Belle II Software development
TrackingPerformanceEvaluationModule Class Reference

This module takes the MCParticles, the Tracks, the RecoTrack, and the MCRecoTracks input and produce a root file containing various histograms showing the performance of the tracking package: fitter, pattern recongnition algorithms. More...

#include <TrackingPerformanceEvaluationModule.h>

Inheritance diagram for TrackingPerformanceEvaluationModule:
Module PerformanceEvaluationBaseClass PathElement

Public Types

enum  EModulePropFlags {
  c_Input = 1 ,
  c_Output = 2 ,
  c_ParallelProcessingCertified = 4 ,
  c_HistogramManager = 8 ,
  c_InternalSerializer = 16 ,
  c_TerminateInAllProcesses = 32 ,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

 TrackingPerformanceEvaluationModule ()
 Constructor.
 
 ~TrackingPerformanceEvaluationModule ()
 Destructor.
 
void initialize () override
 Initializer.
 
void beginRun () override
 Called when entering a new run.
 
void event () override
 This method is called for each event.
 
void endRun () override
 This method is called if the current run ends.
 
void terminate () override
 This method is called at the end of the event processing.
 
virtual std::vector< std::string > getFileNames (bool outputFiles)
 Return a list of output filenames for this modules.
 
const std::string & getName () const
 Returns the name of the module.
 
const std::string & getType () const
 Returns the type of the module (i.e.
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module.
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties.
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level.
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module.
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module.
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module.
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true.
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished.
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module.
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter.
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module.
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module.
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters.
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Protected Member Functions

virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python.
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side.
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module.
 
void setType (const std::string &type)
 Set the module type.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module.
 
void setReturnValue (int value)
 Sets the return value for this module as integer.
 
void setReturnValue (bool value)
 Sets the return value for this module as bool.
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Private Member Functions

void fillTrackParams1DHistograms (const TrackFitResult *fitResult, MCParticleInfo mcParticleInfo)
 fills err, resid and pull TH1F for each of the 5 track parameters
 
void fillTrackErrParams2DHistograms (const TrackFitResult *fitResult)
 fills TH2F
 
void fillHitsUsedInTrackFitHistograms (const Track &track)
 fill TH2F
 
bool isTraceable (const MCParticle &the_mcParticle)
 is traceable
 
void addMoreEfficiencyPlots (TList *histoList)
 add efficiency plots
 
void addMoreInefficiencyPlots (TList *histoList)
 add inefficiency plots
 
std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects.
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary.
 
TH1F * createHistogram1D (const char *name, const char *title, Int_t nbins, Double_t min, Double_t max, const char *xtitle, TList *histoList=nullptr)
 Create a 1D histogram and add it to the TList of 1D-histograms.
 
TH1F * createHistogram1D (const char *name, const char *title, Int_t nbins, Double_t *bins, const char *xtitle, TList *histoList=nullptr)
 Create a 1D histogram and add it to the TList of 1D-histograms.
 
TH2F * createHistogram2D (const char *name, const char *title, Int_t nbinsX, Double_t minX, Double_t maxX, const char *titleX, Int_t nbinsY, Double_t minY, Double_t maxY, const char *titleY, TList *histoList=nullptr)
 Create a 2D histogram and add it to the TList of 2D-histograms.
 
TH2F * createHistogram2D (const char *name, const char *title, Int_t nbinsX, Double_t *binsX, const char *titleX, Int_t nbinsY, Double_t *binsY, const char *titleY, TList *histoList=nullptr)
 Create a 2D histogram and add it to the TList of 2D-histograms.
 
TH3F * createHistogram3D (const char *name, const char *title, Int_t nbinsX, Double_t minX, Double_t maxX, const char *titleX, Int_t nbinsY, Double_t minY, Double_t maxY, const char *titleY, Int_t nbinsZ, Double_t minZ, Double_t maxZ, const char *titleZ, TList *histoList=nullptr)
 Create a 3D histogram and add it to the TList of 3D-histograms.
 
TH3F * createHistogram3D (const char *name, const char *title, Int_t nbinsX, Double_t *binsX, const char *titleX, Int_t nbinsY, Double_t *binsY, const char *titleY, Int_t nbinsZ, Double_t *binsZ, const char *titleZ, TList *histoList=nullptr)
 Create a 3D histogram and add it to the TList of 3D-histograms.
 
TH1 * duplicateHistogram (const char *newname, const char *newtitle, TH1 *h, TList *histoList=nullptr)
 Make a copy of a 1D histogram and add it to the TList of 1D-histograms.
 
TH1F * createHistogramsRatio (const char *name, const char *title, TH1 *hNum, TH1 *hDen, bool isEffPlot, int axisRef)
 Make a new 1D histogram from the ratio of two others and add it to the TList of 1D-histograms.
 
void addEfficiencyPlots (TList *graphList=nullptr, TH3F *h3_xPerMCParticle=nullptr, TH3F *h3_MCParticle=nullptr)
 Create pt-, theta- and phi-efficiency 1D histograms and add them to the TList of 1D-histograms.
 
void addInefficiencyPlots (TList *graphList=nullptr, TH3F *h3_xPerMCParticle=nullptr, TH3F *h3_MCParticle=nullptr)
 Create pt-, theta- and phi-inefficiency 1D histograms and add them to the TList of 1D-histograms.
 
void addPurityPlots (TList *graphList=nullptr, TH3F *h3_xPerMCParticle=nullptr, TH3F *h3_MCParticle=nullptr)
 Create pt-, theta- and phi-purity 1D histograms and add them to the TList of 1D-histograms.
 
TH1F * effPlot1D (TH1F *h1_den, TH1F *h1_num, const char *name, const char *title, bool geo_accettance, TList *histoList=nullptr)
 Create a 1D efficiency histogram and add it to the TList of 1D-histograms.
 
TH1F * effPlot1D (TH1F *h1_MC, TH1F *h1_RecoTrack, TH1F *h1_Track, const char *name, const char *title, TList *histoList=nullptr)
 Create a 1D efficiency histogram and add it to the TList of 1D-histograms.
 
