/MCParticle.h>
30#include <mdst/dataobjects/Track.h>
31
32/* ROOT headers. */
33#include <TFile.h>
34#include <TMath.h>
35#include <TTree.h>
36
37using namespace std;
38using namespace Belle2;
39
40//-----------------------------------------------------------------
41// Register the Module
42//-----------------------------------------------------------------
43
44REG_MODULE(ECLDataAnalysis);
45
46//-----------------------------------------------------------------
47// Implementation
48//-----------------------------------------------------------------
49
51 : Module(),
52 m_rootFilePtr(0),
53 m_writeToRoot(1),
54 m_doTracking(0),
55 m_eclSimHits(eclSimHitArrayName()),
56 m_eclHits(eclHitArrayName()),
57 m_eclDigits(eclDigitArrayName()),
58 m_eclCalDigits(eclCalDigitArrayName()),
59 m_eclConnectedRegions(eclConnectedRegionArrayName()),
60 m_eclShowers(eclShowerArrayName()),
61 m_eclClusters(eclClusterArrayName()),
62 m_eclLocalMaximums(eclLocalMaximumArrayName()),
63 m_eclPureDigits(eclPureDigitArrayName()),
64 m_eclPureCalDigits(eclPureCalDigitArrayName()),
65 m_eclPureConnectedRegions(eclPureConnectedRegionArrayName()),
66 m_eclPureShowers(eclPureShowerArrayName()),
67 m_eclPureClusters(eclPureClusterArrayName()),
68 m_eclPureLocalMaximums(eclPureLocalMaximumArrayName()),
69 m_tree(0),
70 m_iExperiment(0),
71 m_iRun(0),
72 m_iEvent(0),
73//Digit
74 m_eclDigitMultip(0),
75 m_eclDigitIdx(0),
76 m_eclDigitToMC(0),
77 m_eclDigitCellId(0),
78 m_eclDigitAmp(0),
79 m_eclDigitTimeFit(0),
80 m_eclDigitFitQuality(0),
81 m_eclDigitToCalDigit(0),
82//CalDigit
83 m_eclCalDigitMultip(0),
84 m_eclCalDigitIdx(0),
85 m_eclCalDigitToMC1(0),
86 m_eclCalDigitToMC1PDG(0),
87 m_eclCalDigitToMCWeight1(0),
88 m_eclCalDigitToMC2(0),
89 m_eclCalDigitToMC2PDG(0),
90 m_eclCalDigitToMCWeight2(0),
91 m_eclCalDigitToMC3(0),
92 m_eclCalDigitToMC3PDG(0),
93 m_eclCalDigitToMCWeight3(0),
94 m_eclCalDigitToMC4(0),
95 m_eclCalDigitToMC4PDG(0),
96 m_eclCalDigitToMCWeight4(0),
97 m_eclCalDigitToMC5(0),
98 m_eclCalDigitToMC5PDG(0),
99 m_eclCalDigitToMCWeight5(0),
100 m_eclCalDigitToBkgWeight(0),
101 m_eclCalDigitSimHitSum(0),
102 m_eclCalDigitToShower(0),
103 m_eclCalDigitCellId(0),
104 m_eclCalDigitAmp(0),
105 m_eclCalDigitTimeFit(0),
106 m_eclCalDigitFitQuality(0),
107 m_eclCalDigitToCR(0),
108 m_eclCalDigitToLM(0),
109//Connected Region
110 m_eclCRIdx(0),
111 m_eclCRIsTrack(0),
112 m_eclCRLikelihoodMIPNGamma(0),
113 m_eclCRLikelihoodChargedHadron(0),
114 m_eclCRLikelihoodElectronNGamma(0),
115 m_eclCRLikelihoodNGamma(0),
116 m_eclCRLikelihoodNeutralHadron(0),
117 m_eclCRLikelihoodMergedPi0(0),
118//Local Maxima
119 m_eclLMMultip(0),
120 m_eclLMId(0),
121 m_eclLMType(0),
122 m_eclLMCellId(0),
123//SimHit
124 m_eclSimHitMultip(0),
125 m_eclSimHitIdx(0),
126 m_eclSimHitToMC(0),
127 m_eclSimHitCellId(0),
128 m_eclSimHitPdg(0),
129 m_eclSimHitEnergyDep(0),
130 m_eclSimHitFlightTime(0),
131 m_eclSimHitX(0),
132 m_eclSimHitY(0),
133 m_eclSimHitZ(0),
134 m_eclSimHitPx(0),
135 m_eclSimHitPy(0),
136 m_eclSimHitPz(0),
137//Hit
138 m_eclHitMultip(0),
139 m_eclHitIdx(0),
140 m_eclHitToMC(0),
141 m_eclHitToDigit(0),
142 m_eclHitToDigitAmp(0),
143 m_eclHitToPureDigit(0),
144 m_eclHitToPureDigitAmp(0),
145 m_eclHitCellId(0),
146 m_eclHitEnergyDep(0),
147 m_eclHitTimeAve(0),
148//Cluster
149 m_eclClusterMultip(0),
150 m_eclClusterTrueMultip(0),
151 m_eclClusterGammaMultip(0),
152 m_eclClusterIdx(0),
153 m_eclClusterToMC1(0),
154 m_eclClusterToMCWeight1(0),
155 m_eclClusterToMC1PDG(0),
156 m_eclClusterToMC2(0),
157 m_eclClusterToMCWeight2(0),
158 m_eclClusterToMC2PDG(0),
159 m_eclClusterToMC3(0),
160 m_eclClusterToMCWeight3(0),
161 m_eclClusterToMC3PDG(0),
162 m_eclClusterToMC4(0),
163 m_eclClusterToMCWeight4(0),
164 m_eclClusterToMC4PDG(0),
165 m_eclClusterToMC5(0),
166 m_eclClusterToMCWeight5(0),
167 m_eclClusterToMC5PDG(0),
168 m_eclClusterToBkgWeight(0),
169 m_eclClusterSimHitSum(0),
170 m_eclClusterToShower(0),
171 m_eclClusterEnergy(0),
172 m_eclClusterEnergyError(0),
173 m_eclClusterTheta(0),
174 m_eclClusterThetaError(0),
175 m_eclClusterPhi(0),
176 m_eclClusterPhiError(0),
177 m_eclClusterR(0),
178 m_eclClusterEnergyDepSum(0),
179 m_eclClusterTiming(0),
180 m_eclClusterTimingError(0),
181 m_eclClusterE9oE21(0),
182 m_eclClusterHighestE(0),
183 m_eclClusterCellId(0),
184 m_eclClusterNofCrystals(0),
185 m_eclClusterCrystalHealth(0),
186 m_eclClusterIsTrack(0),
187 m_eclClusterClosestTrackDist(0),
188 m_eclClusterDeltaL(0),
189 m_eclClusterAbsZernike40(0),
190 m_eclClusterAbsZernike51(0),
191 m_eclClusterZernikeMVA(0),
192 m_eclClusterE1oE9(0),
193 m_eclClusterSecondMoment(0),
194 m_eclClusterLAT(0),
195 m_eclClusterDeltaTime99(0),
196 m_eclClusterDetectorRegion(0),
197 m_eclClusterHasNPhotonHypothesis(0),
198 m_eclClusterHasNeutralHadronHypothesis(0),
199
200//PureDigits
201 m_eclPureDigitMultip(0),
202 m_eclPureDigitIdx(0),
203 m_eclPureDigitToMC(0),
204 m_eclPureDigitCellId(0),
205 m_eclPureDigitAmp(0),
206 m_eclPureDigitTimeFit(0),
207 m_eclPureDigitFitQuality(0),
208 m_eclPureDigitToCluster(0),
209//PureCalDigit
210 m_eclPureCalDigitMultip(0),
211 m_eclPureCalDigitIdx(0),
212 m_eclPureCalDigitToMC1(0),
213 m_eclPureCalDigitToMC1PDG(0),
214 m_eclPureCalDigitToMCWeight1(0),
215 m_eclPureCalDigitToMC2(0),
216 m_eclPureCalDigitToMC2PDG(0),
217 m_eclPureCalDigitToMCWeight2(0),
218 m_eclPureCalDigitToMC3(0),
219 m_eclPureCalDigitToMC3PDG(0),
220 m_eclPureCalDigitToMCWeight3(0),
221 m_eclPureCalDigitToMC4(0),
222 m_eclPureCalDigitToMC4PDG(0),
223 m_eclPureCalDigitToMCWeight4(0),
224 m_eclPureCalDigitToMC5(0),
225 m_eclPureCalDigitToMC5PDG(0),
226 m_eclPureCalDigitToMCWeight5(0),
227 m_eclPureCalDigitToBkgWeight(0),
228 m_eclPureCalDigitSimHitSum(0),
229 m_eclPureCalDigitToShower(0),
230 m_eclPureCalDigitCellId(0),
231 m_eclPureCalDigitAmp(0),
232 m_eclPureCalDigitTimeFit(0),
233 m_eclPureCalDigitFitQuality(0),
234 m_eclPureCalDigitToCR(0),
235 m_eclPureCalDigitToLM(0),
236//Connected Region
237 m_eclPureCRIdx(0),
238 m_eclPureCRIsTrack(0),
239 m_eclPureCRLikelihoodMIPNGamma(0),
240 m_eclPureCRLikelihoodChargedHadron(0),
241 m_eclPureCRLikelihoodElectronNGamma(0),
242 m_eclPureCRLikelihoodNGamma(0),
243 m_eclPureCRLikelihoodNeutralHadron(0),
244 m_eclPureCRLikelihoodMergedPi0(0),
245//Local Maxima
246 m_eclPureLMMultip(0),
247 m_eclPureLMId(0),
248 m_eclPureLMType(0),
249 m_eclPureLMCellId(0),
250//PureCluster
251 m_eclPureClusterMultip(0),
252 m_eclPureClusterIdx(0),
253 m_eclPureClusterToMC1(0),
254 m_eclPureClusterToMCWeight1(0),
255 m_eclPureClusterToMC1PDG(0),
256 m_eclPureClusterToMC2(0),
257 m_eclPureClusterToMCWeight2(0),
258 m_eclPureClusterToMC2PDG(0),
259 m_eclPureClusterToMC3(0),
260 m_eclPureClusterToMCWeight3(0),
261 m_eclPureClusterToMC3PDG(0),
262 m_eclPureClusterToMC4(0),
263 m_eclPureClusterToMCWeight4(0),
264 m_eclPureClusterToMC4PDG(0),
265 m_eclPureClusterToMC5(0),
266 m_eclPureClusterToMCWeight5(0),
267 m_eclPureClusterToMC5PDG(0),
268 m_eclPureClusterToBkgWeight(0),
269 m_eclPureClusterEnergy(0),
270 m_eclPureClusterEnergyError(0),
271 m_eclPureClusterTheta(0),
272 m_eclPureClusterThetaError(0),
273 m_eclPureClusterPhi(0),
274 m_eclPureClusterPhiError(0),
275 m_eclPureClusterR(0),
276 m_eclPureClusterEnergyDepSum(0),
277 m_eclPureClusterTiming(0),
278 m_eclPureClusterTimingError(0),
279 m_eclPureClusterE9oE21(0),
280 m_eclPureClusterHighestE(0),
281 m_eclPureClusterCellId(0),
282 m_eclPureClusterLat(0),
283 m_eclPureClusterNofCrystals(0),
284 m_eclPureClusterCrystalHealth(0),
285 m_eclPureClusterIsTrack(0),
286 m_eclPureClusterDeltaL(0),
287 m_eclPureClusterClosestTrackDist(0),
288 m_eclPureClusterAbsZernike40(0),
289 m_eclPureClusterAbsZernike51(0),
290 m_eclPureClusterZernikeMVA(0),
291 m_eclPureClusterSecondMoment(0),
292 m_eclPureClusterE1oE9(0),
293 m_eclPureClusterDeltaTime99(0),
294 m_eclPureClusterDetectorRegion(0),
295 m_eclPureClusterHasNPhotonHypothesis(0),
296 m_eclPureClusterHasNeutralHadronHypothesis(0),
297
298//Shower
299 m_eclShowerMultip(0),
300 m_eclShowerIdx(0),
301 m_eclShowerToMC1(0),
302 m_eclShowerToMCWeight1(0),
303 m_eclShowerToMC1PDG(0),
304 m_eclShowerToMC1Moth(0),
305 m_eclShowerToMC1MothPDG(0),
306 m_eclShowerToMC1GMoth(0),
307 m_eclShowerToMC1GMothPDG(0),
308 m_eclShowerToMC2(0),
309 m_eclShowerToMCWeight2(0),
310 m_eclShowerToMC2PDG(0),
311 m_eclShowerToMC2Moth(0),
312 m_eclShowerToMC2MothPDG(0),
313 m_eclShowerToMC2GMoth(0),
314 m_eclShowerToMC2GMothPDG(0),
315 m_eclShowerToMC3(0),
316 m_eclShowerToMCWeight3(0),
317 m_eclShowerToMC3PDG(0),
318 m_eclShowerToMC3Moth(0),
319 m_eclShowerToMC3MothPDG(0),
320 m_eclShowerToMC3GMoth(0),
321 m_eclShowerToMC3GMothPDG(0),
322 m_eclShowerToMC4(0),
323 m_eclShowerToMCWeight4(0),
324 m_eclShowerToMC4PDG(0),
325 m_eclShowerToMC4Moth(0),
326 m_eclShowerToMC4MothPDG(0),
327 m_eclShowerToMC4GMoth(0),
328 m_eclShowerToMC4GMothPDG(0),
329 m_eclShowerToMC5(0),
330 m_eclShowerToMCWeight5(0),
331 m_eclShowerToMC5PDG(0),
332 m_eclShowerToMC5Moth(0),
333 m_eclShowerToMC5MothPDG(0),
334 m_eclShowerToMC5GMoth(0),
335 m_eclShowerToMC5GMothPDG(0),
336 m_eclShowerToBkgWeight(0),
337 m_eclShowerToLM1(0),
338 m_eclShowerToLM2(0),
339 m_eclShowerToLM3(0),
340 m_eclShowerToLM4(0),
341 m_eclShowerToLM5(0),
342 m_eclShowerSimHitSum(0),
343 m_eclShowerUncEnergy(0),
344 m_eclShowerEnergy(0),
345 m_eclShowerTheta(0),
346 m_eclShowerPhi(0),
347 m_eclShowerR(0),
348 m_eclShowerNHits(0),
349 m_eclShowerE9oE21(0),
350 m_eclShowerTime(0),
351 m_eclShowerT99(0),
352 m_eclShowerConnectedRegionId(0),
353 m_eclShowerHypothesisId(0),
354 m_eclShowerCentralCellId(0),
355 m_eclShowerEnergyError(0),
356 m_eclShowerThetaError(0),
357 m_eclShowerPhiError(0),
358 m_eclShowerTimeResolution(0),
359 m_eclShowerHighestEnergy(0),
360 m_eclShowerLateralEnergy(0),
361 m_eclShowerMinTrkDistance(0),
362 m_eclShowerTrkDepth(0),
363 m_eclShowerShowerDepth(0),
364 m_eclShowerAbsZernike40(0),
365 m_eclShowerAbsZernike51(0),
366 m_eclShowerZernikeMVA(0),
367 m_eclShowerSecondMoment(0),
368 m_eclShowerE1oE9(0),
369 m_eclShowerIsTrack(0),
370 m_eclShowerIsCluster(0),
371 m_eclShowerMCVtxInEcl(0),
372 m_eclShowerMCFlightMatch(0),
373 m_eclShowerMCFFlightMatch(0),
374 m_eclShowerHighestE1mE2(0),
375 m_eclShowerNumberOfCrystalsForEnergy(0),
376//MC
377 m_mcMultip(0),
378 m_mcIdx(0),
379 m_mcPdg(0),
380 m_mcMothPdg(0),
381 m_mcGMothPdg(0),
382 m_mcGGMothPdg(0),
383 m_mcEnergy(0),
384 m_mcPx(0),
385 m_mcPy(0),
386 m_mcPz(0),
387 m_mcDecayVtxX(0),
388 m_mcDecayVtxY(0),
389 m_mcDecayVtxZ(0),
390 m_mcProdVtxX(0),
391 m_mcProdVtxY(0),
392 m_mcProdVtxZ(0),
393 m_mcSecondaryPhysProc(0),
394//Tracks
395 m_trkMultip(0),
396 m_trkPdg(0),
397 m_trkIdx(0),
398 m_trkCharge(0),
399 m_trkPx(0),
400 m_trkPy(0),
401 m_trkPz(0),
402 m_trkP(0),
403 m_trkTheta(0),
404 m_trkPhi(0),
405 m_trkX(0),
406 m_trkY(0),
407 m_trkZ(0),
408//PID
409 m_eclpidtrkIdx(0),
410 m_eclpidEnergy(0),
411 m_eclpidEop(0),
412 m_eclpidE9E21(0),
413 m_eclpidNCrystals(0),
414 m_eclpidNClusters(0),
415 m_eclLogLikeEl(0),
416 m_eclLogLikeMu(0),
417 m_eclLogLikePi(0)
418
419{
420 //Set module properties
421 setDescription("This module produces an ntuple with ECL-related quantities starting from mdst");
422 addParam("writeToRoot", m_writeToRoot,
423 "set true if you want to save the information in a root file named by parameter 'rootFileName'", bool(true));
424 addParam("rootFileName", m_rootFileName,
425 "fileName used for root file where info are saved. Will be ignored if parameter 'writeToRoot' is false (standard)",
426 string("eclDataAnalysis"));
427 addParam("doTracking", m_doTracking, "set true if you want to save the information from TrackFitResults'rootFileName'",
428 bool(false));
429 addParam("doHits", m_doHits, "set true if you want to save the Hit and SimHit informations'", bool(false));
430 addParam("doDigits", m_doDigits, "set true if you want to save the Digits and CalDigits informations'", bool(false));
431 addParam("doPureCsI", m_doPureCsI, "set true if you want to save the information for upgrade option'", bool(false));
432
433}
434
436{
437}
438
439
441{
442
443 B2INFO("[ECLDataAnalysis Module]: Starting initialization of ECLDataAnalysis Module.");
444
445 m_eventLevelClusteringInfo.registerInDataStore();
446
447 m_eclSimHits.registerInDataStore(eclSimHitArrayName());
448 m_eclHits.registerInDataStore(eclHitArrayName());
449
450 m_eclDigits.registerInDataStore(eclDigitArrayName());
451 m_eclCalDigits.registerInDataStore(eclCalDigitArrayName());
453 m_eclShowers.registerInDataStore(eclShowerArrayName());
454 m_eclClusters.registerInDataStore(eclClusterArrayName());
455 m_eclLocalMaximums.registerInDataStore(eclLocalMaximumArrayName());
456
457 m_eclCalDigits.registerRelationTo(m_mcParticles);
458 m_eclDigits.registerRelationTo(m_mcParticles);
459 m_eclShowers.registerRelationTo(m_mcParticles);
460 m_eclClusters.registerRelationTo(m_mcParticles);
461
462 if (m_doPureCsI == 1) {
463 m_eclPureDigits.registerInDataStore(eclPureDigitArrayName());
464 m_eclPureCalDigits.registerInDataStore(eclPureCalDigitArrayName());
466 m_eclPureShowers.registerInDataStore(eclPureShowerArrayName());
467 m_eclPureClusters.registerInDataStore(eclPureClusterArrayName());
469
470 m_eclPureCalDigits.registerRelationTo(m_mcParticles);
471 m_eclPureDigits.registerRelationTo(m_mcParticles);
472 m_eclPureShowers.registerRelationTo(m_mcParticles);
473 m_eclPureClusters.registerRelationTo(m_mcParticles);
474 }
475
476 if (m_doTracking == true) {
477 m_tracks.isRequired();
478 m_trackFitResults.isRequired();
479 m_eclPidLikelihoods.isRequired();
480 }
481
482 if (m_writeToRoot == true) {
483 m_rootFilePtr = new TFile(m_rootFileName.c_str(), "RECREATE");
484 } else
485 m_rootFilePtr = nullptr;
486
487 // initialize tree
488 m_tree = new TTree("m_tree", "ECL Analysis tree");
489
490 m_tree->Branch("expNo", &m_iExperiment, "expNo/I");
491 m_tree->Branch("runNo", &m_iRun, "runNo/I");
492 m_tree->Branch("evtNo", &m_iEvent, "evtNo/I");
493
494 //EventLevelClusteringInfo
495 m_tree->Branch("eclNumOutOfTimeDigitsFwd", &m_nECLCalDigitsOutOfTimeFWD, "eclNumOutOfTimeDigitsFwd/s");
496 m_tree->Branch("eclNumOutOfTimeDigitsBrl", &m_nECLCalDigitsOutOfTimeBarrel, "eclNumOutOfTimeDigitsBrl/s");
497 m_tree->Branch("eclNumOutOfTimeDigitsBwd", &m_nECLCalDigitsOutOfTimeBWD, "eclNumOutOfTimeDigitsBwd/s");
498 m_tree->Branch("eclNumRejectedShowersFwd", &m_nECLShowersRejectedFWD, "eclNumRejectedShowersFwd/b");
499 m_tree->Branch("eclNumRejectedShowersBrl", &m_nECLShowersRejectedBarrel, "eclNumRejectedShowersBrl/b");
500 m_tree->Branch("eclNumRejectedShowersBwd", &m_nECLShowersRejectedBWD, "eclNumRejectedShowersBwd/b");
501
502 if (m_doDigits == 1) {
503 m_tree->Branch("eclDigitMultip", &m_eclDigitMultip, "ecldigit_Multip/I");
504 m_tree->Branch("eclDigitIdx", "std::vector<int>", &m_eclDigitIdx);
505 m_tree->Branch("eclDigitToMC", "std::vector<int>", &m_eclDigitToMC);
506 m_tree->Branch("eclDigitCellId", "std::vector<int>", &m_eclDigitCellId);
507 m_tree->Branch("eclDigitAmp", "std::vector<int>", &m_eclDigitAmp);
508 m_tree->Branch("eclDigitTimeFit", "std::vector<int>", &m_eclDigitTimeFit);
509 m_tree->Branch("eclDigitFitQuality", "std::vector<int>", &m_eclDigitFitQuality);
510 m_tree->Branch("eclDigitToCalDigit", "std::vector<int>", &m_eclDigitToCalDigit);
511
512 m_tree->Branch("eclCalDigitMultip", &m_eclCalDigitMultip, "eclCaldigit_Multip/I");
513 m_tree->Branch("eclCalDigitIdx", "std::vector<int>", &m_eclCalDigitIdx);
514 m_tree->Branch("eclCalDigitToMC1", "std::vector<int>", &m_eclCalDigitToMC1);
515 m_tree->Branch("eclCalDigitToMC1PDG", "std::vector<int>", &m_eclCalDigitToMC1PDG);
516 m_tree->Branch("eclCalDigitToMCWeight1", "std::vector<double>", &m_eclCalDigitToMCWeight1);
517 m_tree->Branch("eclCalDigitToMC2", "std::vector<int>", &m_eclCalDigitToMC2);
518 m_tree->Branch("eclCalDigitToMC2PDG", "std::vector<int>", &m_eclCalDigitToMC2PDG);
519 m_tree->Branch("eclCalDigitToMCWeight2", "std::vector<double>", &m_eclCalDigitToMCWeight2);
520 m_tree->Branch("eclCalDigitToMC3", "std::vector<int>", &m_eclCalDigitToMC3);
521 m_tree->Branch("eclCalDigitToMC3PDG", "std::vector<int>", &m_eclCalDigitToMC3PDG);
522 m_tree->Branch("eclCalDigitToMCWeight3", "std::vector<double>", &m_eclCalDigitToMCWeight3);
523 m_tree->Branch("eclCalDigitToMC4", "std::vector<int>", &m_eclCalDigitToMC4);
524 m_tree->Branch("eclCalDigitToMC4PDG", "std::vector<int>", &m_eclCalDigitToMC4PDG);
525 m_tree->Branch("eclCalDigitToMCWeight4", "std::vector<double>", &m_eclCalDigitToMCWeight4);
526 m_tree->Branch("eclCalDigitToMC5", "std::vector<int>", &m_eclCalDigitToMC5);
527 m_tree->Branch("eclCalDigitToMC5PDG", "std::vector<int>", &m_eclCalDigitToMC5PDG);
528 m_tree->Branch("eclCalDigitToMCWeight5", "std::vector<double>", &m_eclCalDigitToMCWeight5);
529 m_tree->Branch("eclCalDigitToBkgWeight", "std::vector<double>", &m_eclCalDigitToBkgWeight);
530 m_tree->Branch("eclCalDigitSimHitSum", "std::vector<double>", &m_eclCalDigitSimHitSum);
531 m_tree->Branch("eclCalDigitToShower", "std::vector<int>", &m_eclCalDigitToShower);
532 m_tree->Branch("eclCalDigitCellId", "std::vector<int>", &m_eclCalDigitCellId);
533 m_tree->Branch("eclCalDigitAmp", "std::vector<double>", &m_eclCalDigitAmp);
534 m_tree->Branch("eclCalDigitTimeFit", "std::vector<double>", &m_eclCalDigitTimeFit);
535 m_tree->Branch("eclCalDigitFitQuality", "std::vector<int>", &m_eclCalDigitFitQuality);
536 m_tree->Branch("eclCalDigitToCR", "std::vector<int>", &m_eclCalDigitToCR);
537 m_tree->Branch("eclCalDigitToLM", "std::vector<int>", &m_eclCalDigitToLM);
538 }
539
540 m_tree->Branch("eclCRIdx", "std::vector<int>", &m_eclCRIdx);
541 m_tree->Branch("eclCRIsTrack", "std::vector<int>", &m_eclCRIsTrack);
542 m_tree->Branch("eclCRLikelihoodMIPNGamma", "std::vector<double>", &m_eclCRLikelihoodMIPNGamma);
543 m_tree->Branch("eclCRLikelihoodChargedHadron", "std::vector<double>", &m_eclCRLikelihoodChargedHadron);
544 m_tree->Branch("eclCRLikelihoodElectronNGamma", "std::vector<double>", &m_eclCRLikelihoodElectronNGamma);
545 m_tree->Branch("eclCRLikelihoodNGamma", "std::vector<double>", &m_eclCRLikelihoodNGamma);
546 m_tree->Branch("eclCRLikelihoodNeutralHadron", "std::vector<double>", &m_eclCRLikelihoodNeutralHadron);
547 m_tree->Branch("eclCRLikelihoodMergedPi0", "std::vector<double>", &m_eclCRLikelihoodMergedPi0);
548
549 if (m_doHits == 1) {
550 m_tree->Branch("eclSimHitMultip", &m_eclSimHitMultip, "eclSimHitMultip/I");
551 m_tree->Branch("eclSimHitIdx", "std::vector<int>", &m_eclSimHitIdx);
552 m_tree->Branch("eclSimHitToMC", "std::vector<int>", &m_eclSimHitToMC);
553 m_tree->Branch("eclSimHitCellId", "std::vector<int>", &m_eclSimHitCellId);
554 m_tree->Branch("eclSimHitPdg", "std::vector<int>", &m_eclSimHitPdg);
555 m_tree->Branch("eclSimHitEnergyDep", "std::vector<double>", &m_eclSimHitEnergyDep);
556 m_tree->Branch("eclSimHitFlightTime", "std::vector<double>", &m_eclSimHitFlightTime);
557 m_tree->Branch("eclSimHitX", "std::vector<double>", &m_eclSimHitX);
558 m_tree->Branch("eclSimHitY", "std::vector<double>", &m_eclSimHitY);
559 m_tree->Branch("eclSimHitZ", "std::vector<double>", &m_eclSimHitZ);
560 m_tree->Branch("eclSimHitPx", "std::vector<double>", &m_eclSimHitPx);
561 m_tree->Branch("eclSimHitPy", "std::vector<double>", &m_eclSimHitPy);
562 m_tree->Branch("eclSimHitPz", "std::vector<double>", &m_eclSimHitPz);
563
564 m_tree->Branch("eclHitMultip", &m_eclHitMultip, "eclHitMultip/I");
565 m_tree->Branch("eclHitIdx", "std::vector<int>", &m_eclHitIdx);
566 m_tree->Branch("eclHitToMC", "std::vector<int>", &m_eclHitToMC);
567 m_tree->Branch("eclHitToDigit", "std::vector<int>", &m_eclHitToDigit);
568 m_tree->Branch("eclHitToDigitAmp", "std::vector<int>", &m_eclHitToDigitAmp);
569 m_tree->Branch("eclHitCellId", "std::vector<int>", &m_eclHitCellId);
570 m_tree->Branch("eclHitEnergyDep", "std::vector<double>", &m_eclHitEnergyDep);
571 m_tree->Branch("eclHitTimeAve", "std::vector<double>", &m_eclHitTimeAve);
572 }
573
574 m_tree->Branch("eclLMMultip", &m_eclLMMultip, "eclLMMultip/I");
575 m_tree->Branch("eclLMId", "std::vector<int>", &m_eclLMId);
576 m_tree->Branch("eclLMType", "std::vector<int>", &m_eclLMType);
577 m_tree->Branch("eclLMCellId", "std::vector<int>", &m_eclLMCellId);
578
579 m_tree->Branch("eclClusterMultip", &m_eclClusterMultip, "eclClusterMultip/I");
580 m_tree->Branch("eclClusterTrueMultip", &m_eclClusterTrueMultip, "eclClusterTrueMultip/I");
581 m_tree->Branch("eclClusterGammaMultip", &m_eclClusterGammaMultip, "eclClusterGammaMultip/I");
582 m_tree->Branch("eclClusterIdx", "std::vector<int>", &m_eclClusterIdx);
583 m_tree->Branch("eclClusterToMC1", "std::vector<int>", &m_eclClusterToMC1);
584 m_tree->Branch("eclClusterToMCWeight1", "std::vector<double>", &m_eclClusterToMCWeight1);
585 m_tree->Branch("eclClusterToMC1PDG", "std::vector<int>", &m_eclClusterToMC1PDG);
586 m_tree->Branch("eclClusterToMC2", "std::vector<int>", &m_eclClusterToMC2);
587 m_tree->Branch("eclClusterToMCWeight2", "std::vector<double>", &m_eclClusterToMCWeight2);
588 m_tree->Branch("eclClusterToMC2PDG", "std::vector<int>", &m_eclClusterToMC2PDG);
589 m_tree->Branch("eclClusterToMC3", "std::vector<int>", &m_eclClusterToMC3);
590 m_tree->Branch("eclClusterToMCWeight3", "std::vector<double>", &m_eclClusterToMCWeight3);
591 m_tree->Branch("eclClusterToMC3PDG", "std::vector<int>", &m_eclClusterToMC3PDG);
592 m_tree->Branch("eclClusterToMC4", "std::vector<int>", &m_eclClusterToMC4);
593 m_tree->Branch("eclClusterToMCWeight4", "std::vector<double>", &m_eclClusterToMCWeight4);
594 m_tree->Branch("eclClusterToMC4PDG", "std::vector<int>", &m_eclClusterToMC4PDG);
595 m_tree->Branch("eclClusterToMC5", "std::vector<int>", &m_eclClusterToMC5);
596 m_tree->Branch("eclClusterToMCWeight5", "std::vector<double>", &m_eclClusterToMCWeight5);
597 m_tree->Branch("eclClusterToMC5PDG", "std::vector<int>", &m_eclClusterToMC5PDG);
598 m_tree->Branch("eclClusterToBkgWeight", "std::vector<double>", &m_eclClusterToBkgWeight);
599 m_tree->Branch("eclClusterSimHitSum", "std::vector<double>", &m_eclClusterSimHitSum);
600 m_tree->Branch("eclClusterToShower", "std::vector<int>", &m_eclClusterToShower);
601 m_tree->Branch("eclClusterEnergy", "std::vector<double>", &m_eclClusterEnergy);
602 m_tree->Branch("eclClusterEnergyError", "std::vector<double>", &m_eclClusterEnergyError);
603 m_tree->Branch("eclClusterTheta", "std::vector<double>", &m_eclClusterTheta);
604 m_tree->Branch("eclClusterThetaError", "std::vector<double>", &m_eclClusterThetaError);
605 m_tree->Branch("eclClusterPhi", "std::vector<double>", &m_eclClusterPhi);
606 m_tree->Branch("eclClusterPhiError", "std::vector<double>", &m_eclClusterPhiError);
607 m_tree->Branch("eclClusterR", "std::vector<double>", &m_eclClusterR);
608 m_tree->Branch("eclClusterEnergyDepSum", "std::vector<double>", &m_eclClusterEnergyDepSum);
609 m_tree->Branch("eclClusterTiming", "std::vector<double>", &m_eclClusterTiming);
610 m_tree->Branch("eclClusterTimingError", "std::vector<double>", &m_eclClusterTimingError);
611 m_tree->Branch("eclClusterE9oE21", "std::vector<double>", &m_eclClusterE9oE21);
612 m_tree->Branch("eclClusterHighestE", "std::vector<double>", &m_eclClusterHighestE);
613 m_tree->Branch("eclClusterCellId", "std::vector<int>", &m_eclClusterCellId);
614 m_tree->Branch("eclClusterNofCrystals", "std::vector<int>", &m_eclClusterNofCrystals);
615 m_tree->Branch("eclClusterCrystalHealth", "std::vector<int>", &m_eclClusterCrystalHealth);
616 m_tree->Branch("eclClusterIsTrack", "std::vector<bool>", &m_eclClusterIsTrack);
617 m_tree->Branch("eclClusterClosestTrackDist", "std::vector<double>", &m_eclClusterClosestTrackDist);
618 m_tree->Branch("eclClusterDeltaL", "std::vector<double>", &m_eclClusterDeltaL);
619 m_tree->Branch("eclClusterAbsZernike40", "std::vector<double>", &m_eclClusterAbsZernike40);
620 m_tree->Branch("eclClusterAbsZernike51", "std::vector<double>", &m_eclClusterAbsZernike51);
621 m_tree->Branch("eclClusterZernikeMVA", "std::vector<double>", &m_eclClusterZernikeMVA);
622 m_tree->Branch("eclClusterE1oE9", "std::vector<double>", &m_eclClusterE1oE9);
623 m_tree->Branch("eclClusterSecondMoment", "std::vector<double>", &m_eclClusterSecondMoment);
624 m_tree->Branch("eclClusterLAT", "std::vector<double>", &m_eclClusterLAT);
625 m_tree->Branch("eclClusterDeltaTime99", "std::vector<double>", &m_eclClusterDeltaTime99);
626 m_tree->Branch("eclClusterDetectorRegion", "std::vector<int>", &m_eclClusterDetectorRegion);
627 m_tree->Branch("eclClusterHasNPhotonHypothesis", "std::vector<int>", &m_eclClusterHasNPhotonHypothesis);
628 m_tree->Branch("eclClusterHasNeutralHadronHypothesis", "std::vector<int>", &m_eclClusterHasNeutralHadronHypothesis);
629
630 if (m_doPureCsI == true) {
631 m_tree->Branch("eclHitToPureDigit", "std::vector<int>", &m_eclHitToPureDigit);
632 m_tree->Branch("eclHitToPureDigitAmp", "std::vector<int>", &m_eclHitToPureDigitAmp);
633 //Pure Digit
634 m_tree->Branch("eclPureDigitMultip", &m_eclPureDigitMultip, "eclPureDigit_Multip/I");
635 m_tree->Branch("eclPureDigitIdx", "std::vector<int>", &m_eclPureDigitIdx);
636 m_tree->Branch("eclPureDigitToMC", "std::vector<int>", &m_eclPureDigitToMC);
637 m_tree->Branch("eclPureDigitCellId", "std::vector<int>", &m_eclPureDigitCellId);
638 m_tree->Branch("eclPureDigitAmp", "std::vector<int>", &m_eclPureDigitAmp);
639 m_tree->Branch("eclPureDigitTimeFit", "std::vector<int>", &m_eclPureDigitTimeFit);
640 m_tree->Branch("eclPureDigitFitQuality", "std::vector<int>", &m_eclPureDigitFitQuality);
641 m_tree->Branch("eclPureDigitToCluster", "std::vector<int>", &m_eclPureDigitToCluster);
642 //Pure CalDigit
643 m_tree->Branch("eclPureCalDigitMultip", &m_eclPureCalDigitMultip, "eclPureCalDigit_Multip/I");
644 m_tree->Branch("eclPureCalDigitIdx", "std::vector<int>", &m_eclPureCalDigitIdx);
645 m_tree->Branch("eclPureCalDigitToMC1", "std::vector<int>", &m_eclPureCalDigitToMC1);
646 m_tree->Branch("eclPureCalDigitToMC1PDG", "std::vector<int>", &m_eclPureCalDigitToMC1PDG);
647 m_tree->Branch("eclPureCalDigitToMCWeight1", "std::vector<double>", &m_eclPureCalDigitToMCWeight1);
648 m_tree->Branch("eclPureCalDigitToMC2", "std::vector<int>", &m_eclPureCalDigitToMC2);
649 m_tree->Branch("eclPureCalDigitToMC2PDG", "std::vector<int>", &m_eclPureCalDigitToMC2PDG);
650 m_tree->Branch("eclPureCalDigitToMCWeight2", "std::vector<double>", &m_eclPureCalDigitToMCWeight2);
651 m_tree->Branch("eclPureCalDigitToMC3", "std::vector<int>", &m_eclPureCalDigitToMC3);
652 m_tree->Branch("eclPureCalDigitToMC3PDG", "std::vector<int>", &m_eclPureCalDigitToMC3PDG);
653 m_tree->Branch("eclPureCalDigitToMCWeight3", "std::vector<double>", &m_eclPureCalDigitToMCWeight3);
654 m_tree->Branch("eclPureCalDigitToMC4", "std::vector<int>", &m_eclPureCalDigitToMC4);
655 m_tree->Branch("eclPureCalDigitToMC4PDG", "std::vector<int>", &m_eclPureCalDigitToMC4PDG);
656 m_tree->Branch("eclPureCalDigitToMCWeight4", "std::vector<double>", &m_eclPureCalDigitToMCWeight4);
657 m_tree->Branch("eclPureCalDigitToMC5", "std::vector<int>", &m_eclPureCalDigitToMC5);
658 m_tree->Branch("eclPureCalDigitToMC5PDG", "std::vector<int>", &m_eclPureCalDigitToMC5PDG);
659 m_tree->Branch("eclPureCalDigitToMCWeight5", "std::vector<double>", &m_eclPureCalDigitToMCWeight5);
660 m_tree->Branch("eclPureCalDigitToBkgWeight", "std::vector<double>", &m_eclPureCalDigitToBkgWeight);
661 m_tree->Branch("eclPureCalDigitSimHitSum", "std::vector<double>", &m_eclPureCalDigitSimHitSum);
662 m_tree->Branch("eclPureCalDigitToShower", "std::vector<int>", &m_eclPureCalDigitToShower);
663 m_tree->Branch("eclPureCalDigitCellId", "std::vector<int>", &m_eclPureCalDigitCellId);
664 m_tree->Branch("eclPureCalDigitAmp", "std::vector<double>", &m_eclPureCalDigitAmp);
665 m_tree->Branch("eclPureCalDigitTimeFit", "std::vector<double>", &m_eclPureCalDigitTimeFit);
666 m_tree->Branch("eclPureCalDigitFitQuality", "std::vector<int>", &m_eclPureCalDigitFitQuality);
667 m_tree->Branch("eclPureCalDigitToCR", "std::vector<int>", &m_eclPureCalDigitToCR);
668 m_tree->Branch("eclPureCalDigitToLM", "std::vector<int>", &m_eclPureCalDigitToLM);
669 m_tree->Branch("eclPureLMMultip", &m_eclPureLMMultip, "eclPureLMMultip/I");
670
671 m_tree->Branch("eclPureCRIdx", "std::vector<int>", &m_eclPureCRIdx);
672 m_tree->Branch("eclPureCRIsTrack", "std::vector<int>", &m_eclPureCRIsTrack);
673 m_tree->Branch("eclPureCRLikelihoodMIPNGamma", "std::vector<double>", &m_eclPureCRLikelihoodMIPNGamma);
674 m_tree->Branch("eclPureCRLikelihoodChargedHadron", "std::vector<double>", &m_eclPureCRLikelihoodChargedHadron);
675 m_tree->Branch("eclPureCRLikelihoodElectronNGamma", "std::vector<double>", &m_eclPureCRLikelihoodElectronNGamma);
676 m_tree->Branch("eclPureCRLikelihoodNGamma", "std::vector<double>", &m_eclPureCRLikelihoodNGamma);
677 m_tree->Branch("eclPureCRLikelihoodNeutralHadron", "std::vector<double>", &m_eclPureCRLikelihoodNeutralHadron);
678 m_tree->Branch("eclPureCRLikelihoodMergedPi0", "std::vector<double>", &m_eclPureCRLikelihoodMergedPi0);
679
680 m_tree->Branch("eclPureLMId", "std::vector<int>", &m_eclPureLMId);
681 m_tree->Branch("eclPureLMType", "std::vector<int>", &m_eclPureLMType);
682 m_tree->Branch("eclPureLMCellId", "std::vector<int>", &m_eclPureLMCellId);
683 //Pure Clusters
684 m_tree->Branch("eclPureClusterMultip", &m_eclPureClusterMultip, "eclPureClusterMultip/I");
685 m_tree->Branch("eclPureClusterIdx", "std::vector<int>", &m_eclPureClusterIdx);
686 m_tree->Branch("eclPureClusterToMC1", "std::vector<int>", &m_eclPureClusterToMC1);
687 m_tree->Branch("eclPureClusterToMCWeight1", "std::vector<double>", &m_eclPureClusterToMCWeight1);
688 m_tree->Branch("eclPureClusterToMC1PDG", "std::vector<int>", &m_eclPureClusterToMC1PDG);
689 m_tree->Branch("eclPureClusterToMC2", "std::vector<int>", &m_eclPureClusterToMC2);
690 m_tree->Branch("eclPureClusterToMCWeight2", "std::vector<double>", &m_eclPureClusterToMCWeight2);
691 m_tree->Branch("eclPureClusterToMC2PDG", "std::vector<int>", &m_eclPureClusterToMC2PDG);
692 m_tree->Branch("eclPureClusterToMC3", "std::vector<int>", &m_eclPureClusterToMC3);
693 m_tree->Branch("eclPureClusterToMCWeight3", "std::vector<double>", &m_eclPureClusterToMCWeight3);
694 m_tree->Branch("eclPureClusterToMC3PDG", "std::vector<int>", &m_eclPureClusterToMC3PDG);
695 m_tree->Branch("eclPureClusterToMC4", "std::vector<int>", &m_eclPureClusterToMC4);
696 m_tree->Branch("eclPureClusterToMCWeight4", "std::vector<double>", &m_eclPureClusterToMCWeight4);
697 m_tree->Branch("eclPureClusterToMC4PDG", "std::vector<int>", &m_eclPureClusterToMC4PDG);
698 m_tree->Branch("eclPureClusterToMC5", "std::vector<int>", &m_eclPureClusterToMC5);
699 m_tree->Branch("eclPureClusterToMCWeight5", "std::vector<double>", &m_eclPureClusterToMCWeight5);
700 m_tree->Branch("eclPureClusterToMC5PDG", "std::vector<int>", &m_eclPureClusterToMC5PDG);
701 m_tree->Branch("eclPureClusterToBkgWeight", "std::vector<double>", &m_eclPureClusterToBkgWeight);
702 m_tree->Branch("eclPureClusterEnergy", "std::vector<double>", &m_eclPureClusterEnergy);
703 m_tree->Branch("eclPureClusterEnergyError", "std::vector<double>", &m_eclPureClusterEnergyError);
704 m_tree->Branch("eclPureClusterTheta", "std::vector<double>", &m_eclPureClusterTheta);
705 m_tree->Branch("eclPureClusterThetaError", "std::vector<double>", &m_eclPureClusterThetaError);
706 m_tree->Branch("eclPureClusterPhi", "std::vector<double>", &m_eclPureClusterPhi);
707 m_tree->Branch("eclPureClusterPhiError", "std::vector<double>", &m_eclPureClusterPhiError);
708 m_tree->Branch("eclPureClusterR", "std::vector<double>", &m_eclPureClusterR);
709 m_tree->Branch("eclPureClusterEnergyDepSum", "std::vector<double>", &m_eclPureClusterEnergyDepSum);
710 m_tree->Branch("eclPureClusterTiming", "std::vector<double>", &m_eclPureClusterTiming);
711 m_tree->Branch("eclPureClusterTimingError", "std::vector<double>", &m_eclPureClusterTimingError);
712 m_tree->Branch("eclPureClusterE9oE21", "std::vector<double>", &m_eclPureClusterE9oE21);
713 m_tree->Branch("eclPureClusterHighestE", "std::vector<double>", &m_eclPureClusterHighestE);
714 m_tree->Branch("eclPureClusterCellId", "std::vector<int>", &m_eclPureClusterCellId);
715 m_tree->Branch("eclPureClusterLat", "std::vector<double>", &m_eclPureClusterLat);
716 m_tree->Branch("eclPureClusterNofCrystals", "std::vector<int>", &m_eclPureClusterNofCrystals);
717 m_tree->Branch("eclPureClusterCrystalHealth", "std::vector<int>", &m_eclPureClusterCrystalHealth);
718 m_tree->Branch("eclPureClusterClosestTrackDist", "std::vector<double>", &m_eclPureClusterClosestTrackDist);
719 m_tree->Branch("eclPureClusterAbsZernike40", "std::vector<double>", &m_eclPureClusterAbsZernike40);
720 m_tree->Branch("eclPureClusterAbsZernike51", "std::vector<double>", &m_eclPureClusterAbsZernike51);
721 m_tree->Branch("eclPureClusterZernikeMVA", "std::vector<double>", &m_eclPureClusterZernikeMVA);