TH2F * effPlot2D (TH2F *h2_den, TH2F *h2_num, const char *name, const char *title, bool geo_accettance, TList *histoList=nullptr)
 Create a 2D efficiency histogram and add it to the TList of 2D-histograms.
 
TH2F * effPlot2D (TH2F *h2_MC, TH2F *h2_RecoTrack, TH2F *h2_Track, const char *name, const char *title, TList *histoList)
 Create a 2D efficiency histogram and add it to the TList of 2D-histograms.
 
TH1F * geoAcc1D (TH1F *h1_den, TH1F *h1_num, const char *name, const char *title, TList *histoList=nullptr)
 Create a 1D efficiency histogram for geometric acceptance and add it to the TList of 1D-histograms.
 
TH2F * geoAcc2D (TH2F *h2_den, TH2F *h2_num, const char *name, const char *title, TList *histoList=nullptr)
 Create a 2D efficiency histogram for geometric acceptance and add it to the TList of 2D-histograms.
 
TH1F * V0FinderEff (TH1F *h1_dau0, TH1F *h1_dau1, TH1F *h1_Mother, const char *name, const char *title, TList *histoList=nullptr)
 Create a 1D efficiency histogram for V0 finding and add it to the TList of 1D-histograms.
 

Private Attributes

std::string m_MCParticlesName
 MCParticle StoreArray name.
 
std::string m_MCRecoTracksName
 MCRecoTrack StoreArray name.
 
std::string m_RecoTracksName
 RecoTrack StoreArray name.
 
std::string m_TracksName
 Track StoreArray name.
 
int m_ParticleHypothesis
 Particle Hypothesis for the track fit (default: 211)
 
StoreArray< MCParticlem_MCParticles
 MCParticles StoreArray.
 
StoreArray< RecoTrackm_PRRecoTracks
 PR RecoTracks StoreArray.
 
StoreArray< RecoTrackm_MCRecoTracks
 MC RecoTracks StoreArray.
 
StoreArray< Trackm_Tracks
 Tracks StoreArray.
 
TH1F * m_multiplicityTracks = nullptr
 number of tracks per MCParticles
 
TH1F * m_multiplicityRecoTracks = nullptr
 number of recoTracks per MCParticles
 
TH1F * m_multiplicityMCRecoTracks = nullptr
 number of MCRecoTracks per MCParticles
 
TH1F * m_multiplicityFittedTracks = nullptr
 number of fitted tracks per MCParticles
 
TH1F * m_multiplicityFittedTracksPerMCRT = nullptr
 number of fitted tracks per MCRecoTrack
 
TH1F * m_multiplicityMCParticlesPerTrack = nullptr
 number of MCParticles per fitted Track
 
TH1F * m_multiplicityRecoTracksPerMCRT = nullptr
 number of RecoTracks per MCRecoTracks
 
TH1F * m_multiplicityMCRecoTracksPerRT = nullptr
 number of MCRecoTracks per RecoTracks
 
TH1F * m_h1_d0_err = nullptr
 error
 
TH1F * m_h1_phi_err = nullptr
 error
 
TH1F * m_h1_omega_err = nullptr
 error
 
TH1F * m_h1_z0_err = nullptr
 error
 
TH1F * m_h1_cotTheta_err = nullptr
 error
 
TH1F * m_h1_d0_res = nullptr
 error
 
TH1F * m_h1_phi_res = nullptr
 error
 
TH1F * m_h1_omega_res = nullptr
 error
 
TH1F * m_h1_z0_res = nullptr
 error
 
TH1F * m_h1_cotTheta_res = nullptr
 error
 
TH1F * m_h1_px_res = nullptr
 px residual
 
TH1F * m_h1_py_res = nullptr
 py residual
 
TH1F * m_h1_pz_res = nullptr
 pz residual
 
TH1F * m_h1_p_res = nullptr
 p residual
 
TH1F * m_h1_pt_res = nullptr
 pt residual
 
TH1F * m_h1_x_res = nullptr
 x residual
 
TH1F * m_h1_y_res = nullptr
 y residual
 
TH1F * m_h1_z_res = nullptr
 z residual
 
TH1F * m_h1_r_res = nullptr
 R residual (in cylindrical coordinates)
 
TH1F * m_h1_rtot_res = nullptr
 r residual (3D distance)
 
TH1F * m_h1_d0_pll = nullptr
 pull distribution d0
 
TH1F * m_h1_phi_pll = nullptr
 pull distribution phi
 
TH1F * m_h1_omega_pll = nullptr
 pull distribution omega
 
TH1F * m_h1_z0_pll = nullptr
 pull distribution z0
 
TH1F * m_h1_cotTheta_pll = nullptr
 pull distribution cotTheta
 
TH2F * m_h2_d0errphi0err_xy = nullptr
 error
 
TH2F * m_h2_d0errphi0err_rz = nullptr
 error
 
TH2F * m_h2_z0errcotThetaerr_xy = nullptr
 error
 
TH2F * m_h2_VXDhitsPR_xy = nullptr
 PR.
 
TH2F * m_h2_VXDhitsPR_rz = nullptr
 PR.
 
TH1F * m_h1_nVXDhitsPR = nullptr
 PR.
 
TH1F * m_h1_nVXDhitsWeighted = nullptr
 weighted
 
TH1F * m_h1_nVXDhitsUsed = nullptr
 hits used
 
TH1F * m_h1_nCDChitsPR = nullptr
 PR.
 
TH1F * m_h1_nCDChitsWeighted = nullptr
 weighted
 
TH1F * m_h1_nCDChitsUsed = nullptr
 used
 
TH1F * m_h1_nHitDetID = nullptr
 det ID
 
TH2F * m_h2_TrackPointFitWeightVXD = nullptr
 TP.
 
TH2F * m_h2_TrackPointFitWeightCDC = nullptr
 TP.
 
TH1F * m_h1_pValue = nullptr
 p val
 
TH2F * m_h2_OmegaerrOmegaVSpt = nullptr
 error
 
TH2F * m_h2_z0errVSpt_wtpxd = nullptr
 error
 
TH2F * m_h2_z0errVSpt_wfpxd = nullptr
 error
 
TH2F * m_h2_z0errVSpt_wpxd = nullptr
 error
 
TH2F * m_h2_z0errVSpt_wopxd = nullptr
 error
 
TH2F * m_h2_z0errVSpt = nullptr
 error
 
TH2F * m_h2_d0errVSpt_wtpxd = nullptr
 error
 
TH2F * m_h2_d0errVSpt_wfpxd = nullptr
 error
 
TH2F * m_h2_d0errVSpt_wpxd = nullptr
 error
 
TH2F * m_h2_d0errVSpt_wopxd = nullptr
 error
 
TH2F * m_h2_d0errVSpt = nullptr
 error
 
TH2F * m_h2_d0errMSVSpt = nullptr
 error
 
TH2F * m_h2_chargeVSchargeMC = nullptr
 charge comparison
 
TH1F * m_h1_HitsRecoTrackPerMCRecoTrack = nullptr
 hits
 
TH1F * m_h1_HitsMCRecoTrack = nullptr
 hits
 
TH3F * m_h3_MCParticle = nullptr
 efficiency
 
TH3F * m_h3_MCParticleswPXDHits = nullptr
 efficiency
 
TH3F * m_h3_TracksPerMCParticle = nullptr
 efficiency
 
TH3F * m_h3_TrackswPXDHitsPerMCParticle = nullptr
 efficiency
 
TH3F * m_h3_RecoTrackswPXDHitsPerMCParticle = nullptr
 efficiency
 
TH3F * m_h3_RecoTrackswPXDHitsPerMCParticlewPXDHits = nullptr
 efficiency
 
TH3F * m_h3_MCRecoTrack = nullptr
 efficiency
 
TH3F * m_h3_TracksPerMCRecoTrack = nullptr
 efficiency
 
TH3F * m_h3_MCParticle_plus = nullptr
 efficiency
 
TH3F * m_h3_TracksPerMCParticle_plus = nullptr
 efficiency
 
TH3F * m_h3_MCRecoTrack_plus = nullptr
 efficiency
 
TH3F * m_h3_TracksPerMCRecoTrack_plus = nullptr
 efficiency
 
TH3F * m_h3_MCParticle_minus = nullptr
 efficiency
 
TH3F * m_h3_TracksPerMCParticle_minus = nullptr
 efficiency
 
TH3F * m_h3_MCRecoTrack_minus = nullptr
 efficiency
 
TH3F * m_h3_TracksPerMCRecoTrack_minus = nullptr
 efficiency
 
TH3F * m_h3_MCParticlesPerTrack = nullptr
 purity
 
TH3F * m_h3_Tracks = nullptr
 purity
 
std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 
TList * m_histoList = nullptr
 List of performance-evaluation histograms.
 
TList * m_histoList_multiplicity = nullptr
 List of multiplicity histograms.
 
TList * m_histoList_evtCharacterization = nullptr
 List of event-characterization histograms.
 
TList * m_histoList_trkQuality = nullptr
 List of track-quality histograms.
 
TList * m_histoList_firstHit = nullptr
 List of first-hit-position histograms.
 
TList * m_histoList_pr = nullptr
 List of pattern-recognition histograms.
 
TList * m_histoList_fit = nullptr
 List of track-fit histograms.
 
TList * m_histoList_efficiency = nullptr
 List of efficiency histograms.
 
TList * m_histoList_purity = nullptr
 List of purity histograms.
 
TList * m_histoList_others = nullptr
 List of other performance-evaluation histograms.
 
std::string m_rootFileName
 root file name
 
TFile * m_rootFilePtr = nullptr
 pointer at root file used for storing histograms
 

Detailed Description

This module takes the MCParticles, the Tracks, the RecoTrack, and the MCRecoTracks input and produce a root file containing various histograms showing the performance of the tracking package: fitter, pattern recongnition algorithms.

Definition at line 37 of file TrackingPerformanceEvaluationModule.h.

Member Typedef Documentation

◆ EAfterConditionPath

Forward the EAfterConditionPath definition from the ModuleCondition.

Definition at line 88 of file Module.h.

Member Enumeration Documentation

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 77 of file Module.h.

77 {
78 c_Input = 1,
79 c_Output = 2,
85 };
@ c_HistogramManager
This module is used to manage histograms accumulated by other modules.
Definition: Module.h:81
@ c_Input
This module is an input module (reads data).
Definition: Module.h:78
@ c_DontCollectStatistics
No statistics is collected for this module.
Definition: Module.h:84
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
Definition: Module.h:80
@ c_InternalSerializer
This module is an internal serializer/deserializer for parallel processing.
Definition: Module.h:82
@ c_Output
This module is an output module (writes data).
Definition: Module.h:79
@ c_TerminateInAllProcesses
When using parallel processing, call this module's terminate() function in all processes().
Definition: Module.h:83

Constructor & Destructor Documentation

◆ TrackingPerformanceEvaluationModule()

Constructor.

Definition at line 42 of file TrackingPerformanceEvaluationModule.cc.

42 :
43 Module()
44{
45
46 setDescription("This module evaluates the tracking package performance");
47
48 addParam("outputFileName", m_rootFileName, "Name of output root file.",
49 std::string("TrackingPerformanceEvaluation_output.root"));
50 addParam("MCParticlesName", m_MCParticlesName, "Name of MC Particle collection.", std::string(""));
51 addParam("TracksName", m_TracksName, "Name of Track collection.", std::string(""));
52 addParam("RecoTracksName", m_RecoTracksName, "Name of RecoTrack collection.", std::string("RecoTracks"));
53 addParam("MCRecoTracksName", m_MCRecoTracksName, "Name of MCRecoTrack collection.", std::string("MCRecoTracks"));
54 addParam("ParticleHypothesis", m_ParticleHypothesis, "Particle Hypothesis used in the track fit.", int(211));
55
56}
void setDescription(const std::string &description)
Sets the description of the module.
Definition: Module.cc:214
Module()
Constructor.
Definition: Module.cc:30
int m_ParticleHypothesis
Particle Hypothesis for the track fit (default: 211)
std::string m_MCParticlesName
MCParticle StoreArray name.
std::string m_MCRecoTracksName
MCRecoTrack StoreArray name.
void addParam(const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
Definition: Module.h:560

◆ ~TrackingPerformanceEvaluationModule()

Destructor.