722 m_tree->Branch("eclPureClusterSecondMoment", "std::vector<double>", &m_eclPureClusterSecondMoment);
723 m_tree->Branch("eclPureClusterIsTrack", "std::vector<bool>", &m_eclPureClusterIsTrack);
724 m_tree->Branch("eclPureClusterDeltaL", "std::vector<double>", &m_eclPureClusterDeltaL);
725 m_tree->Branch("eclPureClusterE1oE9", "std::vector<double>", &m_eclPureClusterE1oE9);
726 m_tree->Branch("eclPureClusterDeltaTime99", "std::vector<double>", &m_eclPureClusterDeltaTime99);
727 m_tree->Branch("eclPureClusterDetectorRegion", "std::vector<int>", &m_eclPureClusterDetectorRegion);
728 m_tree->Branch("eclPureClusterHasNPhotonHypothesis", "std::vector<int>", &m_eclPureClusterHasNPhotonHypothesis);
729 m_tree->Branch("eclPureClusterHasNeutralHadronHypothesis", "std::vector<int>", &m_eclPureClusterHasNeutralHadronHypothesis);
730 }
731
733 m_tree->Branch("eclShowerMultip", &m_eclShowerMultip, "eclShowerMultip/I");
734 m_tree->Branch("eclShowerIdx", "std::vector<int>", &m_eclShowerIdx);
735 m_tree->Branch("eclShowerToMC1", "std::vector<int>", &m_eclShowerToMC1);
736 m_tree->Branch("eclShowerToMCWeight1", "std::vector<double>", &m_eclShowerToMCWeight1);
737 m_tree->Branch("eclShowerToMC1PDG", "std::vector<int>", &m_eclShowerToMC1PDG);
738 m_tree->Branch("eclShowerToMC1Moth", "std::vector<int>", &m_eclShowerToMC1Moth);
739 m_tree->Branch("eclShowerToMC1MothPDG", "std::vector<int>", &m_eclShowerToMC1MothPDG);
740 m_tree->Branch("eclShowerToMC1GMoth", "std::vector<int>", &m_eclShowerToMC1GMoth);
741 m_tree->Branch("eclShowerToMC1GMothPDG", "std::vector<int>", &m_eclShowerToMC1GMothPDG);
742 m_tree->Branch("eclShowerToMC2", "std::vector<int>", &m_eclShowerToMC2);
743 m_tree->Branch("eclShowerToMCWeight2", "std::vector<double>", &m_eclShowerToMCWeight2);
744 m_tree->Branch("eclShowerToMC2PDG", "std::vector<int>", &m_eclShowerToMC2PDG);
745 m_tree->Branch("eclShowerToMC2Moth", "std::vector<int>", &m_eclShowerToMC2Moth);
746 m_tree->Branch("eclShowerToMC2MothPDG", "std::vector<int>", &m_eclShowerToMC2MothPDG);
747 m_tree->Branch("eclShowerToMC2GMoth", "std::vector<int>", &m_eclShowerToMC2GMoth);
748 m_tree->Branch("eclShowerToMC2GMothPDG", "std::vector<int>", &m_eclShowerToMC2GMothPDG);
749 m_tree->Branch("eclShowerToMC3", "std::vector<int>", &m_eclShowerToMC3);
750 m_tree->Branch("eclShowerToMCWeight3", "std::vector<double>", &m_eclShowerToMCWeight3);
751 m_tree->Branch("eclShowerToMC3PDG", "std::vector<int>", &m_eclShowerToMC3PDG);
752 m_tree->Branch("eclShowerToMC3Moth", "std::vector<int>", &m_eclShowerToMC3Moth);
753 m_tree->Branch("eclShowerToMC3MothPDG", "std::vector<int>", &m_eclShowerToMC3MothPDG);
754 m_tree->Branch("eclShowerToMC3GMoth", "std::vector<int>", &m_eclShowerToMC3GMoth);
755 m_tree->Branch("eclShowerToMC3GMothPDG", "std::vector<int>", &m_eclShowerToMC3GMothPDG);
756 m_tree->Branch("eclShowerToMC4", "std::vector<int>", &m_eclShowerToMC4);
757 m_tree->Branch("eclShowerToMCWeight4", "std::vector<double>", &m_eclShowerToMCWeight4);
758 m_tree->Branch("eclShowerToMC4PDG", "std::vector<int>", &m_eclShowerToMC4PDG);
759 m_tree->Branch("eclShowerToMC4Moth", "std::vector<int>", &m_eclShowerToMC4Moth);
760 m_tree->Branch("eclShowerToMC4MothPDG", "std::vector<int>", &m_eclShowerToMC4MothPDG);
761 m_tree->Branch("eclShowerToMC4GMoth", "std::vector<int>", &m_eclShowerToMC4GMoth);
762 m_tree->Branch("eclShowerToMC4GMothPDG", "std::vector<int>", &m_eclShowerToMC4GMothPDG);
763 m_tree->Branch("eclShowerToMC5", "std::vector<int>", &m_eclShowerToMC5);
764 m_tree->Branch("eclShowerToMCWeight5", "std::vector<double>", &m_eclShowerToMCWeight5);
765 m_tree->Branch("eclShowerToMC5PDG", "std::vector<int>", &m_eclShowerToMC5PDG);
766 m_tree->Branch("eclShowerToMC5Moth", "std::vector<int>", &m_eclShowerToMC5Moth);
767 m_tree->Branch("eclShowerToMC5MothPDG", "std::vector<int>", &m_eclShowerToMC5MothPDG);
768 m_tree->Branch("eclShowerToMC5GMoth", "std::vector<int>", &m_eclShowerToMC5GMoth);
769 m_tree->Branch("eclShowerToMC5GMothPDG", "std::vector<int>", &m_eclShowerToMC5GMothPDG);
770 m_tree->Branch("eclShowerToBkgWeight", "std::vector<double>", &m_eclShowerToBkgWeight);
771 m_tree->Branch("eclShowerToLM1", "std::vector<int>", &m_eclShowerToLM1);
772 m_tree->Branch("eclShowerToLM2", "std::vector<int>", &m_eclShowerToLM2);
773 m_tree->Branch("eclShowerToLM3", "std::vector<int>", &m_eclShowerToLM3);
774 m_tree->Branch("eclShowerToLM4", "std::vector<int>", &m_eclShowerToLM4);
775 m_tree->Branch("eclShowerToLM5", "std::vector<int>", &m_eclShowerToLM5);
776 m_tree->Branch("eclShowerSimHitSum", "std::vector<double>", &m_eclShowerSimHitSum);
777 m_tree->Branch("eclShowerEnergy", "std::vector<double>", &m_eclShowerEnergy);
778 m_tree->Branch("eclShowerUncEnergy", "std::vector<double>", &m_eclShowerUncEnergy);
779 m_tree->Branch("eclShowerTheta", "std::vector<double>", &m_eclShowerTheta);
780 m_tree->Branch("eclShowerPhi", "std::vector<double>", &m_eclShowerPhi);
781 m_tree->Branch("eclShowerR", "std::vector<double>", &m_eclShowerR);
782 m_tree->Branch("eclShowerNHits", "std::vector<double>", &m_eclShowerNHits);
783 m_tree->Branch("eclShowerE9oE21", "std::vector<double>", &m_eclShowerE9oE21);
784 m_tree->Branch("eclShowerTime", "std::vector<double>", &m_eclShowerTime);
785 m_tree->Branch("eclShowerT99", "std::vector<double>", &m_eclShowerT99);
786 m_tree->Branch("eclShowerConnectedRegionId", "std::vector<int>", &m_eclShowerConnectedRegionId);
787 m_tree->Branch("eclShowerHypothesisId", "std::vector<int>", &m_eclShowerHypothesisId);
788 m_tree->Branch("eclShowerCentralCellId", "std::vector<int>", &m_eclShowerCentralCellId);
789 m_tree->Branch("eclShowerEnergyError", "std::vector<double>", &m_eclShowerEnergyError);
790 m_tree->Branch("eclShowerThetaError", "std::vector<double>", &m_eclShowerThetaError);
791 m_tree->Branch("eclShowerPhiError", "std::vector<double>", &m_eclShowerPhiError);
792 m_tree->Branch("eclShowerTimeResolution", "std::vector<double>", &m_eclShowerTimeResolution);
793 m_tree->Branch("eclShowerHighestEnergy", "std::vector<double>", &m_eclShowerHighestEnergy);
794 m_tree->Branch("eclShowerLateralEnergy", "std::vector<double>", &m_eclShowerLateralEnergy);
795 m_tree->Branch("eclShowerMinTrkDistance", "std::vector<double>", &m_eclShowerMinTrkDistance);
796 m_tree->Branch("eclShowerTrkDepth", "std::vector<double>", &m_eclShowerTrkDepth);
797 m_tree->Branch("eclShowerShowerDepth", "std::vector<double>", &m_eclShowerShowerDepth);
798 m_tree->Branch("eclShowerAbsZernike40", "std::vector<double>", &m_eclShowerAbsZernike40);
799 m_tree->Branch("eclShowerAbsZernike51", "std::vector<double>", &m_eclShowerAbsZernike51);
800 m_tree->Branch("eclShowerZernikeMVA", "std::vector<double>", &m_eclShowerZernikeMVA);
801 m_tree->Branch("eclShowerSecondMoment", "std::vector<double>", &m_eclShowerSecondMoment);
802 m_tree->Branch("eclShowerE1oE9", "std::vector<double>", &m_eclShowerE1oE9);
803 m_tree->Branch("eclShowerIsTrack", "std::vector<int>", &m_eclShowerIsTrack);
804 m_tree->Branch("eclShowerIsCluster", "std::vector<bool>", &m_eclShowerIsCluster);
805 m_tree->Branch("eclShowerMCVtxInEcl", "std::vector<int>", &m_eclShowerMCVtxInEcl);
806 m_tree->Branch("eclShowerMCFlightMatch", "std::vector<int>", &m_eclShowerMCFlightMatch);
807 m_tree->Branch("eclShowerMCFFlightMatch", "std::vector<int>", &m_eclShowerMCFFlightMatch);
808 m_tree->Branch("eclShowerHighestE1mE2", "std::vector<double>", &m_eclShowerHighestE1mE2);
809 m_tree->Branch("eclShowerNumberOfCrystalsForEnergy", "std::vector<double>", &m_eclShowerNumberOfCrystalsForEnergy);
810
811 //MC Truth
812 m_tree->Branch("mcMultip", &m_mcMultip, "mcMultip/I");
813 m_tree->Branch("mcIdx", "std::vector<int>", &m_mcIdx);
814 m_tree->Branch("mcPdg", "std::vector<int>", &m_mcPdg);
815 m_tree->Branch("mcMothPdg", "std::vector<int>", &m_mcMothPdg);
816 m_tree->Branch("mcGMothPdg", "std::vector<int>", &m_mcGMothPdg);
817 m_tree->Branch("mcGGMothPdg", "std::vector<int>", &m_mcGGMothPdg);
818 m_tree->Branch("mcEnergy", "std::vector<double>", &m_mcEnergy);
819 m_tree->Branch("mcPx", "std::vector<double>", &m_mcPx);
820 m_tree->Branch("mcPy", "std::vector<double>", &m_mcPy);
821 m_tree->Branch("mcPz", "std::vector<double>", &m_mcPz);
822 m_tree->Branch("mcDecVtxx", "std::vector<double>", &m_mcDecayVtxX);
823 m_tree->Branch("mcDecVtxy", "std::vector<double>", &m_mcDecayVtxY);
824 m_tree->Branch("mcDecVtxz", "std::vector<double>", &m_mcDecayVtxZ);
825 m_tree->Branch("mcProdVtxx", "std::vector<double>", &m_mcProdVtxX);
826 m_tree->Branch("mcProdVtxy", "std::vector<double>", &m_mcProdVtxY);
827 m_tree->Branch("mcProdVtxz", "std::vector<double>", &m_mcProdVtxZ);
828 m_tree->Branch("mcSecProc", "std::vector<int>", &m_mcSecondaryPhysProc);
829
830 if (m_doTracking == true) {
831 m_tree->Branch("trkMultip", &m_trkMultip, "trkMulti/I");
832 m_tree->Branch("trkIdx", "std::vector<int>", &m_trkIdx);
833 m_tree->Branch("trkPdg", "std::vector<int>", &m_trkPdg);
834 m_tree->Branch("trkCharge", "std::vector<int>", &m_trkCharge);
835 m_tree->Branch("trkPx", "std::vector<double>", &m_trkPx);
836 m_tree->Branch("trkPy", "std::vector<double>", &m_trkPy);
837 m_tree->Branch("trkPz", "std::vector<double>", &m_trkPz);
838 m_tree->Branch("trkP", "std::vector<double>", &m_trkP);
839 m_tree->Branch("trkTheta", "std::vector<double>", &m_trkTheta);
840 m_tree->Branch("trkPhi", "std::vector<double>", &m_trkPhi);
841 m_tree->Branch("trkPosx", "std::vector<double>", &m_trkX);
842 m_tree->Branch("trkPosy", "std::vector<double>", &m_trkY);
843 m_tree->Branch("trkPosz", "std::vector<double>", &m_trkZ);
844
845 m_tree->Branch("eclpidtrkIdx", "std::vector<int>", &m_eclpidtrkIdx);
846 m_tree->Branch("eclpidEnergy", "std::vector<double>", &m_eclpidEnergy);
847 m_tree->Branch("eclpidEop", "std::vector<double>", &m_eclpidEop);
848 m_tree->Branch("eclpidE9E21", "std::vector<double>", &m_eclpidE9E21);
849 m_tree->Branch("eclpidNCrystals", "std::vector<int>", &m_eclpidNCrystals);
850 m_tree->Branch("eclpidNClusters", "std::vector<int>", &m_eclpidNClusters);
851 m_tree->Branch("eclLogLikeEl", "std::vector<double>", &m_eclLogLikeEl);
852 m_tree->Branch("eclLogLikeMu", "std::vector<double>", &m_eclLogLikeMu);
853 m_tree->Branch("eclLogLikePi", "std::vector<double>", &m_eclLogLikePi);
854 }
855
856 B2INFO("[ECLDataAnalysis Module]: Initialization of ECLDataAnalysis Module completed.");
857
858}
859
861{
862}
863
864
866{
867
868 B2DEBUG(1, " ++++++++++++++ ECLDataAnalysisModule");
869
870 //EventLevelClusteringInfo
877
878 if (m_doDigits == 1) {
881 m_eclDigitIdx->clear();
882 m_eclDigitToMC->clear();
883 m_eclDigitCellId->clear();
884 m_eclDigitAmp->clear();
885 m_eclDigitTimeFit->clear();
886 m_eclDigitFitQuality->clear();
887 m_eclDigitToCalDigit->clear();
888
891 m_eclCalDigitCellId->clear();
892 m_eclCalDigitAmp->clear();
893 m_eclCalDigitTimeFit->clear();
895 m_eclCalDigitIdx->clear();
896 m_eclCalDigitToMC1->clear();
898 m_eclCalDigitToMC2->clear();
900 m_eclCalDigitToMC3->clear();
902 m_eclCalDigitToMC4->clear();
904 m_eclCalDigitToMC5->clear();
906 m_eclCalDigitToMC1PDG->clear();
907 m_eclCalDigitToMC2PDG->clear();
908 m_eclCalDigitToMC3PDG->clear();
909 m_eclCalDigitToMC4PDG->clear();
910 m_eclCalDigitToMC5PDG->clear();
912 m_eclCalDigitSimHitSum->clear();
913 m_eclCalDigitToShower->clear();
914 m_eclCalDigitToCR->clear();
915 m_eclCalDigitToLM->clear();
916 }
917
918 m_eclCRIdx->clear();
919 m_eclCRIsTrack->clear();
926
927 if (m_doHits == 1) {
928 //SimHit
930 m_eclSimHitCellId->clear();
931 m_eclSimHitPdg->clear();
932 m_eclSimHitEnergyDep->clear();
933 m_eclSimHitFlightTime->clear();
934 m_eclSimHitIdx->clear();
935 m_eclSimHitToMC->clear();
936 m_eclSimHitX->clear();
937 m_eclSimHitY->clear();
938 m_eclSimHitZ->clear();
939 m_eclSimHitPx->clear();
940 m_eclSimHitPy->clear();
941 m_eclSimHitPz->clear();
942
944 m_eclHitMultip = 0;
945 m_eclHitCellId->clear();
946 m_eclHitEnergyDep->clear();
947 m_eclHitTimeAve->clear();
948 m_eclHitIdx->clear();
949 m_eclHitToMC->clear();
950 m_eclHitToDigit->clear();
951 m_eclHitToDigitAmp->clear();
952 }
953
954 m_eclLMMultip = 0;
955 m_eclLMId->clear();
956 m_eclLMType->clear();
957 m_eclLMCellId->clear();
958
963 m_eclClusterEnergy->clear();
965 m_eclClusterTheta->clear();
966 m_eclClusterThetaError->clear();
967 m_eclClusterPhi->clear();
968 m_eclClusterPhiError->clear();
969 m_eclClusterR->clear();
970 m_eclClusterIdx->clear();
971 m_eclClusterToMC1->clear();
973 m_eclClusterToMC1PDG->clear();
974 m_eclClusterToMC2->clear();
976 m_eclClusterToMC2PDG->clear();
977 m_eclClusterToMC3->clear();
979 m_eclClusterToMC3PDG->clear();
980 m_eclClusterToMC4->clear();
982 m_eclClusterToMC4PDG->clear();
983 m_eclClusterToMC5->clear();
985 m_eclClusterToMC5PDG->clear();
987 m_eclClusterSimHitSum->clear();
989 m_eclClusterTiming->clear();
991 m_eclClusterE9oE21->clear();
992 m_eclClusterHighestE->clear();
993 m_eclClusterCellId->clear();
996 m_eclClusterIsTrack->clear();
998 m_eclClusterDeltaL->clear();
999 m_eclClusterToShower->clear();
1000 m_eclClusterAbsZernike40->clear();
1001 m_eclClusterAbsZernike51->clear();
1002 m_eclClusterZernikeMVA->clear();
1003 m_eclClusterE1oE9->clear();
1004 m_eclClusterSecondMoment->clear();
1005 m_eclClusterLAT->clear();
1006 m_eclClusterDeltaTime99->clear();
1010
1013 m_eclShowerIdx->clear();
1014 m_eclShowerToMC1->clear();
1015 m_eclShowerToMCWeight1->clear();
1016 m_eclShowerToMC1PDG->clear();
1017 m_eclShowerToMC1Moth->clear();
1018 m_eclShowerToMC1MothPDG->clear();
1019 m_eclShowerToMC1GMoth->clear();
1020 m_eclShowerToMC1GMothPDG->clear();
1021 m_eclShowerToMC2->clear();
1022 m_eclShowerToMCWeight2->clear();
1023 m_eclShowerToMC2PDG->clear();
1024 m_eclShowerToMC2Moth->clear();
1025 m_eclShowerToMC2MothPDG->clear();
1026 m_eclShowerToMC2GMoth->clear();
1027 m_eclShowerToMC2GMothPDG->clear();
1028 m_eclShowerToMC3->clear();
1029 m_eclShowerToMCWeight3->clear();
1030 m_eclShowerToMC3PDG->clear();
1031 m_eclShowerToMC3Moth->clear();
1032 m_eclShowerToMC3MothPDG->clear();
1033 m_eclShowerToMC3GMoth->clear();
1034 m_eclShowerToMC3GMothPDG->clear();
1035 m_eclShowerToMC4->clear();
1036 m_eclShowerToMCWeight4->clear();
1037 m_eclShowerToMC4PDG->clear();
1038 m_eclShowerToMC4Moth->clear();
1039 m_eclShowerToMC4MothPDG->clear();
1040 m_eclShowerToMC4GMoth->clear();
1041 m_eclShowerToMC4GMothPDG->clear();
1042 m_eclShowerToMC5->clear();
1043 m_eclShowerToMCWeight5->clear();
1044 m_eclShowerToMC5PDG->clear();
1045 m_eclShowerToMC5Moth->clear();
1046 m_eclShowerToMC5MothPDG->clear();
1047 m_eclShowerToMC5GMoth->clear();
1048 m_eclShowerToMC5GMothPDG->clear();
1049 m_eclShowerToBkgWeight->clear();
1050 m_eclShowerToLM1->clear();
1051 m_eclShowerToLM2->clear();
1052 m_eclShowerToLM3->clear();
1053 m_eclShowerToLM4->clear();
1054 m_eclShowerToLM5->clear();
1055 m_eclShowerSimHitSum->clear();
1056 m_eclShowerUncEnergy->clear();
1057 m_eclShowerEnergy->clear();
1058 m_eclShowerTheta->clear();
1059 m_eclShowerPhi->clear();
1060 m_eclShowerR->clear();
1061 m_eclShowerNHits->clear();
1062 m_eclShowerE9oE21->clear();
1063 m_eclShowerTime->clear();
1064 m_eclShowerT99->clear();
1066 m_eclShowerHypothesisId->clear();
1067 m_eclShowerCentralCellId->clear();
1068 m_eclShowerEnergyError->clear();
1069 m_eclShowerThetaError->clear();
1070 m_eclShowerPhiError->clear();
1072 m_eclShowerHighestEnergy->clear();
1073 m_eclShowerLateralEnergy->clear();
1075 m_eclShowerTrkDepth->clear();
1076 m_eclShowerShowerDepth->clear();
1077 m_eclShowerAbsZernike40->clear();
1078 m_eclShowerAbsZernike51->clear();
1079 m_eclShowerZernikeMVA->clear();
1080 m_eclShowerSecondMoment->clear();
1081 m_eclShowerE1oE9->clear();
1082 m_eclShowerIsTrack->clear();
1083 m_eclShowerIsCluster->clear();
1084 m_eclShowerMCVtxInEcl->clear();
1085 m_eclShowerMCFlightMatch->clear();
1087 m_eclShowerHighestE1mE2->clear();
1089
1091 if (m_doPureCsI == true) {
1093 m_eclPureDigitIdx->clear();
1094 m_eclPureDigitToMC->clear();
1095 m_eclPureDigitCellId->clear();
1096 m_eclPureDigitAmp->clear();
1097 m_eclPureDigitTimeFit->clear();
1098 m_eclPureDigitFitQuality->clear();
1099 m_eclPureDigitToCluster->clear();
1100 m_eclHitToPureDigit->clear();
1101 m_eclHitToPureDigitAmp->clear();
1102
1103 //Pure CalDigits
1105 m_eclPureCalDigitCellId->clear();
1106 m_eclPureCalDigitAmp->clear();
1107 m_eclPureCalDigitTimeFit->clear();
1109 m_eclPureCalDigitIdx->clear();
1110 m_eclPureCalDigitToMC1->clear();
1112 m_eclPureCalDigitToMC2->clear();
1114 m_eclPureCalDigitToMC3->clear();
1116 m_eclPureCalDigitToMC4->clear();
1118 m_eclPureCalDigitToMC5->clear();
1128 m_eclPureCalDigitToCR->clear();
1129 m_eclPureCalDigitToLM->clear();
1130
1131 m_eclPureCRIdx->clear();
1132 m_eclPureCRIsTrack->clear();
1139
1141 m_eclPureLMId->clear();
1142 m_eclPureLMType->clear();
1143 m_eclPureLMCellId->clear();
1144
1147 m_eclPureClusterToMC1->clear();
1149 m_eclPureClusterToMC1PDG->clear();
1150 m_eclPureClusterToMC2->clear();
1152 m_eclPureClusterToMC2PDG->clear();
1153 m_eclPureClusterToMC3->clear();
1155 m_eclPureClusterToMC3PDG->clear();
1156 m_eclPureClusterToMC4->clear();
1158 m_eclPureClusterToMC4PDG->clear();
1159 m_eclPureClusterToMC5->clear();
1161 m_eclPureClusterToMC5PDG->clear();
1163 m_eclPureClusterEnergy->clear();
1165 m_eclPureClusterTheta->clear();
1168 m_eclPureClusterPhi->clear();
1169 m_eclPureClusterPhiError->clear();
1170 m_eclPureClusterR->clear();
1171 m_eclPureClusterIdx->clear();
1172 m_eclPureClusterTiming->clear();
1174 m_eclPureClusterE9oE21->clear();
1175 m_eclPureClusterHighestE->clear();
1176 m_eclPureClusterCellId->clear();
1177 m_eclPureClusterLat->clear();
1185 m_eclPureClusterIsTrack->clear();
1186 m_eclPureClusterDeltaL->clear();
1187 m_eclPureClusterE1oE9->clear();
1192 }
1193
1195 m_mcMultip = 0;
1196 m_mcIdx->clear();
1197 m_mcPdg->clear();
1198 m_mcMothPdg->clear();
1199 m_mcGMothPdg->clear();
1200 m_mcGGMothPdg->clear();
1201 m_mcEnergy->clear();
1202 m_mcPx->clear();
1203 m_mcPy->clear();
1204 m_mcPz->clear();
1205 m_mcDecayVtxX->clear();
1206 m_mcDecayVtxY->clear();
1207 m_mcDecayVtxZ->clear();
1208 m_mcProdVtxX->clear();
1209 m_mcProdVtxY->clear();
1210 m_mcProdVtxZ->clear();
1211 m_mcSecondaryPhysProc->clear();
1212
1214 if (m_doTracking == true) {
1215 m_trkMultip = 0;
1216 m_trkIdx->clear();
1217 m_trkPdg->clear();
1218 m_trkCharge->clear();
1219 m_trkPx->clear();
1220 m_trkPy->clear();
1221 m_trkPz->clear();
1222 m_trkP->clear();
1223 m_trkPhi->clear();
1224 m_trkTheta->clear();
1225 m_trkPhi->clear();
1226 m_trkX->clear();
1227 m_trkY->clear();
1228 m_trkZ->clear();
1229
1231 m_eclpidtrkIdx->clear();
1232 m_eclpidEnergy->clear();
1233 m_eclpidEop->clear();
1234 m_eclpidE9E21->clear();
1235 m_eclpidNCrystals->clear();
1236 m_eclpidNClusters->clear();
1237 m_eclLogLikeEl->clear();
1238 m_eclLogLikeMu->clear();
1239 m_eclLogLikePi->clear();
1240 }
1241
1242
1243 if (m_eventmetadata) {
1244 m_iExperiment = m_eventmetadata->getExperiment();
1245 m_iRun = m_eventmetadata->getRun();
1246 m_iEvent = m_eventmetadata->getEvent();
1247 } else {
1248 m_iExperiment = -1;
1249 m_iRun = -1;
1250 m_iEvent = -1;
1251 }
1252
1253 //EventLevelClusteringInfo
1254 m_nECLCalDigitsOutOfTimeFWD = m_eventLevelClusteringInfo->getNECLCalDigitsOutOfTimeFWD();
1255 m_nECLCalDigitsOutOfTimeBarrel = m_eventLevelClusteringInfo->getNECLCalDigitsOutOfTimeBarrel();
1256 m_nECLCalDigitsOutOfTimeBWD = m_eventLevelClusteringInfo->getNECLCalDigitsOutOfTimeBWD();
1257 m_nECLShowersRejectedFWD = m_eventLevelClusteringInfo->getNECLShowersRejectedFWD();
1258 m_nECLShowersRejectedBarrel = m_eventLevelClusteringInfo->getNECLShowersRejectedBarrel();
1259 m_nECLShowersRejectedBWD = m_eventLevelClusteringInfo->getNECLShowersRejectedBWD();
1260
1261 if (m_doDigits == 1) {
1262 //DIGITS
1263 m_eclDigitMultip = m_eclDigits.getEntries();
1264 for (int idigits = 0; idigits < m_eclDigits.getEntries() ; idigits++) {
1265 ECLDigit* aECLDigits = m_eclDigits[idigits];
1266 m_eclDigitIdx->push_back(idigits);
1267 m_eclDigitCellId->push_back(aECLDigits->getCellId());
1268 m_eclDigitAmp->push_back(aECLDigits->getAmp());
1269 m_eclDigitTimeFit->push_back(aECLDigits->getTimeFit());
1270 m_eclDigitFitQuality->push_back(aECLDigits->getQuality());
1271
1272 if (aECLDigits->getRelated<MCParticle>() != (nullptr)) {
1273 const MCParticle* mc_digit = aECLDigits->getRelated<MCParticle>();
1274 m_eclDigitToMC->push_back(mc_digit->getArrayIndex());
1275 } else
1276 m_eclDigitToMC->push_back(-1);
1277
1278 if (aECLDigits->getRelated<ECLCalDigit>() != (nullptr)) {
1279 const ECLCalDigit* cal_digit = aECLDigits->getRelated<ECLCalDigit>();
1280 m_eclDigitToCalDigit->push_back(cal_digit->getArrayIndex());
1281 } else
1282 m_eclDigitToCalDigit->push_back(-1);
1283 }
1284
1285 //CAL DIGITS
1286 m_eclCalDigitMultip = m_eclCalDigits.getEntries();
1287 for (uint icaldigits = 0; icaldigits < (uint)m_eclCalDigits.getEntries() ; icaldigits++) {
1288 ECLCalDigit* aECLCalDigits = m_eclCalDigits[icaldigits];
1289
1290 m_eclCalDigitIdx->push_back(icaldigits);
1291 m_eclCalDigitCellId->push_back(aECLCalDigits->getCellId());
1292 m_eclCalDigitAmp->push_back(aECLCalDigits->getEnergy());
1293 m_eclCalDigitTimeFit->push_back(aECLCalDigits->getTime());
1294 m_eclCalDigitFitQuality->push_back(aECLCalDigits->isFailedFit());
1295
1296 double sumHit = 0;
1297 int idx[10];
1298 for (int i = 0; i < 10; i++)
1299 idx[i] = -1;
1300
1301 double wi[10];
1302 for (int i = 0; i < 10; i++)
1303 wi[i] = -1;
1304
1305 int ii = 0;
1306 sumHit = 0;
1307
1308 auto digitMCRelations = aECLCalDigits->getRelationsTo<MCParticle>();
1309 for (unsigned int i = 0; i < digitMCRelations.size(); ++i) {
1310 if (ii < 10) {
1311 const auto mcParticle = digitMCRelations.object(i);
1312 idx[ii] = mcParticle->getIndex() - 1;
1313 wi[ii] = digitMCRelations.weight(i);
1314 sumHit = sumHit + digitMCRelations.weight(i);
1315 ii++;
1316 }
1317 }
1318
1319 //Re-ordering based on contribution
1320 int y = 0;
1321 while (y < 10) {
1322 for (int i = 0; i < 9; i++) {
1323 if (((idx[i]) > -1) && ((idx[i + 1]) > -1)) {
1324 if (wi[i] < wi[i + 1]) {
1325 int temp = idx[i];
1326 idx[i] = idx[i + 1];
1327 idx[i + 1] = temp;
1328
1329 double wtemp = wi[i];
1330 wi[i] = wi[i + 1];
1331 wi[i + 1] = wtemp;
1332 }
1333 }
1334 }
1335 y++;
1336 }
1337
1338 m_eclCalDigitToBkgWeight->push_back(aECLCalDigits->getEnergy() - sumHit);
1339 m_eclCalDigitSimHitSum->push_back(sumHit);
1340 if (idx[0] > -1) {
1341 m_eclCalDigitToMCWeight1->push_back(wi[0]);
1342 m_eclCalDigitToMC1->push_back(idx[0]);
1343 MCParticle* amcParticle = m_mcParticles[idx[0]];
1344 m_eclCalDigitToMC1PDG->push_back(amcParticle->getPDG());
1345 } else {
1346 m_eclCalDigitToMCWeight1->push_back(-1);
1347 m_eclCalDigitToMC1->push_back(-1);
1348 m_eclCalDigitToMC1PDG->push_back(-1);
1349 }
1350 if (idx[1] > -1) {
1351 m_eclCalDigitToMCWeight2->push_back(wi[1]);
1352 m_eclCalDigitToMC2->push_back(idx[1]);
1353 MCParticle* amcParticle = m_mcParticles[idx[1]];
1354 m_eclCalDigitToMC2PDG->push_back(amcParticle->getPDG());
1355 } else {
1356 m_eclCalDigitToMCWeight2->push_back(-1);
1357 m_eclCalDigitToMC2->push_back(-1);
1358 m_eclCalDigitToMC2PDG->push_back(-1);
1359 }
1360 if (idx[2] > -1) {
1361 m_eclCalDigitToMCWeight3->push_back(wi[2]);
1362 m_eclCalDigitToMC3->push_back(idx[2]);
1363 MCParticle* amcParticle = m_mcParticles[idx[2]];
1364 m_eclCalDigitToMC3PDG->push_back(amcParticle->getPDG());
1365 } else {
1366 m_eclCalDigitToMCWeight3->push_back(-1);
1367 m_eclCalDigitToMC3->push_back(-1);
1368 m_eclCalDigitToMC3PDG->push_back(-1);
1369 }
1370 if (idx[3] > -1) {
1371 m_eclCalDigitToMCWeight4->push_back(wi[3]);
1372 m_eclCalDigitToMC4->push_back(idx[3]);
1373 MCParticle* amcParticle = m_mcParticles[idx[3]];
1374 m_eclCalDigitToMC4PDG->push_back(amcParticle->getPDG());
1375 } else {
1376 m_eclCalDigitToMCWeight4->push_back(-1);
1377 m_eclCalDigitToMC4->push_back(-1);
1378 m_eclCalDigitToMC4PDG->push_back(-1);
1379 }
1380 if (idx[4] > -1) {
1381 m_eclCalDigitToMCWeight5->push_back(wi[4]);
1382 m_eclCalDigitToMC5->push_back(idx[4]);
1383 MCParticle* amcParticle = m_mcParticles[idx[4]];
1384 m_eclCalDigitToMC5PDG->push_back(amcParticle->getPDG());
1385 } else {
1386 m_eclCalDigitToMCWeight5->push_back(-1);
1387 m_eclCalDigitToMC5->push_back(-1);
1388 m_eclCalDigitToMC5PDG->push_back(-1);
1389 }
1390
1391 if (aECLCalDigits->getRelated<ECLShower>() != (nullptr)) {
1392 const ECLShower* shower_caldigit = aECLCalDigits->getRelated<ECLShower>();
1393 m_eclCalDigitToShower->push_back(shower_caldigit->getArrayIndex());
1394 } else
1395 m_eclCalDigitToShower->push_back(-1);
1396
1397 if (aECLCalDigits->getRelated<ECLConnectedRegion>() != (nullptr)) {
1398 const ECLConnectedRegion* cr_caldigit = aECLCalDigits->getRelated<ECLConnectedRegion>();
1399 m_eclCalDigitToCR->push_back(cr_caldigit->getCRId());
1400 } else
1401 m_eclCalDigitToCR->push_back(-1);
1402
1403 if (aECLCalDigits->getRelated<ECLLocalMaximum>() != (nullptr)) {
1404 const ECLLocalMaximum* lm_caldigit = aECLCalDigits->getRelated<ECLLocalMaximum>();
1405 m_eclCalDigitToLM->push_back(lm_caldigit->getLMId());
1406 } else
1407 m_eclCalDigitToLM->push_back(-1);
1408
1409 }
1410 }
1411
1412 //CR
1413 int CRmultip = m_eclConnectedRegions.getEntries();
1414 for (int i = 0; i < CRmultip; i++) {
1416 m_eclCRIdx->push_back(aECLCR->getCRId());
1417 m_eclCRIsTrack->push_back(aECLCR->isTrack());
1421 m_eclCRLikelihoodNGamma->push_back(aECLCR->getLikelihoodNGamma());
1424 }
1425
1426 if (m_doHits == 1) {
1427
1428 //SIM HITS
1429 m_eclSimHitMultip = m_eclSimHits.getEntries();
1430 for (int isimhits = 0; isimhits < m_eclSimHits.getEntries() ; isimhits++) {
1431 ECLSimHit* aECLSimHits = m_eclSimHits[isimhits];
1432
1433 m_eclSimHitIdx->push_back(isimhits);
1434 m_eclSimHitCellId->push_back(aECLSimHits->getCellId());
1435 m_eclSimHitPdg->push_back(aECLSimHits->getPDGCode());
1436 m_eclSimHitEnergyDep->push_back(aECLSimHits->getEnergyDep());
1437 m_eclSimHitFlightTime->push_back(aECLSimHits->getFlightTime());
1438 m_eclSimHitX->push_back(aECLSimHits->getPosition().x());
1439 m_eclSimHitY->push_back(aECLSimHits->getPosition().y());
1440 m_eclSimHitZ->push_back(aECLSimHits->getPosition().z());
1441 m_eclSimHitPx->push_back(aECLSimHits->getMomentum().x());
1442 m_eclSimHitPy->push_back(aECLSimHits->getMomentum().y());
1443 m_eclSimHitPz->push_back(aECLSimHits->getMomentum().z());
1444
1445 if (aECLSimHits->getRelated<MCParticle>() != (nullptr)) {
1446 const MCParticle* mc_simhit = aECLSimHits->getRelated<MCParticle>();
1447 m_eclSimHitToMC->push_back(mc_simhit->getArrayIndex());
1448 } else
1449 m_eclSimHitToMC->push_back(-1);
1450 }
1451
1452 //HITS
1453 m_eclHitMultip = m_eclHits.getEntries();
1454 for (int ihits = 0; ihits < m_eclHits.getEntries() ; ihits++) {
1455 ECLHit* aECLHits = m_eclHits[ihits];
1456 m_eclHitIdx->push_back(ihits);
1457 m_eclHitCellId->push_back(aECLHits->getCellId());
1458 m_eclHitEnergyDep->push_back(aECLHits->getEnergyDep());
1459 m_eclHitTimeAve->push_back(aECLHits->getTimeAve());
1460
1461 if (aECLHits->getRelated<ECLDigit>() != (nullptr)) {
1462 const ECLDigit* hit_digit = aECLHits->getRelated<ECLDigit>();
1463 m_eclHitToDigit->push_back(hit_digit->getArrayIndex());
1464 m_eclHitToDigitAmp->push_back(hit_digit->getAmp());
1465 } else {
1466 m_eclHitToDigit->push_back(-1);
1467 m_eclHitToDigitAmp->push_back(-1);
1468 }
1469
1470 if (m_doPureCsI == true) {
1471 if (aECLHits->getRelated<ECLDigit>(eclPureDigitArrayName()) != (nullptr)) {
1472 const ECLDigit* hit_pdigit = aECLHits->getRelated<ECLDigit>(eclPureDigitArrayName());
1473 m_eclHitToPureDigit->push_back(hit_pdigit->getArrayIndex());
1474 m_eclHitToPureDigitAmp->push_back(hit_pdigit->getAmp());
1475 } else {
1476 m_eclHitToPureDigit->push_back(-1);
1477 m_eclHitToPureDigitAmp->push_back(-1);
1478 }
1479 }
1480
1481 if (aECLHits->getRelated<MCParticle>() != (nullptr)) {
1482 const MCParticle* mc_hit = aECLHits->getRelated<MCParticle>();
1483 m_eclHitToMC->push_back(mc_hit->getArrayIndex());
1484 } else
1485 m_eclHitToMC->push_back(-1);
1486 }
1487 }
1488
1489 //LM
1490 m_eclLMMultip = m_eclLocalMaximums.getEntries();
1491 for (unsigned int ilms = 0; ilms < (unsigned int)m_eclLocalMaximums.getEntries() ; ilms++) {
1492 ECLLocalMaximum* aECLLMs = m_eclLocalMaximums[ilms];
1493 m_eclLMId->push_back(aECLLMs->getLMId());
1494 m_eclLMType->push_back(aECLLMs->getType());
1495 m_eclLMCellId->push_back(aECLLMs->getCellId());
1496 }
1497
1498 //CLUSTERS
1499 m_eclClusterMultip = m_eclClusters.getEntries();
1500 for (unsigned int iclusters = 0; iclusters < (unsigned int)m_eclClusters.getEntries() ; iclusters++) {
1501 ECLCluster* aECLClusters = m_eclClusters[iclusters];
1502 m_eclClusterIdx->push_back(iclusters);
1503
1504 double clusterE = 0.0;
1505 if (aECLClusters->hasHypothesis(ECLCluster::EHypothesisBit::c_nPhotons)) clusterE = aECLClusters->getEnergy(
1507 else clusterE = aECLClusters->getEnergy(ECLCluster::EHypothesisBit::c_neutralHadron);
1508 m_eclClusterEnergy->push_back(clusterE);
1509
1510 m_eclClusterEnergyError->push_back(aECLClusters->getUncertaintyEnergy());
1511 m_eclClusterTheta->push_back(aECLClusters->getTheta());
1512 m_eclClusterThetaError->push_back(aECLClusters->getUncertaintyTheta());
1513 m_eclClusterPhi->push_back(aECLClusters->getPhi());
1514 m_eclClusterPhiError->push_back(aECLClusters->getUncertaintyPhi());
1515 m_eclClusterR->push_back(aECLClusters->getR());
1516 m_eclClusterEnergyDepSum->push_back(aECLClusters->getEnergyRaw());
1517 m_eclClusterTiming->push_back(aECLClusters->getTime());
1518 m_eclClusterTimingError->push_back(aECLClusters->getDeltaTime99());
1519 m_eclClusterE9oE21->push_back(aECLClusters->getE9oE21());
1520 m_eclClusterHighestE->push_back(aECLClusters->getEnergyHighestCrystal());
1521 m_eclClusterCellId->push_back(aECLClusters->getMaxECellId());
1522 m_eclClusterNofCrystals->push_back(aECLClusters->getNumberOfCrystals());
1523 m_eclClusterCrystalHealth->push_back(aECLClusters->getStatus());
1524
1525 m_eclClusterIsTrack->push_back(aECLClusters->isTrack());
1526 m_eclClusterClosestTrackDist->push_back(aECLClusters->getMinTrkDistance());
1527 m_eclClusterDeltaL->push_back(aECLClusters->getDeltaL());
1528
1529 m_eclClusterAbsZernike40->push_back(aECLClusters->getAbsZernike40());
1530 m_eclClusterAbsZernike51->push_back(aECLClusters->getAbsZernike51());
1531 m_eclClusterZernikeMVA->push_back(aECLClusters->getZernikeMVA());
1532 m_eclClusterE1oE9->push_back(aECLClusters->getE1oE9());
1533 m_eclClusterSecondMoment->push_back(aECLClusters->getSecondMoment());
1534 m_eclClusterLAT->push_back(aECLClusters->getLAT());
1535 m_eclClusterDeltaTime99->push_back(aECLClusters->getDeltaTime99());
1536 m_eclClusterDetectorRegion->push_back(aECLClusters->getDetectorRegion());
1539
1540 if (aECLClusters->getRelated<ECLShower>() != (nullptr)) {
1541 const ECLShower* shower_cluster = aECLClusters->getRelated<ECLShower>();
1542 m_eclClusterToShower->push_back(shower_cluster->getArrayIndex());
1543 } else
1544 m_eclClusterToShower->push_back(-1);
1545
1546 //Dump MC Info - Multiple Matching
1547 double sumHit = 0;
1548 int idx[10];
1549 for (int i = 0; i < 10; i++)
1550 idx[i] = -1;
1551
1552 double wi[10];
1553 for (int i = 0; i < 10; i++)
1554 wi[i] = -1;
1555
1556 int ii = 0;
1557 sumHit = 0;
1558
1559 auto clusterMCRelations = aECLClusters->getRelationsTo<MCParticle>();
1560 for (unsigned int i = 0; i < clusterMCRelations.size(); ++i) {
1561 if (ii < 10) {
1562 const auto mcParticle = clusterMCRelations.object(i);
1563 idx[ii] = mcParticle->getIndex() - 1;
1564 wi[ii] = clusterMCRelations.weight(i);
1565 sumHit = sumHit + clusterMCRelations.weight(i);
1566 ii++;
1567 }
1568 }
1569
1570 //Re-ordering based on contribution
1571 int y = 0;
1572 while (y < 10) {
1573 for (int i = 0; i < 9; i++) {
1574 if (((idx[i]) > -1) && ((idx[i + 1]) > -1)) {
1575 if (wi[i] < wi[i + 1]) {
1576 int temp = idx[i];
1577 idx[i] = idx[i + 1];
1578 idx[i + 1] = temp;
1579
1580 double wtemp = wi[i];
1581 wi[i] = wi[i + 1];
1582 wi[i + 1] = wtemp;
1583 }
1584 }
1585 }
1586 y++;
1587 }
1588
1589 m_eclClusterToBkgWeight->push_back(clusterE - sumHit);
1590 m_eclClusterSimHitSum->push_back(sumHit);
1591 if (idx[0] > -1) {
1592 m_eclClusterToMCWeight1->push_back(wi[0]);
1593 m_eclClusterToMC1->push_back(idx[0]);
1594 MCParticle* amcParticle = m_mcParticles[idx[0]];
1595 m_eclClusterToMC1PDG->push_back(amcParticle->getPDG());
1596 } else {
1597 m_eclClusterToMCWeight1->push_back(-1);
1598 m_eclClusterToMC1->push_back(-1);
1599 m_eclClusterToMC1PDG->push_back(-1);
1600 }
1601 if (idx[1] > -1) {
1602 m_eclClusterToMCWeight2->push_back(wi[1]);
1603 m_eclClusterToMC2->push_back(idx[1]);
1604 MCParticle* amcParticle = m_mcParticles[idx[1]];
1605 m_eclClusterToMC2PDG->push_back(amcParticle->getPDG());
1606 } else {
1607 m_eclClusterToMCWeight2->push_back(-1);
1608 m_eclClusterToMC2->push_back(-1);