Definition at line 58 of file TrackingPerformanceEvaluationModule.cc.

59{
60
61}

Member Function Documentation

◆ addEfficiencyPlots()

void addEfficiencyPlots ( TList *  graphList = nullptr,
TH3F *  h3_xPerMCParticle = nullptr,
TH3F *  h3_MCParticle = nullptr 
)
inherited

Create pt-, theta- and phi-efficiency 1D histograms and add them to the TList of 1D-histograms.

Definition at line 293 of file PerformanceEvaluationBaseClass.cc.

294{
295 if ((h3_xPerMCParticle == nullptr) || (h3_MCParticle == nullptr))
296 return;
297
298 //normalized to MCParticles
299 TH1F* h_eff_pt = createHistogramsRatio("heffpt", "efficiency VS pt, normalized to MCParticles", h3_xPerMCParticle,
300 h3_MCParticle, true, 0);
301 histoList->Add(h_eff_pt);
302
303 TH1F* h_eff_theta = createHistogramsRatio("hefftheta", "efficiency VS #theta, normalized to MCParticles", h3_xPerMCParticle,
304 h3_MCParticle, true, 1);
305 histoList->Add(h_eff_theta);
306
307 TH1F* h_eff_phi = createHistogramsRatio("heffphi", "efficiency VS #phi, normalized to MCParticles", h3_xPerMCParticle,
308 h3_MCParticle, true, 2);
309 histoList->Add(h_eff_phi);
310
311}
TH1F * createHistogramsRatio(const char *name, const char *title, TH1 *hNum, TH1 *hDen, bool isEffPlot, int axisRef)
Make a new 1D histogram from the ratio of two others and add it to the TList of 1D-histograms.

◆ addInefficiencyPlots()

void addInefficiencyPlots ( TList *  graphList = nullptr,
TH3F *  h3_xPerMCParticle = nullptr,
TH3F *  h3_MCParticle = nullptr 
)
inherited

Create pt-, theta- and phi-inefficiency 1D histograms and add them to the TList of 1D-histograms.

Definition at line 272 of file PerformanceEvaluationBaseClass.cc.

273{
274
275 if ((h3_xPerMCParticle == nullptr) || (h3_MCParticle == nullptr))
276 return;
277
278 //normalized to MCParticles
279 TH1F* h_ineff_pt = createHistogramsRatio("hineffpt", "inefficiency VS pt, normalized to MCParticles", h3_xPerMCParticle,
280 h3_MCParticle, false, 0);
281 histoList->Add(h_ineff_pt);
282
283 TH1F* h_ineff_theta = createHistogramsRatio("hinefftheta", "inefficiency VS #theta, normalized to MCParticles",
284 h3_xPerMCParticle, h3_MCParticle, false, 1);
285 histoList->Add(h_ineff_theta);
286
287 TH1F* h_ineff_phi = createHistogramsRatio("hineffphi", "inefficiency VS #phi, normalized to MCParticles", h3_xPerMCParticle,
288 h3_MCParticle, false, 2);
289 histoList->Add(h_ineff_phi);
290
291}

◆ addMoreEfficiencyPlots()

void addMoreEfficiencyPlots ( TList *  histoList)
private

add efficiency plots

Definition at line 1013 of file TrackingPerformanceEvaluationModule.cc.