1609 m_eclClusterToMC2PDG->push_back(-1);
1610 }
1611 if (idx[2] > -1) {
1612 m_eclClusterToMCWeight3->push_back(wi[2]);
1613 m_eclClusterToMC3->push_back(idx[2]);
1614 MCParticle* amcParticle = m_mcParticles[idx[2]];
1615 m_eclClusterToMC3PDG->push_back(amcParticle->getPDG());
1616 } else {
1617 m_eclClusterToMCWeight3->push_back(-1);
1618 m_eclClusterToMC3->push_back(-1);
1619 m_eclClusterToMC3PDG->push_back(-1);
1620 }
1621 if (idx[3] > -1) {
1622 m_eclClusterToMCWeight4->push_back(wi[3]);
1623 m_eclClusterToMC4->push_back(idx[3]);
1624 MCParticle* amcParticle = m_mcParticles[idx[3]];
1625 m_eclClusterToMC4PDG->push_back(amcParticle->getPDG());
1626 } else {
1627 m_eclClusterToMCWeight4->push_back(-1);
1628 m_eclClusterToMC4->push_back(-1);
1629 m_eclClusterToMC4PDG->push_back(-1);
1630 }
1631 if (idx[4] > -1) {
1632 m_eclClusterToMCWeight5->push_back(wi[4]);
1633 m_eclClusterToMC5->push_back(idx[4]);
1634 MCParticle* amcParticle = m_mcParticles[idx[4]];
1635 m_eclClusterToMC5PDG->push_back(amcParticle->getPDG());
1636 } else {
1637 m_eclClusterToMCWeight5->push_back(-1);
1638 m_eclClusterToMC5->push_back(-1);
1639 m_eclClusterToMC5PDG->push_back(-1);
1640 }
1641
1642 }
1643
1644 if (m_doPureCsI == true) {
1645
1647 for (int idigits = 0; idigits < m_eclPureDigits.getEntries() ; idigits++) {
1648 ECLDigit* aECLPureDigits = m_eclPureDigits[idigits];
1649
1650 m_eclPureDigitIdx->push_back(idigits);
1651 m_eclPureDigitCellId->push_back(aECLPureDigits->getCellId());
1652 m_eclPureDigitAmp->push_back(aECLPureDigits->getAmp());
1653 m_eclPureDigitTimeFit->push_back(aECLPureDigits->getTimeFit());
1654 m_eclPureDigitFitQuality->push_back(aECLPureDigits->getQuality());
1655
1656 if (aECLPureDigits->getRelated<MCParticle>() != (nullptr)) {
1657 const MCParticle* mc_digit = aECLPureDigits->getRelated<MCParticle>();
1658 m_eclPureDigitToMC->push_back(mc_digit->getArrayIndex());
1659 } else
1660 m_eclPureDigitToMC->push_back(-1);
1661 }
1662
1663 //PURE CAL DIGITS
1665 for (uint icaldigits = 0; icaldigits < (uint)m_eclPureCalDigits.getEntries() ; icaldigits++) {
1666 ECLCalDigit* aECLPureCalDigits = m_eclPureCalDigits[icaldigits];
1667
1668 m_eclPureCalDigitIdx->push_back(icaldigits);
1669 m_eclPureCalDigitCellId->push_back(aECLPureCalDigits->getCellId());
1670 m_eclPureCalDigitAmp->push_back(aECLPureCalDigits->getEnergy());
1671 m_eclPureCalDigitTimeFit->push_back(aECLPureCalDigits->getTime());
1672 m_eclPureCalDigitFitQuality->push_back(aECLPureCalDigits->isFailedFit());
1673
1674 double sumHit = 0;
1675 int idx[10];
1676 for (int i = 0; i < 10; i++)
1677 idx[i] = -1;
1678
1679 double wi[10];
1680 for (int i = 0; i < 10; i++)
1681 wi[i] = -1;
1682
1683 int ii = 0;
1684 sumHit = 0;
1685
1686 auto digitMCRelations = aECLPureCalDigits->getRelationsTo<MCParticle>();
1687 for (unsigned int i = 0; i < digitMCRelations.size(); ++i) {
1688 if (ii < 10) {
1689 const auto mcParticle = digitMCRelations.object(i);
1690 idx[ii] = mcParticle->getIndex() - 1;
1691 wi[ii] = digitMCRelations.weight(i);
1692 sumHit = sumHit + digitMCRelations.weight(i);
1693 ii++;
1694 }
1695 }
1696
1697 //Re-ordering based on contribution
1698 int y = 0;
1699 while (y < 10) {
1700 for (int i = 0; i < 9; i++) {
1701 if (((idx[i]) > -1) && ((idx[i + 1]) > -1)) {
1702 if (wi[i] < wi[i + 1]) {
1703 int temp = idx[i];
1704 idx[i] = idx[i + 1];
1705 idx[i + 1] = temp;
1706
1707 double wtemp = wi[i];
1708 wi[i] = wi[i + 1];
1709 wi[i + 1] = wtemp;
1710 }
1711 }
1712 }
1713 y++;
1714 }
1715
1716 m_eclPureCalDigitToBkgWeight->push_back(aECLPureCalDigits->getEnergy() - sumHit);
1717 m_eclPureCalDigitSimHitSum->push_back(sumHit);
1718 if (idx[0] > -1) {
1719 m_eclPureCalDigitToMCWeight1->push_back(wi[0]);
1720 m_eclPureCalDigitToMC1->push_back(idx[0]);
1721 MCParticle* amcParticle = m_mcParticles[idx[0]];
1722 m_eclPureCalDigitToMC1PDG->push_back(amcParticle->getPDG());
1723 } else {
1724 m_eclPureCalDigitToMCWeight1->push_back(-1);
1725 m_eclPureCalDigitToMC1->push_back(-1);
1726 m_eclPureCalDigitToMC1PDG->push_back(-1);
1727 }
1728 if (idx[1] > -1) {
1729 m_eclPureCalDigitToMCWeight2->push_back(wi[1]);
1730 m_eclPureCalDigitToMC2->push_back(idx[1]);
1731 MCParticle* amcParticle = m_mcParticles[idx[1]];
1732 m_eclPureCalDigitToMC2PDG->push_back(amcParticle->getPDG());
1733 } else {
1734 m_eclPureCalDigitToMCWeight2->push_back(-1);
1735 m_eclPureCalDigitToMC2->push_back(-1);
1736 m_eclPureCalDigitToMC2PDG->push_back(-1);
1737 }
1738 if (idx[2] > -1) {
1739 m_eclPureCalDigitToMCWeight3->push_back(wi[2]);
1740 m_eclPureCalDigitToMC3->push_back(idx[2]);
1741 MCParticle* amcParticle = m_mcParticles[idx[2]];
1742 m_eclPureCalDigitToMC3PDG->push_back(amcParticle->getPDG());
1743 } else {
1744 m_eclPureCalDigitToMCWeight3->push_back(-1);
1745 m_eclPureCalDigitToMC3->push_back(-1);
1746 m_eclPureCalDigitToMC3PDG->push_back(-1);
1747 }
1748 if (idx[3] > -1) {
1749 m_eclPureCalDigitToMCWeight4->push_back(wi[3]);
1750 m_eclPureCalDigitToMC4->push_back(idx[3]);
1751 MCParticle* amcParticle = m_mcParticles[idx[3]];
1752 m_eclPureCalDigitToMC4PDG->push_back(amcParticle->getPDG());
1753 } else {
1754 m_eclPureCalDigitToMCWeight4->push_back(-1);
1755 m_eclPureCalDigitToMC4->push_back(-1);
1756 m_eclPureCalDigitToMC4PDG->push_back(-1);
1757 }
1758 if (idx[4] > -1) {
1759 m_eclPureCalDigitToMCWeight5->push_back(wi[4]);
1760 m_eclPureCalDigitToMC5->push_back(idx[4]);
1761 MCParticle* amcParticle = m_mcParticles[idx[4]];
1762 m_eclPureCalDigitToMC5PDG->push_back(amcParticle->getPDG());
1763 } else {
1764 m_eclPureCalDigitToMCWeight5->push_back(-1);
1765 m_eclPureCalDigitToMC5->push_back(-1);
1766 m_eclPureCalDigitToMC5PDG->push_back(-1);
1767 }
1768
1769 if (aECLPureCalDigits->getRelated<ECLShower>() != (nullptr)) {
1770 const ECLShower* shower_caldigit = aECLPureCalDigits->getRelated<ECLShower>();
1771 m_eclPureCalDigitToShower->push_back(shower_caldigit->getArrayIndex());
1772 } else
1773 m_eclPureCalDigitToShower->push_back(-1);
1774
1775 if (aECLPureCalDigits->getRelated<ECLConnectedRegion>(eclPureConnectedRegionArrayName()) != (nullptr)) {
1776 const ECLConnectedRegion* cr_caldigit = aECLPureCalDigits->getRelated<ECLConnectedRegion>(eclPureConnectedRegionArrayName());
1777 m_eclPureCalDigitToCR->push_back(cr_caldigit->getCRId());
1778 } else
1779 m_eclPureCalDigitToCR->push_back(-1);
1780
1781 if (aECLPureCalDigits->getRelated<ECLLocalMaximum>(eclPureLocalMaximumArrayName()) != (nullptr)) {
1782 const ECLLocalMaximum* lm_caldigit = aECLPureCalDigits->getRelated<ECLLocalMaximum>(eclPureLocalMaximumArrayName());
1783 m_eclPureCalDigitToLM->push_back(lm_caldigit->getLMId());
1784 } else
1785 m_eclPureCalDigitToLM->push_back(-1);
1786
1787 }
1788
1789 //CR
1790 int PureCRmultip = m_eclPureConnectedRegions.getEntries();
1791 for (int i = 0; i < PureCRmultip; i++) {
1793 m_eclPureCRIdx->push_back(aECLPureCR->getCRId());
1794 m_eclPureCRIsTrack->push_back(aECLPureCR->isTrack());
1798 m_eclPureCRLikelihoodNGamma->push_back(aECLPureCR->getLikelihoodNGamma());
1801 }
1802
1803 //LM
1805 for (unsigned int pure_ilms = 0; pure_ilms < (unsigned int)m_eclPureLocalMaximums.getEntries() ; pure_ilms++) {
1806 ECLLocalMaximum* aECLLMs = m_eclPureLocalMaximums[pure_ilms];
1807 m_eclPureLMId->push_back(aECLLMs->getLMId());
1808 m_eclPureLMType->push_back(aECLLMs->getType());
1809 m_eclPureLMCellId->push_back(aECLLMs->getCellId());
1810 }
1811
1813 for (unsigned int iclusters = 0; iclusters < (unsigned int)m_eclPureClusters.getEntries() ; iclusters++) {
1814 ECLCluster* aECLClusters = m_eclPureClusters[iclusters];
1815 m_eclPureClusterIdx->push_back(iclusters);
1816
1817 double clusterE = 0.0;
1818 if (aECLClusters->hasHypothesis(ECLCluster::EHypothesisBit::c_nPhotons)) clusterE = aECLClusters->getEnergy(
1820 else clusterE = aECLClusters->getEnergy(ECLCluster::EHypothesisBit::c_neutralHadron);
1821 m_eclPureClusterEnergy->push_back(clusterE);
1822
1823 m_eclPureClusterEnergyError->push_back(aECLClusters->getUncertaintyEnergy());
1824 m_eclPureClusterTheta->push_back(aECLClusters->getTheta());
1825 m_eclPureClusterThetaError->push_back(aECLClusters->getUncertaintyTheta());
1826 m_eclPureClusterPhi->push_back(aECLClusters->getPhi());
1827 m_eclPureClusterPhiError->push_back(aECLClusters->getUncertaintyPhi());
1828 m_eclPureClusterR->push_back(aECLClusters->getR());
1829 m_eclPureClusterEnergyDepSum->push_back(aECLClusters->getEnergyRaw());
1830 m_eclPureClusterTiming->push_back(aECLClusters->getTime());
1831 m_eclPureClusterTimingError->push_back(aECLClusters->getDeltaTime99());
1832 m_eclPureClusterE9oE21->push_back(aECLClusters->getE9oE21());
1833 m_eclPureClusterHighestE->push_back(aECLClusters->getEnergyHighestCrystal());
1834 m_eclPureClusterCellId->push_back(aECLClusters->getMaxECellId());
1835 m_eclPureClusterLat->push_back(aECLClusters->getLAT());
1836 m_eclPureClusterNofCrystals->push_back(aECLClusters->getNumberOfCrystals());
1837 m_eclPureClusterCrystalHealth->push_back(aECLClusters->getStatus());
1838
1839 m_eclPureClusterClosestTrackDist->push_back(aECLClusters->getMinTrkDistance());
1840 m_eclPureClusterAbsZernike40->push_back(aECLClusters->getAbsZernike40());
1841 m_eclPureClusterAbsZernike51->push_back(aECLClusters->getAbsZernike51());
1842 m_eclPureClusterZernikeMVA->push_back(aECLClusters->getZernikeMVA());
1843 m_eclPureClusterSecondMoment->push_back(aECLClusters->getSecondMoment());
1844
1845 m_eclPureClusterIsTrack->push_back(aECLClusters->isTrack());
1846 m_eclPureClusterDeltaL->push_back(aECLClusters->getDeltaL());
1847
1848 m_eclPureClusterE1oE9->push_back(aECLClusters->getE1oE9());
1849 m_eclPureClusterDeltaTime99->push_back(aECLClusters->getDeltaTime99());
1850 m_eclPureClusterDetectorRegion->push_back(aECLClusters->getDetectorRegion());
1853
1854 //Dump MC Info - Multiple Matching
1855 double sumHit = 0;
1856 int idx[10];
1857 for (int i = 0; i < 10; i++)
1858 idx[i] = -1;
1859
1860 double wi[10];
1861 for (int i = 0; i < 10; i++)
1862 wi[i] = -1;
1863
1864 int ii = 0;
1865 sumHit = 0;
1866
1867 auto clusterMCRelations = aECLClusters->getRelationsTo<MCParticle>();
1868 for (unsigned int i = 0; i < clusterMCRelations.size(); ++i) {
1869 if (ii < 10) {
1870 const auto mcParticle = clusterMCRelations.object(i);
1871 idx[ii] = mcParticle->getIndex() - 1;
1872 wi[ii] = clusterMCRelations.weight(i);
1873 sumHit = sumHit + clusterMCRelations.weight(i);
1874 ii++;
1875 }
1876 }
1877
1878 //Re-ordering based on contribution
1879 int y = 0;
1880 while (y < 10) {
1881 for (int i = 0; i < 9; i++) {
1882 if (((idx[i]) > -1) && ((idx[i + 1]) > -1)) {
1883 if (wi[i] < wi[i + 1]) {
1884 int temp = idx[i];
1885 idx[i] = idx[i + 1];
1886 idx[i + 1] = temp;
1887
1888 double wtemp = wi[i];
1889 wi[i] = wi[i + 1];
1890 wi[i + 1] = wtemp;
1891 }
1892 }
1893 }
1894 y++;
1895 }
1896
1897 m_eclPureClusterToBkgWeight->push_back(clusterE - sumHit);
1898 if (idx[0] > -1) {
1899 m_eclPureClusterToMCWeight1->push_back(wi[0]);
1900 m_eclPureClusterToMC1->push_back(idx[0]);
1901 MCParticle* amcParticle = m_mcParticles[idx[0]];
1902 m_eclPureClusterToMC1PDG->push_back(amcParticle->getPDG());
1903 } else {
1904 m_eclPureClusterToMCWeight1->push_back(-1);
1905 m_eclPureClusterToMC1->push_back(-1);
1906 m_eclPureClusterToMC1PDG->push_back(-1);
1907 }
1908 if (idx[1] > -1) {
1909 m_eclPureClusterToMCWeight2->push_back(wi[1]);
1910 m_eclPureClusterToMC2->push_back(idx[1]);
1911 MCParticle* amcParticle = m_mcParticles[idx[1]];
1912 m_eclPureClusterToMC2PDG->push_back(amcParticle->getPDG());
1913 } else {
1914 m_eclPureClusterToMCWeight2->push_back(-1);
1915 m_eclPureClusterToMC2->push_back(-1);
1916 m_eclPureClusterToMC2PDG->push_back(-1);
1917 }
1918 if (idx[2] > -1) {
1919 m_eclPureClusterToMCWeight3->push_back(wi[2]);
1920 m_eclPureClusterToMC3->push_back(idx[2]);
1921 MCParticle* amcParticle = m_mcParticles[idx[2]];
1922 m_eclPureClusterToMC3PDG->push_back(amcParticle->getPDG());
1923 } else {
1924 m_eclPureClusterToMCWeight3->push_back(-1);
1925 m_eclPureClusterToMC3->push_back(-1);
1926 m_eclPureClusterToMC3PDG->push_back(-1);
1927 }
1928 if (idx[3] > -1) {
1929 m_eclPureClusterToMCWeight4->push_back(wi[3]);
1930 m_eclPureClusterToMC4->push_back(idx[3]);
1931 MCParticle* amcParticle = m_mcParticles[idx[3]];
1932 m_eclPureClusterToMC4PDG->push_back(amcParticle->getPDG());
1933 } else {
1934 m_eclPureClusterToMCWeight4->push_back(-1);
1935 m_eclPureClusterToMC4->push_back(-1);
1936 m_eclPureClusterToMC4PDG->push_back(-1);
1937 }
1938 if (idx[4] > -1) {
1939 m_eclPureClusterToMCWeight5->push_back(wi[4]);
1940 m_eclPureClusterToMC5->push_back(idx[4]);
1941 MCParticle* amcParticle = m_mcParticles[idx[4]];
1942 m_eclPureClusterToMC5PDG->push_back(amcParticle->getPDG());
1943 } else {
1944 m_eclPureClusterToMCWeight5->push_back(-1);
1945 m_eclPureClusterToMC5->push_back(-1);
1946 m_eclPureClusterToMC5PDG->push_back(-1);
1947 }
1948
1949 }
1950 }
1951
1952 m_eclShowerMultip = m_eclShowers.getEntries();
1953 for (uint ishowers = 0; ishowers < (uint)m_eclShowers.getEntries() ; ishowers++) {
1954 ECLShower* aECLShowers = m_eclShowers[ishowers];
1955 m_eclShowerIdx->push_back(ishowers);
1956 m_eclShowerEnergy->push_back(aECLShowers->getEnergy());
1957 m_eclShowerTheta->push_back(aECLShowers->getTheta());
1958 m_eclShowerPhi->push_back(aECLShowers->getPhi());
1959 m_eclShowerR->push_back(aECLShowers->getR());
1960 m_eclShowerNHits->push_back(aECLShowers->getNumberOfCrystals());
1961 m_eclShowerE9oE21->push_back(aECLShowers->getE9oE21());
1962 m_eclShowerUncEnergy->push_back(aECLShowers->getEnergyRaw());
1963 m_eclShowerTime->push_back(aECLShowers->getTime());
1964 m_eclShowerT99->push_back(aECLShowers->getDeltaTime99());
1965 m_eclShowerConnectedRegionId->push_back(aECLShowers->getConnectedRegionId());
1966 m_eclShowerHypothesisId->push_back(aECLShowers->getHypothesisId());
1967 m_eclShowerCentralCellId->push_back(aECLShowers->getCentralCellId());
1968 m_eclShowerEnergyError->push_back(aECLShowers->getUncertaintyEnergy());
1969 m_eclShowerThetaError->push_back(aECLShowers->getUncertaintyTheta());
1970 m_eclShowerPhiError->push_back(aECLShowers->getUncertaintyPhi());
1971 m_eclShowerTimeResolution->push_back(aECLShowers->getDeltaTime99());
1972 m_eclShowerHighestEnergy->push_back(aECLShowers->getEnergyHighestCrystal());
1973 m_eclShowerLateralEnergy->push_back(aECLShowers->getLateralEnergy());
1974 m_eclShowerMinTrkDistance->push_back(aECLShowers->getMinTrkDistance());
1975 m_eclShowerTrkDepth->push_back(aECLShowers->getTrkDepth());
1976 m_eclShowerShowerDepth->push_back(aECLShowers->getShowerDepth());
1977 m_eclShowerAbsZernike40->push_back(aECLShowers->getAbsZernikeMoment(4, 0));
1978 m_eclShowerAbsZernike51->push_back(aECLShowers->getAbsZernikeMoment(5, 1));
1979 m_eclShowerZernikeMVA->push_back(aECLShowers->getZernikeMVA());
1980 m_eclShowerSecondMoment->push_back(aECLShowers->getSecondMoment());
1981 m_eclShowerE1oE9->push_back(aECLShowers->getE1oE9());
1982 m_eclShowerIsTrack->push_back(aECLShowers->getIsTrack());
1984
1985 double fe = 0.;
1986 double se = 0.;
1987
1988 auto showerDigitRelations = aECLShowers->getRelationsTo<ECLCalDigit>();
1989 for (unsigned int i = 0; i < showerDigitRelations.size(); ++i) {
1990 const auto aECLCalDigits = showerDigitRelations.object(i);
1991 if (aECLCalDigits->getEnergy() > fe) {
1992 se = fe;
1993 fe = aECLCalDigits->getEnergy();
1994 }
1995 }
1996 if (fe > 0 && se > 0)
1997 m_eclShowerHighestE1mE2->push_back(fe - se);
1998 else
1999 m_eclShowerHighestE1mE2->push_back(-1);
2000
2001 int lm1[5] = { -1, -1, -1, -1, -1};
2002
2003 auto showerLMRelations = aECLShowers->getRelationsTo<ECLLocalMaximum>();
2004 for (unsigned int i = 0; i < showerLMRelations.size(); ++i) {
2005 const auto aECLLM = showerLMRelations.object(i);
2006 lm1[i] = aECLLM->getLMId();
2007 }
2008 m_eclShowerToLM1->push_back(lm1[0]);
2009 m_eclShowerToLM2->push_back(lm1[1]);
2010 m_eclShowerToLM3->push_back(lm1[2]);
2011 m_eclShowerToLM4->push_back(lm1[3]);
2012 m_eclShowerToLM5->push_back(lm1[4]);
2013
2014 double sumHit = 0;
2015
2016 int idx[10];
2017 for (int i = 0; i < 10; i++)
2018 idx[i] = -1;
2019
2020 double wi[10];
2021 for (int i = 0; i < 10; i++)
2022 wi[i] = -1;
2023
2024 int ii = 0;
2025 sumHit = 0;
2026
2027 auto showerMCRelations = aECLShowers->getRelationsTo<MCParticle>();
2028 for (unsigned int i = 0; i < showerMCRelations.size(); ++i) {
2029 if (ii < 10) {
2030 const auto mcParticle = showerMCRelations.object(i);
2031 idx[ii] = mcParticle->getIndex() - 1;
2032 wi[ii] = showerMCRelations.weight(i);
2033 sumHit = sumHit + showerMCRelations.weight(i);
2034 ii++;
2035 }
2036 }
2037
2038 //Re-ordering based on contribution
2039 int y = 0;
2040 while (y < 10) {
2041 for (int i = 0; i < 9; i++) {
2042 if (((idx[i]) > -1) && ((idx[i + 1]) > -1)) {
2043 if (wi[i] < wi[i + 1]) {
2044 int temp = idx[i];
2045 idx[i] = idx[i + 1];
2046 idx[i + 1] = temp;
2047
2048 double wtemp = wi[i];
2049 wi[i] = wi[i + 1];
2050 wi[i + 1] = wtemp;
2051 }
2052 }
2053 }
2054 y++;
2055 }
2056
2057 int no_Primary = 1;
2058
2059 for (unsigned int i = 0; i < showerMCRelations.size(); ++i) {
2060 const auto mcParticle = showerMCRelations.object(i);
2061 if (mcParticle->getSecondaryPhysicsProcess() == 0 && mcParticle->getPDG() == Const::Klong.getPDGCode()) {
2062 double vtxx = mcParticle->getDecayVertex().X();
2063 double vtxy = mcParticle->getDecayVertex().Y();
2064 double vtxz = mcParticle->getDecayVertex().Z();
2065 if ((TMath::Sqrt(vtxx * vtxx + vtxy * vtxy) > 118) || (vtxz > 196.16) || (vtxz < -102.16))
2066 no_Primary = 0;
2067 } else if (mcParticle->getSecondaryPhysicsProcess() != 0 && mcParticle->getMother()->getPDG() == Const::Klong.getPDGCode()) {
2068 double vtxx = mcParticle->getProductionVertex().X();
2069 double vtxy = mcParticle->getProductionVertex().Y();
2070 double vtxz = mcParticle->getProductionVertex().Z();
2071 if ((TMath::Sqrt(vtxx * vtxx + vtxy * vtxy) > 118) || (vtxz > 196.16) || (vtxz < -102.16))
2072 no_Primary = 0;
2073 }
2074 }
2075
2076 if (no_Primary == 0)
2077 m_eclShowerMCVtxInEcl->push_back(1);
2078 else
2079 m_eclShowerMCVtxInEcl->push_back(0);
2080
2081 double no_fMatch = 0;
2082 double no_fFMatch = 0;
2083
2084 for (unsigned int i = 0; i < showerMCRelations.size(); ++i) {
2085 const auto mcParticle = showerMCRelations.object(i);
2086 if (mcParticle->getSecondaryPhysicsProcess() == 0) {
2087 double vtxx = mcParticle->getDecayVertex().X();
2088 double vtxy = mcParticle->getDecayVertex().Y();
2089 double vtxz = mcParticle->getDecayVertex().Z();
2090 double px = mcParticle->getMomentum().X();
2091 double py = mcParticle->getMomentum().Y();
2092 double pz = mcParticle->getMomentum().Z();
2093 double p = TMath::Sqrt(px * px + py * py + pz * pz);
2094 double pTheta = TMath::ACos(pz / p);
2095 double pPhi = 10.;
2096 if (py > 0) {
2097 if (px > 0)
2098 pPhi = TMath::ATan(py / px);
2099 if (px < 0)
2100 pPhi = TMath::ATan(py / px) + M_PI;
2101 } else {
2102 if (px > 0)
2103 pPhi = TMath::ATan(py / px) ;
2104 if (px < 0)
2105 pPhi = TMath::ATan(py / px) - M_PI;
2106 }
2107 if ((TMath::Sqrt(vtxx * vtxx + vtxy * vtxy) > 118) || (vtxz > 196.16) || (vtxz < -102.16)) {
2108 if (TMath::Abs(aECLShowers->getTheta() - pTheta) < 0.05 && TMath::Abs(aECLShowers->getPhi() - pPhi) < 0.05)
2109 no_fMatch = 1;
2110 no_fFMatch = 1;
2111 }
2112 } else if (mcParticle->getMother()->getPDG() == Const::Klong.getPDGCode()) {
2113 double vtxx = mcParticle->getProductionVertex().X();
2114 double vtxy = mcParticle->getProductionVertex().Y();
2115 double vtxz = mcParticle->getProductionVertex().Z();
2116 MCParticle* amcParticle = mcParticle->getMother();
2117 double px = amcParticle->getMomentum().X();
2118 double py = amcParticle->getMomentum().Y();
2119 double pz = amcParticle->getMomentum().Z();
2120 double p = TMath::Sqrt(px * px + py * py + pz * pz);
2121 double pTheta = TMath::ACos(pz / p);
2122 double pPhi = 10.;
2123 if (py > 0) {
2124 if (px > 0)
2125 pPhi = TMath::ATan(py / px);
2126 if (px < 0)
2127 pPhi = TMath::ATan(py / px) + M_PI;
2128 } else {
2129 if (px > 0)
2130 pPhi = TMath::ATan(py / px) ;
2131 if (px < 0)
2132 pPhi = TMath::ATan(py / px) - M_PI;
2133 }
2134 if ((TMath::Sqrt(vtxx * vtxx + vtxy * vtxy) > 118) || (vtxz > 196.16) || (vtxz < -102.16)) {
2135 if (TMath::Abs(aECLShowers->getTheta() - pTheta) < 0.05 && TMath::Abs(aECLShowers->getPhi() - pPhi) < 0.05)
2136 no_fMatch = 1;
2137 }
2138 }
2139 }
2140
2141 if (no_fMatch == 1)
2142 m_eclShowerMCFlightMatch->push_back(1);
2143 else
2144 m_eclShowerMCFlightMatch->push_back(0);
2145
2146 if (no_fFMatch == 1)
2147 m_eclShowerMCFFlightMatch->push_back(1);
2148 else
2149 m_eclShowerMCFFlightMatch->push_back(0);
2150
2151 if (idx[0] > -1) {
2152 m_eclShowerToMCWeight1->push_back(wi[0]);
2153 m_eclShowerToMC1->push_back(idx[0]);
2154 MCParticle* amcParticle = m_mcParticles[idx[0]];
2155 m_eclShowerToMC1PDG->push_back(amcParticle->getPDG());
2156 if (amcParticle->getMother() != nullptr) {
2157 m_eclShowerToMC1Moth->push_back(amcParticle->getMother()->getIndex());
2158 m_eclShowerToMC1MothPDG->push_back(amcParticle->getMother()->getPDG());
2159 if (amcParticle->getMother()->getMother() != nullptr) {
2160 m_eclShowerToMC1GMoth->push_back(amcParticle->getMother()->getMother()->getIndex());
2161 m_eclShowerToMC1GMothPDG->push_back(amcParticle->getMother()->getMother()->getPDG());
2162 } else {
2163 m_eclShowerToMC1GMoth->push_back(-999);
2164 m_eclShowerToMC1GMothPDG->push_back(-999);
2165 }
2166 } else {
2167 m_eclShowerToMC1Moth->push_back(-999);
2168 m_eclShowerToMC1MothPDG->push_back(-999);
2169 m_eclShowerToMC1GMoth->push_back(-999);
2170 m_eclShowerToMC1GMothPDG->push_back(-999);
2171 }
2172 } else {
2173 m_eclShowerToMCWeight1->push_back(-1);
2174 m_eclShowerToMC1->push_back(-1);
2175 m_eclShowerToMC1PDG->push_back(-1);
2176 m_eclShowerToMC1Moth->push_back(-1);
2177 m_eclShowerToMC1MothPDG->push_back(-1);
2178 m_eclShowerToMC1GMoth->push_back(-1);
2179 m_eclShowerToMC1GMothPDG->push_back(-1);
2180 }
2181 if (idx[1] > -1) {
2182 m_eclShowerToMCWeight2->push_back(wi[1]);
2183 m_eclShowerToMC2->push_back(idx[1]);
2184 MCParticle* amcParticle = m_mcParticles[idx[1]];
2185 m_eclShowerToMC2PDG->push_back(amcParticle->getPDG());
2186 if (amcParticle->getMother() != nullptr) {
2187 m_eclShowerToMC2Moth->push_back(amcParticle->getMother()->getIndex());
2188 m_eclShowerToMC2MothPDG->push_back(amcParticle->getMother()->getPDG());
2189 if (amcParticle->getMother()->getMother() != nullptr) {
2190 m_eclShowerToMC2GMoth->push_back(amcParticle->getMother()->getMother()->getIndex());
2191 m_eclShowerToMC2GMothPDG->push_back(amcParticle->getMother()->getMother()->getPDG());
2192 } else {
2193 m_eclShowerToMC2GMoth->push_back(-999);
2194 m_eclShowerToMC2GMothPDG->push_back(-999);
2195 }
2196 } else {
2197 m_eclShowerToMC2Moth->push_back(-999);
2198 m_eclShowerToMC2MothPDG->push_back(-999);
2199 m_eclShowerToMC2GMoth->push_back(-999);
2200 m_eclShowerToMC2GMothPDG->push_back(-999);
2201 };
2202 } else {
2203 m_eclShowerToMCWeight2->push_back(-1);
2204 m_eclShowerToMC2->push_back(-1);
2205 m_eclShowerToMC2PDG->push_back(-1);
2206 m_eclShowerToMC2Moth->push_back(-1);
2207 m_eclShowerToMC2MothPDG->push_back(-1);
2208 m_eclShowerToMC2GMoth->push_back(-1);
2209 m_eclShowerToMC2GMothPDG->push_back(-1);
2210 }
2211 if (idx[2] > -1) {
2212 m_eclShowerToMCWeight3->push_back(wi[2]);
2213 m_eclShowerToMC3->push_back(idx[2]);
2214 MCParticle* amcParticle = m_mcParticles[idx[2]];
2215 m_eclShowerToMC3PDG->push_back(amcParticle->getPDG());
2216 if (amcParticle->getMother() != nullptr) {
2217 m_eclShowerToMC3Moth->push_back(amcParticle->getMother()->getIndex());
2218 m_eclShowerToMC3MothPDG->push_back(amcParticle->getMother()->getPDG());
2219 if (amcParticle->getMother()->getMother() != nullptr) {
2220 m_eclShowerToMC3GMoth->push_back(amcParticle->getMother()->getMother()->getIndex());
2221 m_eclShowerToMC3GMothPDG->push_back(amcParticle->getMother()->getMother()->getPDG());
2222 } else {
2223 m_eclShowerToMC3GMoth->push_back(-999);
2224 m_eclShowerToMC3GMothPDG->push_back(-999);
2225 }
2226 } else {
2227 m_eclShowerToMC3Moth->push_back(-999);
2228 m_eclShowerToMC3MothPDG->push_back(-999);
2229 m_eclShowerToMC3GMoth->push_back(-999);
2230 m_eclShowerToMC3GMothPDG->push_back(-999);
2231 }
2232 } else {
2233 m_eclShowerToMCWeight3->push_back(-1);
2234 m_eclShowerToMC3->push_back(-1);
2235 m_eclShowerToMC3PDG->push_back(-1);
2236 m_eclShowerToMC3Moth->push_back(-1);
2237 m_eclShowerToMC3MothPDG->push_back(-1);
2238 m_eclShowerToMC3GMoth->push_back(-1);
2239 m_eclShowerToMC3GMothPDG->push_back(-1);
2240 }
2241 if (idx[3] > -1) {
2242 m_eclShowerToMCWeight4->push_back(wi[3]);
2243 m_eclShowerToMC4->push_back(idx[3]);
2244 MCParticle* amcParticle = m_mcParticles[idx[3]];
2245 m_eclShowerToMC4PDG->push_back(amcParticle->getPDG());
2246 if (amcParticle->getMother() != nullptr) {
2247 m_eclShowerToMC4Moth->push_back(amcParticle->getMother()->getIndex());
2248 m_eclShowerToMC4MothPDG->push_back(amcParticle->getMother()->getPDG());
2249 if (amcParticle->getMother()->getMother() != nullptr) {
2250 m_eclShowerToMC4GMoth->push_back(amcParticle->getMother()->getMother()->getIndex());
2251 m_eclShowerToMC4GMothPDG->push_back(amcParticle->getMother()->getMother()->getPDG());
2252 } else {
2253 m_eclShowerToMC4GMoth->push_back(-999);
2254 m_eclShowerToMC4GMothPDG->push_back(-999);
2255 }
2256 } else {
2257 m_eclShowerToMC4Moth->push_back(-999);
2258 m_eclShowerToMC4MothPDG->push_back(-999);
2259 m_eclShowerToMC4GMoth->push_back(-999);
2260 m_eclShowerToMC4GMothPDG->push_back(-999);
2261 }
2262 } else {
2263 m_eclShowerToMCWeight4->push_back(-1);
2264 m_eclShowerToMC4->push_back(-1);
2265 m_eclShowerToMC4PDG->push_back(-1);
2266 m_eclShowerToMC4Moth->push_back(-1);
2267 m_eclShowerToMC4MothPDG->push_back(-1);
2268 m_eclShowerToMC4GMoth->push_back(-1);
2269 m_eclShowerToMC4GMothPDG->push_back(-1);
2270 }
2271 if (idx[4] > -1) {
2272 m_eclShowerToMCWeight5->push_back(wi[4]);
2273 m_eclShowerToMC5->push_back(idx[4]);
2274 MCParticle* amcParticle = m_mcParticles[idx[4]];
2275 m_eclShowerToMC5PDG->push_back(amcParticle->getPDG());
2276 if (amcParticle->getMother() != nullptr) {
2277 m_eclShowerToMC5Moth->push_back(amcParticle->getMother()->getIndex());
2278 m_eclShowerToMC5MothPDG->push_back(amcParticle->getMother()->getPDG());
2279 if (amcParticle->getMother()->getMother() != nullptr) {
2280 m_eclShowerToMC5GMoth->push_back(amcParticle->getMother()->getMother()->getIndex());
2281 m_eclShowerToMC5GMothPDG->push_back(amcParticle->getMother()->getMother()->getPDG());
2282 } else {
2283 m_eclShowerToMC5GMoth->push_back(-999);
2284 m_eclShowerToMC5GMothPDG->push_back(-999);
2285 }
2286 } else {
2287 m_eclShowerToMC5Moth->push_back(-999);
2288 m_eclShowerToMC5MothPDG->push_back(-999);
2289 m_eclShowerToMC5GMoth->push_back(-999);
2290 m_eclShowerToMC5GMothPDG->push_back(-999);
2291 }
2292 } else {
2293 m_eclShowerToMCWeight5->push_back(-1);
2294 m_eclShowerToMC5->push_back(-1);
2295 m_eclShowerToMC5PDG->push_back(-1);
2296 m_eclShowerToMC5Moth->push_back(-1);
2297 m_eclShowerToMC5MothPDG->push_back(-1);
2298 m_eclShowerToMC5GMoth->push_back(-1);
2299 m_eclShowerToMC5GMothPDG->push_back(-1);
2300 }
2301 m_eclShowerToBkgWeight->push_back(aECLShowers->getEnergy() - sumHit);
2302 }
2303
2305 for (int imcpart = 0; imcpart < m_mcParticles.getEntries(); imcpart++) {
2306 MCParticle* amcParticle = m_mcParticles[imcpart];
2307 m_mcIdx->push_back(amcParticle->getArrayIndex());
2308 m_mcPdg->push_back(amcParticle->getPDG());
2309 if (amcParticle->getMother() != nullptr) m_mcMothPdg->push_back(amcParticle->getMother()->getPDG());
2310 else m_mcMothPdg->push_back(-999);
2311 if (amcParticle->getMother() != nullptr
2312 && amcParticle->getMother()->getMother() != nullptr) m_mcGMothPdg->push_back(amcParticle->getMother()->getMother()->getPDG());
2313 else m_mcGMothPdg->push_back(-999);
2314 if (amcParticle->getMother() != nullptr && amcParticle->getMother()->getMother() != nullptr
2315 && amcParticle->getMother()->getMother()->getMother() != nullptr)
2316 m_mcGGMothPdg->push_back(amcParticle->getMother()->getMother()->getMother()->getPDG());
2317 else m_mcGGMothPdg->push_back(-999);
2318 m_mcEnergy->push_back(amcParticle->getEnergy());
2319 m_mcSecondaryPhysProc->push_back(amcParticle->getSecondaryPhysicsProcess());
2320
2321 m_mcPx->push_back(amcParticle->getMomentum().X());
2322 m_mcPy->push_back(amcParticle->getMomentum().Y());
2323 m_mcPz->push_back(amcParticle->getMomentum().Z());
2324
2325 m_mcDecayVtxX->push_back(amcParticle->getDecayVertex().X());
2326 m_mcDecayVtxY->push_back(amcParticle->getDecayVertex().Y());
2327 m_mcDecayVtxZ->push_back(amcParticle->getDecayVertex().Z());
2328
2329 m_mcProdVtxX->push_back(amcParticle->getProductionVertex().X());
2330 m_mcProdVtxY->push_back(amcParticle->getProductionVertex().Y());
2331 m_mcProdVtxZ->push_back(amcParticle->getProductionVertex().Z());
2332
2333 }
2334
2335 if (m_doTracking == true) {
2336 m_trkMultip = 0;
2337 for (const Track& itrk : m_tracks) {
2338 const TrackFitResult* atrk = itrk.getTrackFitResult(Const::pion);
2339 if (atrk == nullptr) continue;
2340
2341 m_trkIdx->push_back(m_trkMultip);
2342 m_trkPdg->push_back(atrk->getParticleType().getPDGCode());
2343 m_trkCharge->push_back(atrk->getChargeSign());
2344 m_trkPx->push_back(atrk->getMomentum().X());
2345 m_trkPy->push_back(atrk->getMomentum().Y());
2346 m_trkPz->push_back(atrk->getMomentum().Z());
2347 m_trkP->push_back(atrk->getMomentum().R());
2348 m_trkTheta->push_back(atrk->getMomentum().Theta());
2349 m_trkPhi->push_back(atrk->getMomentum().Phi());
2350 m_trkX->push_back(atrk->getPosition().X());
2351 m_trkY->push_back(atrk->getPosition().Y());
2352 m_trkZ->push_back(atrk->getPosition().Z());
2353
2354 const ECLPidLikelihood* eclpid = itrk.getRelatedTo<ECLPidLikelihood>() ;
2355
2356 if (eclpid != nullptr) {
2357 m_eclpidtrkIdx -> push_back(m_trkMultip);
2358 m_eclpidEnergy -> push_back(eclpid-> energy());
2359 m_eclpidEop -> push_back(eclpid-> eop());
2360 m_eclpidE9E21 -> push_back(eclpid-> e9e25());
2361 m_eclpidNCrystals -> push_back(eclpid-> nCrystals());
2362 m_eclpidNClusters -> push_back(eclpid-> nClusters());
2363 m_eclLogLikeEl -> push_back(eclpid-> getLogLikelihood(Const::electron));
2364 m_eclLogLikeMu -> push_back(eclpid-> getLogLikelihood(Const::muon));
2365 m_eclLogLikePi -> push_back(eclpid-> getLogLikelihood(Const::pion));
2366 } else {
2367 m_eclpidtrkIdx -> push_back(m_trkMultip);
2368 m_eclpidEnergy -> push_back(0);
2369 m_eclpidEop -> push_back(0);
2370 m_eclpidE9E21 -> push_back(0);
2371 m_eclpidNCrystals -> push_back(0);
2372 m_eclpidNClusters -> push_back(0);
2373 m_eclLogLikeEl -> push_back(0);
2374 m_eclLogLikeMu -> push_back(0);
2375 m_eclLogLikePi -> push_back(0);
2376 }
2377 m_trkMultip++;
2378 }
2379 }
2380
2381 m_tree->Fill();
2382}
2383
2385{
2386}
2387
2389{
2390
2391 if (m_rootFilePtr != nullptr) {
2392 m_rootFilePtr->cd();
2393 m_tree->Write();
2394 }
2395
2396}
int getPDGCode() const
PDG code.
Definition: Const.h:473
static const ChargedStable muon
muon particle
Definition: Const.h:660
static const ChargedStable pion
charged pion particle
Definition: Const.h:661
static const ParticleType Klong
K^0_L particle.
Definition: Const.h:678
static const ChargedStable electron
electron particle
Definition: Const.h:659
Class to store calibrated ECLDigits: ECLCalDigits.
Definition: ECLCalDigit.h:23
int getCellId() const
Get Cell ID.
Definition: ECLCalDigit.h:118
double getEnergy() const
Get Calibrated Energy.
Definition: ECLCalDigit.h:123
double getTime() const
Get Calibrated Time.
Definition: ECLCalDigit.h:163
ECL cluster data.
Definition: ECLCluster.h:27
unsigned short getMaxECellId() const
Return cellID of maximum energy crystal.
Definition: ECLCluster.h:247
bool isTrack() const
Return true if the cluster matches with track.
Definition: ECLCluster.h:235
bool hasHypothesis(EHypothesisBit bitmask) const
Return if specific hypothesis bit is set.
Definition: ECLCluster.h:351
double getPhi() const
Return Corrected Phi of Shower (radian).
Definition: ECLCluster.h:304
double getE1oE9() const
Return E1/E9 (shower shape variable).
Definition: ECLCluster.h:277
double getDeltaL() const
Return deltaL.
Definition: ECLCluster.h:265
double getR() const
Return R.
Definition: ECLCluster.h:310
double getEnergyRaw() const
Return Uncorrected Energy deposited (GeV)
Definition: ECLCluster.h:316
double getUncertaintyTheta() const
Return Uncertainty on Theta of Shower.
Definition: ECLCluster.h:325
double getLAT() const
Return LAT (shower shape variable).
Definition: ECLCluster.h:292
double getE9oE21() const
Return E9/E21 (shower shape variable).
Definition: ECLCluster.h:280
int getDetectorRegion() const
Return detector region: 0: below acceptance, 1: FWD, 2: BRL, 3: BWD, 11: FWDGAP, 13: BWDGAP.