1014{
1015
1016
1017 TH1F* h_MCPwPXDhits_pt = createHistogramsRatio("hMCPwPXDhits", "fraction of MCParticles with PXD hits VS pt",
1019 m_h3_MCParticle, true, 0);
1020 histoList->Add(h_MCPwPXDhits_pt);
1021
1022 TH1F* h_RTwPXDhitsMCPwPXDHits_pt = createHistogramsRatio("hRecoTrkswPXDhitsMCPwPXDHits",
1023 "fraction of MCParticles with PXD Hits with RecoTracks with PXD hits VS pt",
1025 m_h3_MCParticleswPXDHits, true, 0);
1026 histoList->Add(h_RTwPXDhitsMCPwPXDHits_pt);
1027
1028 TH1F* h_wPXDhits_pt = createHistogramsRatio("hTrkswPXDhits", "fraction of tracks with PXD hits VS pt",
1030 m_h3_TracksPerMCParticle, true, 0);
1031 histoList->Add(h_wPXDhits_pt);
1032
1033 //normalized to MCParticles
1034 TH1F* h_eff_pt = createHistogramsRatio("heffpt", "efficiency VS pt, normalized to MCParticles", m_h3_TracksPerMCParticle,
1035 m_h3_MCParticle, true, 0);
1036 histoList->Add(h_eff_pt);
1037 // B2INFO(" efficiency in pt, NUM = "<<m_nFittedTracks<<", DEN = "<<m_nMCParticles<<", eff integrata = "<<(double)m_nFittedTracks/m_nMCParticles);
1038
1039 TH1F* h_eff_theta = createHistogramsRatio("hefftheta", "efficiency VS #theta, normalized to MCParticles", m_h3_TracksPerMCParticle,
1040 m_h3_MCParticle, true, 1);
1041 histoList->Add(h_eff_theta);
1042
1043 TH1F* h_eff_phi = createHistogramsRatio("heffphi", "efficiency VS #phi, normalized to MCParticles", m_h3_TracksPerMCParticle,
1044 m_h3_MCParticle, true, 2);
1045 histoList->Add(h_eff_phi);
1046
1047 //normalized to MCRecoTracks
1048 TH1F* h_effMCRT_pt = createHistogramsRatio("heffMCRTpt", "efficiency VS pt, normalized to MCRecoTrack", m_h3_TracksPerMCRecoTrack,
1049 m_h3_MCRecoTrack, true, 0);
1050 histoList->Add(h_effMCRT_pt);
1051
1052 TH1F* h_effMCRT_theta = createHistogramsRatio("heffMCRTtheta", "efficiency VS #theta, normalized to MCRecoTrack",
1054 histoList->Add(h_effMCRT_theta);
1055
1056 TH1F* h_effMCRT_phi = createHistogramsRatio("heffMCRTphi", "efficiency VS #phi, normalized to MCRecoTrack",
1058 histoList->Add(h_effMCRT_phi);
1059
1060 // plus
1061
1062 //normalized to MCParticles
1063 TH1F* h_eff_pt_plus = createHistogramsRatio("heffpt_plus", "efficiency VS pt, normalized to positive MCParticles",
1065 histoList->Add(h_eff_pt_plus);
1066 // B2INFO(" efficiency in pt, NUM = "<<m_nFittedTracks<<", DEN = "<<m_nMCParticles<<", eff integrata = "<<(double)m_nFittedTracks/m_nMCParticles);
1067
1068 TH1F* h_eff_theta_plus = createHistogramsRatio("hefftheta_plus", "efficiency VS #theta, normalized to positive MCParticles",
1070 histoList->Add(h_eff_theta_plus);
1071
1072 TH1F* h_eff_phi_plus = createHistogramsRatio("heffphi_plus", "efficiency VS #phi, normalized to positive MCParticles",
1074 histoList->Add(h_eff_phi_plus);
1075
1076 //normalized to MCRecoTracks
1077 TH1F* h_effMCRT_pt_plus = createHistogramsRatio("heffMCRTpt_plus", "efficiency VS pt, normalized to positive MCRecoTrack",
1079 histoList->Add(h_effMCRT_pt_plus);
1080
1081 TH1F* h_effMCRT_theta_plus = createHistogramsRatio("heffMCRTtheta_plus", "efficiency VS #theta, normalized to positive MCRecoTrack",
1083 histoList->Add(h_effMCRT_theta_plus);
1084
1085 TH1F* h_effMCRT_phi_plus = createHistogramsRatio("heffMCRTphi_plus", "efficiency VS #phi, normalized to positive MCRecoTrack",
1087 histoList->Add(h_effMCRT_phi_plus);
1088
1089 // minus
1090
1091 //normalized to MCParticles
1092 TH1F* h_eff_pt_minus = createHistogramsRatio("heffpt_minus", "efficiency VS pt, normalized to positive MCParticles",
1094 histoList->Add(h_eff_pt_minus);
1095 // B2INFO(" efficiency in pt, NUM = "<<m_nFittedTracks<<", DEN = "<<m_nMCParticles<<", eff integrata = "<<(double)m_nFittedTracks/m_nMCParticles);
1096
1097 TH1F* h_eff_theta_minus = createHistogramsRatio("hefftheta_minus", "efficiency VS #theta, normalized to positive MCParticles",
1099 histoList->Add(h_eff_theta_minus);
1100
1101 TH1F* h_eff_phi_minus = createHistogramsRatio("heffphi_minus", "efficiency VS #phi, normalized to positive MCParticles",
1103 histoList->Add(h_eff_phi_minus);
1104
1105 //normalized to MCRecoTracks
1106 TH1F* h_effMCRT_pt_minus = createHistogramsRatio("heffMCRTpt_minus", "efficiency VS pt, normalized to positive MCRecoTrack",
1108 histoList->Add(h_effMCRT_pt_minus);
1109
1110 TH1F* h_effMCRT_theta_minus = createHistogramsRatio("heffMCRTtheta_minus",
1111 "efficiency VS #theta, normalized to positive MCRecoTrack", m_h3_TracksPerMCRecoTrack_minus, m_h3_MCRecoTrack_minus, true, 1);
1112 histoList->Add(h_effMCRT_theta_minus);
1113
1114 TH1F* h_effMCRT_phi_minus = createHistogramsRatio("heffMCRTphi_minus", "efficiency VS #phi, normalized to positive MCRecoTrack",
1116 histoList->Add(h_effMCRT_phi_minus);
1117
1118 //pattern recognition efficiency
1119 TH1F* h_effPR = createHistogramsRatio("heffPR", "PR efficiency VS VXD Layer, normalized to MCRecoTrack",
1121 histoList->Add(h_effPR);
1122
1123 //tracks used in the fit
1124 TH1F* h_effVXDHitFit = createHistogramsRatio("heffVXDHitFit",
1125 "weighted hits used in the fit VS VXD Layer, normalized to hits form PR", m_h1_nVXDhitsWeighted, m_h1_nVXDhitsPR, true, 0);
1126 histoList->Add(h_effVXDHitFit);
1127
1128 TH1F* h_effCDCHitFit = createHistogramsRatio("heffCDCHitFit",
1129 "weighted hits used in the fit VS CDC Layer, normalized to hits form PR", m_h1_nCDChitsWeighted, m_h1_nCDChitsPR, true, 0);
1130 histoList->Add(h_effCDCHitFit);
1131
1132}

◆ addMoreInefficiencyPlots()

void addMoreInefficiencyPlots ( TList *  histoList)
private

add inefficiency plots

Definition at line 982 of file TrackingPerformanceEvaluationModule.cc.

983{
984
985 //normalized to MCParticles
986 TH1F* h_ineff_pt = createHistogramsRatio("hineffpt", "inefficiency VS pt, normalized to MCParticles", m_h3_TracksPerMCParticle,
987 m_h3_MCParticle, false, 0);
988 histoList->Add(h_ineff_pt);
989
990 TH1F* h_ineff_theta = createHistogramsRatio("hinefftheta", "inefficiency VS #theta, normalized to MCParticles",
992 histoList->Add(h_ineff_theta);
993
994 TH1F* h_ineff_phi = createHistogramsRatio("hineffphi", "inefficiency VS #phi, normalized to MCParticles", m_h3_TracksPerMCParticle,
995 m_h3_MCParticle, false, 2);
996 histoList->Add(h_ineff_phi);
997
998 //normalized to MCRecoTracks
999 TH1F* h_ineffMCRT_pt = createHistogramsRatio("hineffMCRTpt", "inefficiency VS pt, normalized to MCRecoTrack",
1001 histoList->Add(h_ineffMCRT_pt);
1002
1003 TH1F* h_ineffMCRT_theta = createHistogramsRatio("hineffMCRTtheta", "inefficiency VS #theta, normalized to MCRecoTrack",
1005 histoList->Add(h_ineffMCRT_theta);
1006
1007 TH1F* h_ineffMCRT_phi = createHistogramsRatio("hineffMCRTphi", "inefficiency VS #phi, normalized to MCRecoTrack",
1009 histoList->Add(h_ineffMCRT_phi);
1010
1011}

◆ addPurityPlots()

void addPurityPlots ( TList *  graphList = nullptr,
TH3F *  h3_xPerMCParticle = nullptr,
TH3F *  h3_MCParticle = nullptr 
)
inherited

Create pt-, theta- and phi-purity 1D histograms and add them to the TList of 1D-histograms.

Definition at line 315 of file PerformanceEvaluationBaseClass.cc.

316{
317 if ((h3_X == nullptr) || (h3_MCParticlesPerX == nullptr))
318 return;
319
320 //purity histograms
321 TH1F* h_pur_pt = createHistogramsRatio("hpurpt", "purity VS pt", h3_MCParticlesPerX, h3_X, true, 0);
322 histoList->Add(h_pur_pt);
323
324 TH1F* h_pur_theta = createHistogramsRatio("hpurtheta", "purity VS #theta", h3_MCParticlesPerX, h3_X, true, 1);
325 histoList->Add(h_pur_theta);
326
327 TH1F* h_pur_phi = createHistogramsRatio("hpurphi", "purity VS #phi", h3_MCParticlesPerX, h3_X, true, 2);
328 histoList->Add(h_pur_phi);
329
330}

◆ beginRun()

void beginRun ( void  )
overridevirtual

Called when entering a new run.

Reimplemented from Module.

Definition at line 340 of file TrackingPerformanceEvaluationModule.cc.

341{
342
343}

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 179 of file Module.cc.

180{
182 newModule->m_moduleParamList.setParameters(getParamList());
183 newModule->setName(getName());
184 newModule->m_package = m_package;
185 newModule->m_propertyFlags = m_propertyFlags;
186 newModule->m_logConfig = m_logConfig;
187 newModule->m_conditions = m_conditions;
188
189 return newModule;
190}
std::shared_ptr< Module > registerModule(const std::string &moduleName, std::string sharedLibPath="") noexcept(false)
Creates an instance of a module and registers it to the ModuleManager.
static ModuleManager & Instance()
Exception is thrown if the requested module could not be created by the ModuleManager.
const ModuleParamList & getParamList() const
Return module param list.
Definition: Module.h:363
const std::string & getName() const
Returns the name of the module.
Definition: Module.h:187
const std::string & getType() const
Returns the type of the module (i.e.
Definition: Module.cc:41
unsigned int m_propertyFlags
The properties of the module as bitwise or (with |) of EModulePropFlags.
Definition: Module.h:512
LogConfig m_logConfig
The log system configuration of the module.
Definition: Module.h:514
std::vector< ModuleCondition > m_conditions
Module condition, only non-null if set.
Definition: Module.h:521
std::string m_package
Package this module is found in (may be empty).
Definition: Module.h:510
std::shared_ptr< Module > ModulePtr
Defines a pointer to a module object as a boost shared pointer.
Definition: Module.h:43

◆ createHistogram1D() [1/2]

TH1F * createHistogram1D ( const char *  name,
const char *  title,
Int_t  nbins,
Double_t *  bins,
const char *  xtitle,
TList *  histoList = nullptr 
)
inherited

Create a 1D histogram and add it to the TList of 1D-histograms.

Definition at line 41 of file PerformanceEvaluationBaseClass.cc.

44{
45
46 TH1F* h = new TH1F(name, title, nbins, bins);
47
48 h->GetXaxis()->SetTitle(xtitle);
49
50 if (histoList)
51 histoList->Add(h);
52
53 return h;
54}

◆ createHistogram1D() [2/2]

TH1F * createHistogram1D ( const char *  name,
const char *  title,
Int_t  nbins,
Double_t  min,
Double_t  max,
const char *  xtitle,
TList *  histoList = nullptr 
)
inherited

Create a 1D histogram and add it to the TList of 1D-histograms.

Definition at line 26 of file PerformanceEvaluationBaseClass.cc.

29{
30
31 TH1F* h = new TH1F(name, title, nbins, min, max);
32
33 h->GetXaxis()->SetTitle(xtitle);
34
35 if (histoList)
36 histoList->Add(h);
37
38 return h;
39}

◆ createHistogram2D() [1/2]

TH2F * createHistogram2D ( const char *  name,
const char *  title,
Int_t  nbinsX,
Double_t *  binsX,
const char *  titleX,
Int_t  nbinsY,
Double_t *  binsY,
const char *  titleY,
TList *  histoList = nullptr 
)
inherited

Create a 2D histogram and add it to the TList of 2D-histograms.

Definition at line 74 of file PerformanceEvaluationBaseClass.cc.

80{
81
82 TH2F* h = new TH2F(name, title, nbinsX, binsX, nbinsY, binsY);
83
84 h->GetXaxis()->SetTitle(titleX);
85 h->GetYaxis()->SetTitle(titleY);
86
87 if (histoList)
88 histoList->Add(h);
89
90 return h;
91}

◆ createHistogram2D() [2/2]

TH2F * createHistogram2D ( const char *  name,
const char *  title,
Int_t  nbinsX,
Double_t  minX,
Double_t  maxX,
const char *  titleX,
Int_t  nbinsY,
Double_t  minY,
Double_t  maxY,
const char *  titleY,
TList *  histoList = nullptr 
)
inherited

Create a 2D histogram and add it to the TList of 2D-histograms.