Definition: ECLCluster.cc:70
unsigned short getStatus() const
Return status.
Definition: ECLCluster.h:241
double getEnergy(EHypothesisBit hypothesis) const
Return Energy (GeV).
Definition: ECLCluster.cc:23
double getUncertaintyEnergy() const
Return Uncertainty on Energy of Shower.
Definition: ECLCluster.h:322
double getMinTrkDistance() const
Get distance between cluster COG and track extrapolation to ECL.
Definition: ECLCluster.h:259
double getNumberOfCrystals() const
Return number of a crystals in a shower (sum of weights).
Definition: ECLCluster.h:295
double getEnergyHighestCrystal() const
Return energy of highest energetic crystal in cluster (GeV)
Definition: ECLCluster.h:319
double getZernikeMVA() const
Return MVA based hadron/photon value based on Zernike moments (shower shape variable).
Definition: ECLCluster.h:274
double getUncertaintyPhi() const
Return Uncertainty on Phi of Shower.
Definition: ECLCluster.h:328
double getAbsZernike40() const
Return Zernike moment 40 (shower shape variable).
Definition: ECLCluster.h:268
double getSecondMoment() const
Return second moment (shower shape variable).
Definition: ECLCluster.h:289
double getTheta() const
Return Corrected Theta of Shower (radian).
Definition: ECLCluster.h:307
double getDeltaTime99() const
Return cluster delta time 99.
Definition: ECLCluster.h:301
double getTime() const
Return cluster time.
Definition: ECLCluster.h:298
@ c_nPhotons
CR is split into n photons (N1)
@ c_neutralHadron
CR is reconstructed as a neutral hadron (N2)
double getAbsZernike51() const
Return Zernike moment 51 (shower shape variable).
Definition: ECLCluster.h:271
Class to store connected regions (CRs)
float getLikelihoodChargedHadron() const
Get Charged Hadron likelihood (ECL based only) T2.
bool isTrack() const
Get boolean to flag if a track is matched to the CR.
float getLikelihoodNeutralHadron() const
Get Neutral Hadron likelihood (ECL based only) N2.
float getLikelihoodMIPNGamma() const
Get MIPNGamma likelihood (ECL based only) T1.
float getLikelihoodNGamma() const
Get NGamma likelihood (ECL based only) N1.
int getCRId() const
Get CR identifier.
float getLikelihoodMergedPi0() const
Get Merged Pi0 likelihood (ECL based only) N3.
float getLikelihoodElectronNGamma() const
Get ElectronNGamma likelihood (ECL based only) T3.
std::vector< int > * m_eclClusterToMC4PDG
PDG code of fourth MCParticle related to ECLCluster.
std::vector< int > * m_eclShowerToLM5
Index of 5th maximum related to ECLShower.
std::vector< int > * m_eclShowerToMC2PDG
PDG code of second MCParticle related to ECLShower.
std::vector< double > * m_eclShowerTimeResolution
Shower Time Resolution.
bool m_doPureCsI
if true, info on pureCsI upgrade is stored
std::vector< int > * m_eclPureCalDigitToMC5PDG
PDG code of fifth MCParticle related to CalDigit, PureCsI option.
std::string m_rootFileName
name of the root file
std::vector< double > * m_eclPureCalDigitToMCWeight5
Energy contribution of fifth MCParticle related to CalDigit, PureCsI option.
std::vector< int > * m_eclShowerToMC5GMothPDG
PDG code of Gparent of fifth MCParticle related to ECLShower.
virtual const char * eclShowerArrayName() const
Default name ECLShower array.
std::vector< double > * m_eclLogLikeEl
PID track electron likelihood.
int m_eclDigitMultip
Number of ECLDigits per event.
std::vector< double > * m_eclClusterToMCWeight5
Energy contribution of 5th MCParticle related to ECLCluster.
bool m_doHits
if true, info on Hits and SimHits is stored
std::vector< int > * m_eclShowerToMC4MothPDG
PDG code of parent of fourth MCParticle related to ECLShower.
std::vector< double > * m_mcPy
MCParticle momentum Y direction.
std::vector< double > * m_eclCalDigitToMCWeight1
Energy contribution of first MCParticle related to ECLCalDigit.
std::vector< double > * m_eclClusterTheta
ECLCluster polar direction.
std::vector< int > * m_eclClusterNofCrystals
Number of crystals in ECLCluster.
std::vector< double > * m_eclPureClusterToBkgWeight
Remaining energy contribution not associated to first five MCParticles related to ECLCluster,...
std::vector< double > * m_eclPureCRLikelihoodNeutralHadron
Connected Region Neutral Hadron Likelihood, PureCsI option.
std::vector< int > * m_eclPureCalDigitToMC3PDG
PDG code of third MCParticle related to CalDigit, PureCsI option.
virtual const char * eclClusterArrayName() const
Default name ECLClusters array.
std::vector< int > * m_eclClusterDetectorRegion
Cluster Detector Region.
std::vector< int > * m_eclPureCalDigitToMC2
Index of second MCParticle related to CalDigit, PureCsI option.
std::vector< double > * m_eclCalDigitToMCWeight2
Energy contribution of second MCParticle related to ECLCalDigit.
ECLDataAnalysisModule()
Constructor of the module.
std::vector< int > * m_eclCRIdx
Connected Region ID.
std::vector< int > * m_eclClusterCellId
CellId with highest energy deposit in ECLCluster.
std::vector< int > * m_eclPureCalDigitToShower
Index of ECLShower related to that CalDigit, PureCsI option.
std::vector< int > * m_eclHitToMC
Index of MCParticle related to ECLHit.
std::vector< int > * m_eclClusterToMC3PDG
PDG code of third MCParticle related to ECLCluster.
std::vector< double > * m_eclCRLikelihoodElectronNGamma
Connected Region Electron Likelihood.
std::vector< double > * m_eclCalDigitTimeFit
ECLCalDigit timing.
std::vector< double > * m_eclPureClusterDeltaL
Reconstructed Cluster DeltaL, PureCsI option.
TTree * m_tree
Root tree and file for saving the output.
StoreArray< ECLShower > m_eclShowers
Store array: ECLShower.
std::vector< double > * m_eclCalDigitToMCWeight5
Energy contribution of fifth MCParticle related to ECLCalDigit.
std::vector< double > * m_eclSimHitFlightTime
ECLSimhit Flight Time.
std::vector< int > * m_eclClusterIdx
ECLCluster index.
std::vector< int > * m_eclPureClusterToMC5
Index of fifth MCParticle related to ECLCluster, PureCsI option.
std::vector< double > * m_eclPureCalDigitToBkgWeight
Remaining energy contribution not associated to first five MCParticles related to CalDigit,...
std::vector< double > * m_eclShowerEnergyError
Shower Energy Error.
StoreArray< ECLConnectedRegion > m_eclConnectedRegions
Store array: ECLConnectedRegion.
std::vector< double > * m_eclShowerTime
Shower Timing.
int m_trkMultip
Track Multiplicity.
std::vector< double > * m_eclShowerTheta
Shower Theta.
std::vector< double > * m_eclShowerShowerDepth
Shower Depth.
std::vector< int > * m_eclShowerToMC4GMoth
GMother index of fourth MCParticle related to ECLShower.
std::vector< double > * m_eclCalDigitToMCWeight4
Energy contribution of fourth MCParticle related to ECLCalDigit.
std::vector< int > * m_eclPureCalDigitCellId
Number of CalDigit CellId, PureCsI option.
std::vector< double > * m_eclClusterR
ECLCluster distance from IP.
virtual const char * eclSimHitArrayName() const
Default name ECLCalDigits array.
std::vector< bool > * m_eclPureClusterIsTrack
Flag for charged clusters, PureCsI option.
std::vector< int > * m_eclPureCalDigitToMC1
Index of first MCParticle related to CalDigit, PureCsI option.
bool m_writeToRoot
if true, a rootFile named by m_rootFileName will be filled with info
std::vector< int > * m_eclPureClusterToMC5PDG
PDG code of fifth MCParticle related to ECLCluster, PureCsI option.
std::vector< double > * m_eclShowerE9oE21
Shower E9oE21.
std::vector< double > * m_eclPureClusterTimingError
Cluster time error, PureCsI option.
std::vector< int > * m_eclPureClusterToMC3
Index of third MCParticle related to ECLCluster, PureCsI option.
std::vector< int > * m_eclPureDigitToCluster
ECLDigit To Cluster, PureCsI option.
bool m_doDigits
if true, info on Digits and CalDigits is stored
std::vector< double > * m_eclPureClusterEnergyDepSum
Cluster simulated energy, PureCsI option.
virtual const char * eclPureClusterArrayName() const
Default name ECLPureClusters array.
std::vector< double > * m_eclShowerNumberOfCrystalsForEnergy
Number of crystals used for energy calculation.
std::vector< bool > * m_eclShowerIsCluster
Shower Cluster Match.
std::vector< int > * m_eclPureClusterToMC3PDG
PDG code of third MCParticle related to ECLCluster, PureCsI option.
std::vector< int > * m_eclCalDigitToMC2PDG
PDG code of second MCParticle related to ECLCalDigit.
std::vector< double > * m_mcDecayVtxZ
MCParticle decay vertex Z.
std::vector< int > * m_eclPureDigitToMC
Index of MCParticle related to that ECLDigit, PureCsI option.
std::vector< int > * m_eclClusterToMC5PDG
PDG code of fifth MCParticle related to ECLCluster.
std::vector< double > * m_eclPureClusterZernikeMVA
Output of MVA classifier based on Zernike Momenta, PureCsI option.
std::vector< double > * m_eclSimHitX
ECLSimHit X position.
virtual void initialize() override
Initializes the Module.
std::vector< int > * m_eclCalDigitToMC2
Index of second MCParticle related to ECLCalDigit.
StoreArray< ECLCalDigit > m_eclPureCalDigits
Store array: ECLPureCalDigit.
std::vector< int > * m_eclShowerHypothesisId
Shower Particle Hypothesis ID.
std::vector< double > * m_eclSimHitPz
ECLSimHit PZ.
std::vector< int > * m_eclShowerMCVtxInEcl
Int, 1 if particle decays (interacts) in ECL, 0 otherwise.
std::vector< int > * m_eclPureCalDigitToCR
Index of CR related to that CalDigit, PureCsI option.
std::vector< double > * m_eclShowerToMCWeight4
Energy contribution of fourth MCParticle related to ECLShower.
std::vector< double > * m_eclPureClusterDeltaTime99
Reconstructed DeltaT99, PureCsI option.
int m_eclHitMultip
Number of ECLHits per event.
std::vector< double > * m_eclClusterZernikeMVA
Zernike MVA.
std::vector< int > * m_eclShowerToMC5PDG
PDG code of fifth MCParticle related to ECLShower.
std::vector< int > * m_eclShowerToMC3PDG
PDG code of third MCParticle related to ECLShower.
std::vector< int > * m_eclPureLMType
Local Maximum type, PureCsI option.
std::vector< int > * m_trkCharge
Track charge.
std::vector< int > * m_eclShowerToMC2
Index of second MCParticle related to ECLShower.
std::vector< double > * m_eclShowerToBkgWeight
Remaining energy contribution not associated to first five MCParticles related to ECLShower.
std::vector< double > * m_trkPx
Track momentum along X direction.
std::vector< double > * m_eclPureClusterAbsZernike51
Reconstructed Zernike51, PureCsI option.
std::vector< int > * m_eclDigitToMC
Index of MCParticle related to that ECLDigit.
std::vector< double > * m_eclPureCRLikelihoodMergedPi0
Connected Region Merged Pi0 Likelihood, PureCsI option.
std::vector< double > * m_eclCRLikelihoodMIPNGamma
Connected Region MIP Likelihood.
std::vector< int > * m_eclClusterToMC4
Index of fourth MCParticle related to ECLCluster.
virtual const char * eclHitArrayName() const
Default name ECLCalDigits array.
std::vector< int > * m_eclSimHitCellId
ECLSimHit CellId.
StoreArray< ECLLocalMaximum > m_eclLocalMaximums
Store array: ECLLocalMaximum.
virtual void event() override
event
std::vector< double > * m_eclCRLikelihoodNeutralHadron
Connected Region Neutral Hadron Likelihood.
std::vector< double > * m_eclPureClusterTiming
Cluster time, PureCsI option.
std::vector< double > * m_trkZ
Track DOCA Z (?)
std::vector< double > * m_eclCalDigitSimHitSum
Full energy contribution related to ECLCalDigit.
std::vector< int > * m_eclPureClusterHasNPhotonHypothesis
Cluster has n-photon hypothesis, PureCsI option.
std::vector< double > * m_eclPureCalDigitToMCWeight4
Energy contribution of fourth MCParticle related to CalDigit, PureCsI option.
virtual const char * eclLocalMaximumArrayName() const
Default name ECLLocalMaxima array.
std::vector< int > * m_eclCalDigitFitQuality
ECLCalDigit fit quality.
std::vector< int > * m_eclShowerToMC5GMoth
GMother index of fifth MCParticle related to ECLShower.
std::vector< int > * m_eclCalDigitToMC4
Index of fourth MCParticle related to ECLCalDigit.
std::vector< double > * m_eclHitEnergyDep
ECLHit energy.
std::vector< double > * m_eclCRLikelihoodChargedHadron
Connected Region Charged Hadron Likelihood.
std::vector< int > * m_eclShowerMCFlightMatch
Int, 1 if particle flight direction is "well" reconstructed in ECL, 0 otherwise.
std::vector< double > * m_eclClusterPhi
ECLCluster azimuthal direction.
std::vector< double > * m_eclClusterAbsZernike40
Reconstructed Abs Zernike40.
int m_eclCalDigitMultip
Number of ECLCalDigits per event.
std::vector< int > * m_eclShowerToMC4Moth
Mother index of fourth MCParticle related to ECLShower.
std::vector< int > * m_eclShowerToMC3GMoth
GMother index of third MCParticle related to ECLShower.
std::vector< double > * m_eclPureClusterHighestE
Highest energy deposit (per crystal) in Cluster, PureCsI option.
std::vector< int > * m_eclClusterHasNPhotonHypothesis
Cluster has n-photon hypothesis.
std::vector< int > * m_eclPureClusterToMC2PDG
PDG code of second MCParticle related to ECLCluster, PureCsI option.
std::vector< double > * m_eclShowerToMCWeight2
Energy contribution of second MCParticle related to ECLShower.
std::vector< int > * m_eclShowerToMC1PDG
PDG code of first MCParticle related to ECLShower.
uint16_t m_nECLCalDigitsOutOfTimeFWD
Number of out of time, energetic ECLCalDigits, FWD.
std::vector< double > * m_eclSimHitEnergyDep
Energy deposition of ECLSimHit.
std::vector< int > * m_eclPureCalDigitToMC2PDG
PDG code of second MCParticle related to CalDigit, PureCsI option.
std::vector< double > * m_trkPz
Track momentum along Z direction.
std::vector< double > * m_eclClusterToMCWeight1
Energy contribution of first MCParticle related to ECLCluster.
std::vector< int > * m_eclShowerToLM2
Index of 2nd maximum related to ECLShower.
std::vector< int > * m_eclPureCalDigitToMC4
Index of fourth MCParticle related to CalDigit, PureCsI option.
std::vector< int > * m_eclPureClusterNofCrystals
Number of crystals in Cluster, PureCsI option.
std::vector< int > * m_eclHitToPureDigit
Index of ECLDigit related to ECLHit, PureCsI option.
std::vector< int > * m_eclShowerToMC3GMothPDG
PDG code of Gparent of third MCParticle related to ECLShower.
virtual void endRun() override
endRun
int m_eclPureClusterMultip
Number of ECLClusterss per event, PureCsI option.
std::vector< double > * m_eclShowerMinTrkDistance
Shower Min Dist to Track.
std::vector< double > * m_eclSimHitPx
ECLSimHit PX.
std::vector< int > * m_eclPureClusterCellId
CellId with highest energy deposit in Cluster, PureCsI option.
std::vector< int > * m_eclCalDigitToShower
Index of ECLShower related to that ECLCalDigit.
std::vector< double > * m_eclSimHitZ
ECLSimHit Z position.
std::vector< double > * m_eclClusterThetaError
ECLCluster error on polar direction.
uint8_t m_nECLShowersRejectedBWD
Number of photon showers that are rejected before storing to mdst (max.
std::vector< int > * m_eclPureClusterToMC2
Index of second MCParticle related to ECLCluster, PureCsI option.
std::vector< double > * m_eclClusterAbsZernike51
Reconstructed Abs Zernike51.
StoreArray< TrackFitResult > m_trackFitResults
TrackFitResult storeArray.
std::vector< int > * m_eclDigitAmp
ECLDigit amplitude.
std::vector< double > * m_trkPy
Track momentum along Y direction.
std::vector< double > * m_eclClusterEnergyDepSum
ECLCluster simulated energy.
std::vector< double > * m_eclPureClusterThetaError
Cluster error on polar direction, PureCsI option.
std::vector< int > * m_eclPureDigitIdx
ECLDigit index, PureCsI option.
std::vector< int > * m_eclShowerToMC2GMothPDG
PDG code of Gparent of second MCParticle related to ECLShower.
std::vector< int > * m_mcPdg
MCParticle PDG code.
std::vector< double > * m_eclShowerSecondMoment
Shower Second Moment.
std::vector< int > * m_eclShowerToMC5
Index of fifth MCParticle related to ECLShower.
virtual void terminate() override
Termination action.
std::vector< double > * m_mcDecayVtxY
MCParticle decay vertex Y.
std::vector< int > * m_eclShowerToMC3MothPDG
PDG code of parent of first MCParticle related to ECLShower.
StoreArray< ECLSimHit > m_eclSimHits
Store array: ECLSimHit.
std::vector< int > * m_eclClusterToMC5
Index of fifth MCParticle related to ECLCluster.
std::vector< int > * m_eclShowerToMC4GMothPDG
PDG code of Gparent of fourth MCParticle related to ECLShower.
std::vector< double > * m_eclPureClusterToMCWeight5
Energy contribution of 5th MCParticle related to ECLCluster, PureCsI option.
std::vector< int > * m_eclShowerToLM3
Index of 3rd maximum related to ECLShower.
std::vector< double > * m_eclPureClusterToMCWeight1
Energy contribution of first MCParticle related to ECLCluster, PureCsI option.
std::vector< int > * m_eclPureDigitFitQuality
ECLDigit fit quality, PureCsI option.
StoreArray< ECLDigit > m_eclDigits
Store array: ECLDigit.
std::vector< double > * m_eclClusterEnergyError
ECLCluster energy error.
std::vector< double > * m_eclClusterPhiError
ECLCluster error on azimuthal direction.
std::vector< int > * m_trkIdx
Track index.
std::vector< int > * m_eclCalDigitToCR
Index of CR related to that ECLCalDigit.
std::vector< int > * m_eclClusterToMC3
Index of third MCParticle related to ECLCluster.
std::vector< double > * m_eclClusterSimHitSum
Energy contribution of 1st MCParticle related to ECLCluster.
std::vector< int > * m_eclPureCalDigitFitQuality
CalDigit fit quality, PureCsI option.
std::vector< int > * m_eclPureCalDigitToMC1PDG
PDG code of first MCParticle related to CalDigit, PureCsI option.
std::vector< double > * m_eclPureCRLikelihoodNGamma
Connected Region Gamma Likelihood, PureCsI option.
std::vector< int > * m_eclPureCalDigitToMC3
Index of third MCParticle related to CalDigit, PureCsI option.
int m_eclPureLMMultip
Local Maxima multiplicity, PureCsI option.
std::vector< int > * m_mcMothPdg
MCParticle mother particle PDG code.
std::vector< int > * m_eclClusterToMC1
Index of first MCParticle related to ECLCluster.
std::vector< int > * m_eclShowerToLM4
Index of 4th maximum related to ECLShower.
std::vector< double > * m_eclClusterToMCWeight2
Energy contribution of second MCParticle related to ECLCluster.
std::vector< double > * m_eclLogLikePi
PID track pion likelihood.
std::vector< double > * m_eclClusterE1oE9
Reconstructed E1 over E9.
std::vector< double > * m_eclPureCalDigitTimeFit
CalDigit timing, PureCsI option.
std::vector< double > * m_eclShowerUncEnergy
Shower bare energy.
std::vector< double > * m_eclCalDigitToBkgWeight
Remaining energy contribution not associated to first five MCParticles related to ECLCalDigit.
std::vector< int > * m_eclHitToDigit
Index of ECLDigit related to ECLHit.
StoreArray< ECLDigit > m_eclPureDigits
Store array: ECLPureDigit.
std::vector< int > * m_eclClusterHasNeutralHadronHypothesis
Cluster has neutral hadron hypothesis.
std::vector< int > * m_eclShowerToMC2Moth
Mother index of first MCParticle related to ECLShower.
std::vector< double > * m_eclShowerT99
Shower T99.
std::vector< int > * m_eclShowerToLM1
Index of first maximum related to ECLShower.
std::vector< int > * m_eclLMCellId
Local Maximum Cell ID.
std::vector< double > * m_eclShowerToMCWeight3
Energy contribution of third MCParticle related to ECLShower.
std::vector< int > * m_eclHitToDigitAmp
Amplitude of ECLDigit related to ECLHit.
int m_eclClusterTrueMultip
Number of ECLClusters per event.
std::vector< int > * m_eclDigitTimeFit
ECLDigit timing.
std::vector< double > * m_eclPureClusterClosestTrackDist
Reconstructed Distance to Closest Track, PureCsI option.
std::vector< double > * m_eclClusterToMCWeight4
Energy contribution of fourth MCParticle related to ECLCluster.
std::vector< double > * m_eclShowerHighestEnergy
Shower Highest Energy Crystal Energy.
std::vector< double > * m_eclPureCRLikelihoodElectronNGamma
Connected Region Electron Likelihood, PureCsI option.
std::vector< int > * m_eclClusterToMC2
Index of second MCParticle related to ECLCluster.
std::vector< int > * m_eclShowerIdx
Shower Index.
std::vector< int > * m_eclPureCalDigitIdx
ECLCalDigit index, PureCsI option.
std::vector< int > * m_eclSimHitToMC
Index of MCParticle related to that ECLSimHit.
std::vector< double > * m_eclClusterToBkgWeight
Remaining energy contribution not associated to first five MCParticles related to ECLCluster.
std::vector< int > * m_eclDigitToCalDigit
Index of CalDigit related to that ECLDigit.
std::vector< int > * m_eclShowerToMC3Moth
Mother index of first MCParticle related to ECLShower.
std::vector< double > * m_eclPureCalDigitToMCWeight2
Energy contribution of second MCParticle related to CalDigit, PureCsI option.
std::vector< int > * m_eclDigitIdx
ECLDigit index.
int m_eclClusterGammaMultip
Number of ECLClusters per event.
std::vector< double > * m_eclPureClusterE1oE9
Reconstructed E1oE9, PureCsI option.
virtual void beginRun() override
beginRun
std::vector< double > * m_eclShowerThetaError
Shower Theta Error.
std::vector< double > * m_eclShowerSimHitSum
Full energy contribution related to ECLShower.