Create 2D histogram

Definition at line 56 of file PerformanceEvaluationBaseClass.cc.

61{
62
63 TH2F* h = new TH2F(name, title, nbinsX, minX, maxX, nbinsY, minY, maxY);
64
65 h->GetXaxis()->SetTitle(titleX);
66 h->GetYaxis()->SetTitle(titleY);
67
68 if (histoList)
69 histoList->Add(h);
70
71 return h;
72}

◆ createHistogram3D() [1/2]

TH3F * createHistogram3D ( const char *  name,
const char *  title,
Int_t  nbinsX,
Double_t *  binsX,
const char *  titleX,
Int_t  nbinsY,
Double_t *  binsY,
const char *  titleY,
Int_t  nbinsZ,
Double_t *  binsZ,
const char *  titleZ,
TList *  histoList = nullptr 
)
inherited

Create a 3D histogram and add it to the TList of 3D-histograms.

Definition at line 115 of file PerformanceEvaluationBaseClass.cc.

123{
124
125 TH3F* h = new TH3F(name, title, nbinsX, binsX, nbinsY, binsY, nbinsZ, binsZ);
126
127 h->GetXaxis()->SetTitle(titleX);
128 h->GetYaxis()->SetTitle(titleY);
129 h->GetZaxis()->SetTitle(titleZ);
130
131 if (histoList)
132 histoList->Add(h);
133
134 return h;
135}

◆ createHistogram3D() [2/2]

TH3F * createHistogram3D ( const char *  name,
const char *  title,
Int_t  nbinsX,
Double_t  minX,
Double_t  maxX,
const char *  titleX,
Int_t  nbinsY,
Double_t  minY,
Double_t  maxY,
const char *  titleY,
Int_t  nbinsZ,
Double_t  minZ,
Double_t  maxZ,
const char *  titleZ,
TList *  histoList = nullptr 
)
inherited

Create a 3D histogram and add it to the TList of 3D-histograms.

Definition at line 93 of file PerformanceEvaluationBaseClass.cc.

101{
102
103 TH3F* h = new TH3F(name, title, nbinsX, minX, maxX, nbinsY, minY, maxY, nbinsZ, minZ, maxZ);
104
105 h->GetXaxis()->SetTitle(titleX);
106 h->GetYaxis()->SetTitle(titleY);
107 h->GetZaxis()->SetTitle(titleZ);
108
109 if (histoList)
110 histoList->Add(h);
111
112 return h;
113}

◆ createHistogramsRatio()

TH1F * createHistogramsRatio ( const char *  name,
const char *  title,
TH1 *  hNum,
TH1 *  hDen,
bool  isEffPlot,
int  axisRef 
)
inherited

Make a new 1D histogram from the ratio of two others and add it to the TList of 1D-histograms.

Definition at line 170 of file PerformanceEvaluationBaseClass.cc.

173{
174
175 TH1F* h1den = dynamic_cast<TH1F*>(hDen);
176 TH1F* h1num = dynamic_cast<TH1F*>(hNum);
177 TH2F* h2den = dynamic_cast<TH2F*>(hDen);
178 TH2F* h2num = dynamic_cast<TH2F*>(hNum);
179 TH3F* h3den = dynamic_cast<TH3F*>(hDen);
180 TH3F* h3num = dynamic_cast<TH3F*>(hNum);
181
182 TH1* hden = 0;
183 TH1* hnum = 0;
184
185 if (h1den) {
186 hden = new TH1F(*h1den);
187 hnum = new TH1F(*h1num);
188 }
189 if (h2den) {
190 hden = new TH2F(*h2den);
191 hnum = new TH2F(*h2num);
192 }
193 if (h3den) {
194 hden = new TH3F(*h3den);
195 hnum = new TH3F(*h3num);
196 }
197
198 TAxis* the_axis;
199 TAxis* the_other1;
200 TAxis* the_other2;
201
202 if (axisRef == 0) {
203 the_axis = hden->GetXaxis();
204 the_other1 = hden->GetYaxis();
205 the_other2 = hden->GetZaxis();
206 } else if (axisRef == 1) {
207 the_axis = hden->GetYaxis();
208 the_other1 = hden->GetXaxis();
209 the_other2 = hden->GetZaxis();
210 } else if (axisRef == 2) {
211 the_axis = hden->GetZaxis();
212 the_other1 = hden->GetXaxis();
213 the_other2 = hden->GetYaxis();
214 } else
215 return nullptr;
216
217
218 TH1F* h;
219 if (the_axis->GetXbins()->GetSize())
220 h = new TH1F(name, title, the_axis->GetNbins(), (the_axis->GetXbins())->GetArray());
221 else
222 h = new TH1F(name, title, the_axis->GetNbins(), the_axis->GetXmin(), the_axis->GetXmax());
223 h->GetXaxis()->SetTitle(the_axis->GetTitle());
224
225 h->GetYaxis()->SetRangeUser(0.00001, 1);
226
227 Int_t bin = 0;
228
229 for (int the_bin = 1; the_bin < the_axis->GetNbins() + 1; the_bin++) {
230
231 double num = 0;
232 double den = 0;
233
234 for (int other1_bin = 1; other1_bin < the_other1->GetNbins() + 1; other1_bin++)
235 for (int other2_bin = 1; other2_bin < the_other2->GetNbins() + 1; other2_bin++) {
236
237 if (axisRef == 0) bin = hden->GetBin(the_bin, other1_bin, other2_bin);
238 else if (axisRef == 1) bin = hden->GetBin(other1_bin, the_bin, other2_bin);
239 else if (axisRef == 2) bin = hden->GetBin(other1_bin, other2_bin, the_bin);
240
241 if (hden->IsBinUnderflow(bin))
242 B2INFO(" bin = " << bin << "(" << the_bin << "," << other1_bin << "," << other2_bin << "), UNDERFLOW");
243 if (hden->IsBinOverflow(bin))
244 B2INFO(" bin = " << bin << "(" << the_bin << "," << other1_bin << "," << other2_bin << "), OVERFLOW");
245
246 num += hnum->GetBinContent(bin);
247 den += hden->GetBinContent(bin);
248 }
249
250 double eff = 0;
251 double err = 0;
252
253 if (den > 0) {
254 eff = (double)num / den;
255 err = sqrt(eff * (1 - eff)) / sqrt(den);
256 }
257
258 if (isEffPlot) {
259 h->SetBinContent(the_bin, eff);
260 h->SetBinError(the_bin, err);
261 } else {
262 h->SetBinContent(the_bin, 1 - eff);
263 h->SetBinError(the_bin, err);
264 }
265 }
266
267 return h;
268
269}
double sqrt(double a)
sqrt for double
Definition: beamHelpers.h:28

◆ def_beginRun()

virtual void def_beginRun ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 426 of file Module.h.