StoreArray< Track > m_tracks
Tracks storeArray.
virtual const char * eclPureDigitArrayName() const
Default name ECLPureDigits array.
StoreArray< ECLLocalMaximum > m_eclPureLocalMaximums
Store array: ECLPureLocalMaximum.
std::vector< int > * m_eclPureLMCellId
Local Maximum Cell ID, PureCsI option.
std::vector< int > * m_eclCalDigitToMC5PDG
PDG code of fifth MCParticle related to ECLCalDigit.
std::vector< int > * m_eclShowerIsTrack
Shower Track Match.
std::vector< int > * m_mcGMothPdg
MCParticle grandmother particle PDG code.
std::vector< double > * m_eclpidEnergy
PID track energy.
std::vector< int > * m_eclpidNClusters
PID track number of clusters.
std::vector< double > * m_eclShowerPhi
Shower Phi.
int m_mcMultip
Multiplicity of MCParticles.
std::vector< double > * m_eclPureCRLikelihoodMIPNGamma
Connected Region MIP Likelihood, PureCsI option.
std::vector< double > * m_eclPureClusterE9oE21
Ratio of 3x3 over 5x5 crystal matrices energies for Cluster, PureCsI option.
std::vector< int > * m_eclLMType
Local Maximum type.
std::vector< double > * m_eclShowerTrkDepth
Shower Track Depth.
std::vector< int > * m_eclLMId
Local Maximum ID.
std::vector< double > * m_trkP
Track momentum.
std::vector< double > * m_eclPureClusterEnergy
Cluster energy, PureCsI option.
std::vector< int > * m_eclHitToPureDigitAmp
Amplitude of ECLDigit related to ECLHit, PureCsI option.
std::vector< double > * m_eclClusterTimingError
ECLCluster time error.
std::vector< int > * m_eclShowerToMC4
Index of fourth MCParticle related to ECLShower.
std::vector< double > * m_mcProdVtxZ
MCParticle production vertex Z.
std::vector< double > * m_mcEnergy
MCParticle energyx.
std::vector< int > * m_eclpidtrkIdx
PID track index.
std::vector< int > * m_eclShowerCentralCellId
Cell ID for most energetic crystal.
std::vector< double > * m_eclShowerToMCWeight1
Energy contribution of first MCParticle related to ECLShower.
StoreArray< ECLCluster > m_eclClusters
Store array: ECLCluster.
std::vector< int > * m_eclCalDigitToMC3
Index of third MCParticle related to ECLCalDigit.
std::vector< int > * m_eclPureCalDigitToMC4PDG
PDG code of fourth MCParticle related to CalDigit, PureCsI option.
std::vector< int > * m_eclHitIdx
Index of ECLHits.
std::vector< int > * m_eclClusterToMC1PDG
PDG code of first MCParticle related to ECLCluster.
std::vector< int > * m_eclPureClusterDetectorRegion
Clusters detector region, PureCsI option.
std::vector< double > * m_mcDecayVtxX
MCParticle decay vertex X.
std::vector< double > * m_trkY
Track DOCA Y (?)
std::vector< int > * m_eclShowerToMC5Moth
Mother index of fifth MCParticle related to ECLShower.
std::vector< double > * m_eclPureCalDigitAmp
CalDigit amplitude, PureCsI option.
std::vector< int > * m_eclPureCalDigitToLM
Index of LM related to that CalDigit, PureCsI option.
std::vector< int > * m_eclCalDigitIdx
ECLCalDigit index.
std::vector< int > * m_eclSimHitIdx
Index of ECLSimHit.
std::vector< int > * m_eclClusterToMC2PDG
PDG code of second MCParticle related to ECLCluster.
StoreArray< ECLConnectedRegion > m_eclPureConnectedRegions
Store array: ECLPureConnectedRegion.
std::vector< int > * m_eclPureDigitCellId
Number of ECLDigit CellId, PureCsI option.
std::vector< int > * m_eclDigitFitQuality
ECLDigit fit quality.
int m_eclPureCalDigitMultip
Number of ECLCalDigits per event, PureCsI option.
std::vector< double > * m_eclPureClusterLat
Cluster shape parameter LAT, PureCsI option.
std::vector< int > * m_eclPureClusterToMC4PDG
PDG code of fourth MCParticle related to ECLCluster, PureCsI option.
std::vector< int > * m_eclShowerMCFFlightMatch
Int, 1 if primary particle flight direction is "well" reconstructed in ECL, 0 otherwise,...
std::vector< int > * m_eclCalDigitToMC1PDG
PDG code of first MCParticle related to ECLCalDigit.
std::vector< double > * m_eclCalDigitAmp
ECLCalDigit amplitude.
std::vector< double > * m_mcPx
MCParticle momentum X direction.
std::vector< int > * m_eclShowerToMC2MothPDG
PDG code of parent of first MCParticle related to ECLShower.
std::vector< int > * m_eclpidNCrystals
PID track number of crystals.
std::vector< int > * m_mcIdx
MCParticle index.
StoreArray< ECLShower > m_eclPureShowers
Store array: ECLPureShower.
std::vector< int > * m_eclPureClusterToMC1PDG
PDG code of first MCParticle related to ECLCluster, PureCsI option.
std::vector< double > * m_eclShowerZernikeMVA
Shower ZernikeMVA.
std::vector< double > * m_eclPureClusterAbsZernike40
Reconstructed Zernike40, PureCsI option.
std::vector< double > * m_eclPureClusterSecondMoment
Reconstructed Cluster Second Moment, PureCsI option.
int m_eclPureDigitMultip
Number of ECLDigits per event, PureCsI option.
uint8_t m_nECLShowersRejectedBarrel
Number of photon showers that are rejected before storing to mdst (max.
virtual const char * eclDigitArrayName() const
Default name ECLDigits array.
std::vector< double > * m_eclClusterTiming
ECLCluster time.
std::vector< int > * m_eclCalDigitCellId
Number of ECLCalDigit CellId.
std::vector< double > * m_mcProdVtxX
MCParticle production vertex X.
std::vector< double > * m_eclShowerEnergy
Shower Energy.
StoreArray< ECLHit > m_eclHits
Store array: ECLHit.
std::vector< int > * m_eclPureCRIdx
Connected Region ID, PureCsI option.
std::vector< double > * m_eclCRLikelihoodMergedPi0
Connected Region Merged Pi0 Likelihood.
uint8_t m_nECLShowersRejectedFWD
Number of photon showers that are rejected before storing to mdst (max.
virtual const char * eclConnectedRegionArrayName() const
Default name ECLConnectedRegions array.
std::vector< int > * m_eclShowerToMC5MothPDG
PDG code of parent of fifth MCParticle related to ECLShower.
std::vector< double > * m_eclPureClusterToMCWeight2
Energy contribution of second MCParticle related to ECLCluster, PureCsI option.
std::vector< double > * m_trkX
Track DOCA X (?)
std::vector< double > * m_eclPureClusterToMCWeight3
Energy contribution of third MCParticle related to ECLCluster, PureCsI option.
int m_eclClusterMultip
Number of ECLClusters per event.
std::vector< double > * m_eclShowerLateralEnergy
Shower Lateral Energy.
std::vector< double > * m_mcPz
MCParticle momentum Z direction.
std::vector< int > * m_eclPureClusterHasNeutralHadronHypothesis
Cluster has neutral hadron hypothesis, PureCsI option.
std::vector< double > * m_eclPureCalDigitSimHitSum
Full energy contribution related to CalDigit, PureCsI option.
std::vector< int > * m_eclCalDigitToMC5
Index of fifth MCParticle related to ECLCalDigit.
StoreArray< MCParticle > m_mcParticles
MCParticles StoreArray.
std::vector< double > * m_eclClusterHighestE
Highest energy deposit (per crystal) in ECLCluster.
std::vector< int > * m_eclPureDigitAmp
ECLDigit amplitude, PureCsI option.
StoreObjPtr< EventMetaData > m_eventmetadata
Store object pointer: EventMetaData.
virtual ~ECLDataAnalysisModule()
Destructor of the module.
std::vector< int > * m_eclCRIsTrack
Int for Connected Region - Track Match.
std::vector< int > * m_eclShowerConnectedRegionId
Matched Connetcted Region Idx.
virtual const char * eclCalDigitArrayName() const
Default name ECLCalDigits array.
std::vector< double > * m_eclPureClusterToMCWeight4
Energy contribution of fourth MCParticle related to ECLCluster, PureCsI option.
std::vector< double > * m_eclPureClusterPhiError
Cluster error on azimuthal direction, PureCsI option.
bool m_doTracking
if true, info on tracking will be stored, job will fail if doTracking==1 and the tracking modules are...
std::vector< double > * m_eclShowerAbsZernike51
Shower Zernike51 Moment.
std::vector< double > * m_eclShowerR
Shower R.
std::vector< int > * m_eclPureClusterToMC1
Index of first MCParticle related to ECLCluster, PureCsI option.
std::vector< double > * m_eclShowerToMCWeight5
Energy contribution of fifth MCParticle related to ECLShower.
std::vector< double > * m_eclHitTimeAve
ECLHit time.
StoreArray< ECLCluster > m_eclPureClusters
Store array: ECLPureCluster.
int m_eclLMMultip
Local Maxima multiplicity.
std::vector< int > * m_eclSimHitPdg
PDG code of MCParticle associated to that ECLDigit.
virtual const char * eclPureLocalMaximumArrayName() const
Default name ECLPureLocalMaxima array.
std::vector< double > * m_trkPhi
Track azimuthal direction.
std::vector< int > * m_eclCalDigitToMC3PDG
PDG code of third MCParticle related to ECLCalDigit.
std::vector< int > * m_eclDigitCellId
Number of ECLDigit CellId.
std::vector< double > * m_eclPureCalDigitToMCWeight1
Energy contribution of first MCParticle related to CalDigit, PureCsI option.
std::vector< double > * m_eclPureClusterR
Cluster distance from IP, PureCsI option.
std::vector< double > * m_eclPureClusterTheta
Cluster polar direction, PureCsI option.
std::vector< double > * m_trkTheta
Track polar direction.
uint16_t m_nECLCalDigitsOutOfTimeBarrel
Number of out of time, energetic ECLCalDigits, Barrel.
std::vector< double > * m_eclLogLikeMu
PID track muon likelihood.
std::vector< int > * m_eclCalDigitToMC4PDG
PDG code of fourth MCParticle related to ECLCalDigit.
std::vector< int > * m_eclPureClusterToMC4
Index of fourth MCParticle related to ECLCluster, PureCsI option.
std::vector< int > * m_eclPureClusterIdx
ECLCluster index, PureCsI option.
std::vector< double > * m_eclClusterEnergy
ECLCluster energy.
virtual const char * eclPureShowerArrayName() const
Default name ECLPureShower array.
std::vector< int > * m_eclShowerToMC1
Index of first MCParticle related to ECLShower.
std::vector< double > * m_eclSimHitPy
ECLSimHit PY.
std::vector< int > * m_eclCalDigitToLM
Index of LM related to that ECLCalDigit.
std::vector< double > * m_eclClusterClosestTrackDist
Flag for charged clusters.
std::vector< double > * m_eclSimHitY
ECLSimHit Y position.
std::vector< double > * m_eclPureCRLikelihoodChargedHadron
Connected Region Charged Hadron Likelihood, PureCsI option.
int m_eclSimHitMultip
Number of ECLSimHits per event.
TFile * m_rootFilePtr
members of ECLReconstructor Module
std::vector< double > * m_eclClusterLAT
Reconstructed LAT.
std::vector< double > * m_eclShowerHighestE1mE2
Energy difference for 2 highest energy deposits in shower.
std::vector< double > * m_eclClusterDeltaTime99
DeltaTime99.
std::vector< int > * m_eclHitCellId
ECLHit CellID.
StoreObjPtr< EventLevelClusteringInfo > m_eventLevelClusteringInfo
Store object pointer: EventLevelClusteringInfo.
std::vector< int > * m_mcSecondaryPhysProc
Flag for secondary physics process.
std::vector< int > * m_eclShowerToMC1Moth
Mother index of first MCParticle related to ECLShower.
std::vector< double > * m_eclShowerE1oE9
Shower E1/E9.
std::vector< int > * m_eclShowerToMC3
Index of third MCParticle related to ECLShower.
std::vector< int > * m_eclShowerToMC1GMothPDG
PDG code of Gparent of first MCParticle related to ECLShower.
std::vector< double > * m_mcProdVtxY
MCParticle production vertex Y.
std::vector< double > * m_eclClusterSecondMoment
Reconstructed Second Moment.
std::vector< double > * m_eclPureClusterEnergyError
Cluster energy error, PureCsI option.
std::vector< int > * m_eclShowerToMC2GMoth
GMother index of second MCParticle related to ECLShower.
std::vector< double > * m_eclClusterE9oE21
Ratio of 3x3 over 5x5 crystal matrices energies for ECLCluster.
std::vector< int > * m_eclPureLMId
Local Maximum ID, PureCsI option.
virtual const char * eclPureCalDigitArrayName() const
Default name ECLPureCalDigits array.
std::vector< int > * m_eclShowerToMC4PDG
PDG code of fourth MCParticle related to ECLShower.
std::vector< int > * m_eclCalDigitToMC1
Index of first MCParticle related to ECLCalDigit.
std::vector< double > * m_eclPureClusterPhi
Cluster azimuthal direction, PureCsI option.
std::vector< int > * m_eclClusterCrystalHealth
Crystal health flag.
std::vector< bool > * m_eclClusterIsTrack
Flag for charged clusters.
virtual const char * eclPureConnectedRegionArrayName() const
Default name ECLPureConnectedRegions array.
std::vector< int > * m_eclClusterToShower
Index of ECLShower related to ECLCluster.
std::vector< double > * m_eclCalDigitToMCWeight3
Energy contribution of third MCParticle related to ECLCalDigit.
StoreArray< ECLCalDigit > m_eclCalDigits
Store array: ECLCalDigit.
std::vector< double > * m_eclpidE9E21
PID track ration of 3x3 over 5x5 crystal matrices energies.
std::vector< int > * m_eclPureCRIsTrack
Int for Connected Region - Track Match, PureCsI option.
std::vector< double > * m_eclCRLikelihoodNGamma
Connected Region Gamma Likelihood.
std::vector< int > * m_eclPureDigitTimeFit
ECLDigit timing, PureCsI option.
std::vector< int > * m_eclPureCalDigitToMC5
Index of fifth MCParticle related to CalDigit, PureCsI option.
std::vector< int > * m_trkPdg
Track PDG code.
std::vector< double > * m_eclPureCalDigitToMCWeight3
Energy contribution of third MCParticle related to CalDigit, PureCsI option.
std::vector< double > * m_eclClusterDeltaL
Reconstructed Cluster DeltaL.
std::vector< int > * m_mcGGMothPdg
MCParticle greand-grandmother particle PDG code.
std::vector< int > * m_eclShowerToMC1MothPDG
PDG code of parent of first MCParticle related to ECLShower.
uint16_t m_nECLCalDigitsOutOfTimeBWD
Number of out of time, energetic ECLCalDigits, BWD.
StoreArray< ECLPidLikelihood > m_eclPidLikelihoods
ECLPidLikelihood storeArray.
std::vector< int > * m_eclPureClusterCrystalHealth
Crystal health flag, PureCsI option.
std::vector< double > * m_eclShowerPhiError
Shower Phi Error.
std::vector< double > * m_eclpidEop
PID track E/p.
std::vector< int > * m_eclShowerToMC1GMoth
GMother index of first MCParticle related to ECLShower.
std::vector< double > * m_eclShowerAbsZernike40
Shower Zernike40 Moment.
std::vector< double > * m_eclShowerNHits
Shower NHits.
int m_eclShowerMultip
Number of ECLShowers per event.
std::vector< double > * m_eclClusterToMCWeight3
Energy contribution of third MCParticle related to ECLCluster.
Class to store ECL digitized hits (output of ECLDigi) relation to ECLHit filled in ecl/modules/eclDig...
Definition: ECLDigit.h:24
int getAmp() const
Get Fitting Amplitude.
Definition: ECLDigit.h:70
int getQuality() const
Get Fitting Quality.
Definition: ECLDigit.h:80
int getCellId() const
Get Cell ID.
Definition: ECLDigit.h:64
int getTimeFit() const
Get Fitting Time.
Definition: ECLDigit.h:75
Class to store simulated hits which equate to average of ECLSImHit on crystals input for digitization...
Definition: ECLHit.h:25
double getTimeAve() const
Get average time.
Definition: ECLHit.h:75
int getCellId() const
Get Cell ID.
Definition: ECLHit.h:65
double getEnergyDep() const
Get deposit energy.
Definition: ECLHit.h:70
Class to store local maxima (LM)
int getCellId() const
Get CellId.
int getLMId() const
Get LM identifier.
int getType() const
Get type.
Container for likelihoods with ECL PID (ECLChargedPIDModule)
Class to store ECL Showers.
Definition: ECLShower.h:30
double getAbsZernikeMoment(unsigned int n, unsigned int m) const
Get absolute value of Zernike Moment nm.
Definition: ECLShower.h:377
int getHypothesisId() const
Get Hypothesis Id.
Definition: ECLShower.h:277
double getPhi() const
Get Phi.
Definition: ECLShower.h:302
double getLateralEnergy() const
Get Lateral Energy in Shower.
Definition: ECLShower.h:352
double getE1oE9() const
Get energy ratio E1oE9.
Definition: ECLShower.h:392
double getEnergy() const
Get Energy.
Definition: ECLShower.h:287
double getShowerDepth() const
path on track extrapolation to POCA to average cluster direction
Definition: ECLShower.h:367
int getConnectedRegionId() const
Get Connected region Id.
Definition: ECLShower.h:272
double getR() const
Get R.
Definition: ECLShower.h:307
double getEnergyRaw() const
Get Energy Sum.
Definition: ECLShower.h:292
double getUncertaintyTheta() const
Get Error of theta.
Definition: ECLShower.h:327
double getE9oE21() const
Get energy ratio E9oE21.
Definition: ECLShower.h:397
double getNumberOfCrystalsForEnergy() const
Get number of crystals used for energy calculation.
Definition: ECLShower.h:417
double getUncertaintyEnergy() const
Get Error of Energy.
Definition: ECLShower.h:322
double getTrkDepth() const
path on track extrapolation to POCA to average cluster direction
Definition: ECLShower.h:362
double getMinTrkDistance() const
Get distance to closest Track.
Definition: ECLShower.h:357
double getNumberOfCrystals() const
Get NofCrystals.
Definition: ECLShower.h:372
double getEnergyHighestCrystal() const
Get Highest Energy in Shower.
Definition: ECLShower.h:347
double getZernikeMVA() const
Get Zernike MVA.
Definition: ECLShower.h:382
bool getIsTrack() const
Get if matched with a Track.
Definition: ECLShower.h:257
double getUncertaintyPhi() const
Get Error of phi.
Definition: ECLShower.h:332
int getCentralCellId() const
Get central cell Id.
Definition: ECLShower.h:282
double getSecondMoment() const
Get second moment.
Definition: ECLShower.h:387
double getTheta() const
Get Theta.
Definition: ECLShower.h:297
double getDeltaTime99() const
Get Time Resolution.
Definition: ECLShower.h:342
double getTime() const
Get Time.
Definition: ECLShower.h:337
ClassECLSimHit - Geant4 simulated hit for the ECL.
Definition: ECLSimHit.h:29
int getPDGCode() const
Get Particle PDG (can be one of secondaries)
Definition: ECLSimHit.h:96
int getCellId() const
Get Cell ID.
Definition: ECLSimHit.h:86
double getFlightTime() const
Get Flight time from IP.
Definition: ECLSimHit.h:101
double getEnergyDep() const
Get Deposit energy.
Definition: ECLSimHit.h:106
G4ThreeVector getPosition() const
Get Position.
Definition: ECLSimHit.h:126
G4ThreeVector getMomentum() const
Get Momentum.
Definition: ECLSimHit.h:116
A Class to store the Monte Carlo particle information.
Definition: MCParticle.h:32
float getEnergy() const
Return particle energy in GeV.
Definition: MCParticle.h:147
int getIndex() const
Get 1-based index of the particle in the corresponding MCParticle list.
Definition: MCParticle.h:230
ROOT::Math::XYZVector getDecayVertex() const
Return decay vertex.
Definition: MCParticle.h:219
int getArrayIndex() const
Get 0-based index of the particle in the corresponding MCParticle list.
Definition: MCParticle.h:244
ROOT::Math::XYZVector getProductionVertex() const
Return production vertex position.
Definition: MCParticle.h:189
int getPDG() const
Return PDG code of particle.
Definition: MCParticle.h:112
ROOT::Math::XYZVector getMomentum() const
Return momentum.
Definition: MCParticle.h:198
int getSecondaryPhysicsProcess() const
Returns the physics process type of a secondary particle.
Definition: MCParticle.h:297
Base class for Modules.
Definition: Module.h:72
void setDescription(const std::string &description)
Sets the description of the module.
Definition: Module.cc:214
int getArrayIndex() const
Returns this object's array index (in StoreArray), or -1 if not found.
TO * getRelatedTo(const std::string &name="", const std::string &namedRelation="") const
Get the object to which this object has a relation.
T * getRelated(const std::string &name="", const std::string &namedRelation="") const
Get the object to or from which this object has a relation.
RelationVector< TO > getRelationsTo(const std::string &name="", const std::string &namedRelation="") const
Get the relations that point from this object to another store array.
int getEntries() const
Get the number of objects in the array.
Definition: StoreArray.h:216
Values of the result of a track fit with a given particle hypothesis.
short getChargeSign() const
Return track charge (1 or -1).
Const::ParticleType getParticleType() const
Getter for ParticleType of the mass hypothesis of the track fit.
ROOT::Math::XYZVector getMomentum() const
Getter for vector of momentum at closest approach of track in r/phi projection.
ROOT::Math::XYZVector getPosition() const
Getter for vector of position at closest approach of track in r/phi projection.
Class that bundles various TrackFitResults.
Definition: Track.h:25
bool isFailedFit() const
Get Boolean Fit Failed Status.
Definition: ECLCalDigit.h:273
void addParam(const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
Definition: Module.h:560
#define REG_MODULE(moduleName)
Register the given module (without 'Module' suffix) with the framework.
Definition: Module.h:650
MCParticle * getMother() const
Returns a pointer to the mother particle.
Definition: MCParticle.h:600
Abstract base class for different kinds of events.
STL namespace.