426{ beginRun(); }
virtual void beginRun()
Called when entering a new run.
Definition: Module.h:147

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 439 of file Module.h.

439{ endRun(); }
virtual void endRun()
This method is called if the current run ends.
Definition: Module.h:166

◆ def_event()

virtual void def_event ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 432 of file Module.h.

432{ event(); }
virtual void event()
This method is the core of the module.
Definition: Module.h:157

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 420 of file Module.h.

420{ initialize(); }
virtual void initialize()
Initialize the Module.
Definition: Module.h:109

◆ def_terminate()

virtual void def_terminate ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 445 of file Module.h.

445{ terminate(); }
virtual void terminate()
This method is called at the end of the event processing.
Definition: Module.h:176

◆ duplicateHistogram()

TH1 * duplicateHistogram ( const char *  newname,
const char *  newtitle,
TH1 *  h,
TList *  histoList = nullptr 
)
inherited

Make a copy of a 1D histogram and add it to the TList of 1D-histograms.

Definition at line 137 of file PerformanceEvaluationBaseClass.cc.

139{
140
141 TH1F* h1 = dynamic_cast<TH1F*>(h);
142 TH2F* h2 = dynamic_cast<TH2F*>(h);
143 TH3F* h3 = dynamic_cast<TH3F*>(h);
144
145 TH1* newh = nullptr;
146
147 if (h1)
148 newh = new TH1F(*h1);
149 if (h2)
150 newh = new TH2F(*h2);
151 if (h3)
152 newh = new TH3F(*h3);
153
154 if (newh == nullptr) {
155 B2ERROR("In function duplicateHistogram: newh is a nullptr. This shouldn't happen."\
156 "Don't continue creation of duplicate histogram in this case and return nullptr.");
157 return nullptr;
158 }
159
160 newh->SetName(newname);
161 newh->SetTitle(newtitle);
162
163 if (histoList)
164 histoList->Add(newh);
165
166
167 return newh;
168}

◆ effPlot1D() [1/2]

TH1F * effPlot1D ( TH1F *  h1_den,
TH1F *  h1_num,
const char *  name,
const char *  title,
bool  geo_accettance,
TList *  histoList = nullptr 
)
inherited

Create a 1D efficiency histogram and add it to the TList of 1D-histograms.

Definition at line 332 of file PerformanceEvaluationBaseClass.cc.

334{
335 if (h1_den == nullptr or h1_num == nullptr) {
336 B2ERROR("One of the input histograms for function effPlot1D is a nullptr, "\
337 "can't create new histograms from this. Returning a nullptr.");
338 return nullptr;
339 }
340
341 std::string total;
342 std::string trueTitle;
343
344 if (geo_accettance == false) {
345 std::string name1 = "_noGeoAcc";
346 total = std::string(name) + name1;
347 trueTitle = std::string(title) + name1;
348 } else {
349 std::string name2 = "_withGeoAcc";
350 total = std::string(name) + name2;
351 trueTitle = std::string(title) + name2;
352 }
353
354 TH1F* h = (TH1F*)duplicateHistogram(total.c_str(), trueTitle.c_str(), h1_den, histoList);
355 h->GetYaxis()->SetRangeUser(0., 1);
356
357 for (int bin = 0; bin < h->GetXaxis()->GetNbins(); bin++) {
358 float num = h1_num->GetBinContent(bin + 1);
359 float den = h1_den->GetBinContent(bin + 1);
360 double eff = 0.;
361 double err = 0.;
362
363 if (den > 0) {
364 eff = (double)num / den;
365 err = sqrt(eff * (1 - eff)) / sqrt(den);
366 }
367 h->SetBinContent(bin + 1, eff);
368 h->SetBinError(bin + 1, err);
369 }
370
371
372 if (histoList)
373 histoList->Add(h);
374
375 return h;
376}
TH1 * duplicateHistogram(const char *newname, const char *newtitle, TH1 *h, TList *histoList=nullptr)
Make a copy of a 1D histogram and add it to the TList of 1D-histograms.

◆ effPlot1D() [2/2]

TH1F * effPlot1D ( TH1F *  h1_MC,
TH1F *  h1_RecoTrack,
TH1F *  h1_Track,
const char *  name,
const char *  title,
TList *  histoList = nullptr 
)
inherited

Create a 1D efficiency histogram and add it to the TList of 1D-histograms.

Definition at line 378 of file PerformanceEvaluationBaseClass.cc.

380{
381 if (h1_MC == nullptr or h1_RecoTrack == nullptr or h1_Track == nullptr) {
382 B2ERROR("One of the input histograms for function effPlot1D is a nullptr, "\
383 "can't create new histograms from this. Returning a nullptr.");
384 return nullptr;
385 }
386
387 std::string name1 = "_noGeoAcc";
388 std::string name2 = "_withGeoAcc";
389
390 std::string total1 = std::string(name) + name1;
391 std::string total2 = std::string(name) + name2;
392
393 std::string title1 = std::string(title) + name1;
394 std::string title2 = std::string(title) + name2;
395
396 TH1F* h[2];
397
398 h[0] = (TH1F*)duplicateHistogram(total2.c_str(), title2.c_str(), h1_RecoTrack, histoList);
399 h[0]->GetYaxis()->SetRangeUser(0., 1);
400
401 for (int bin = 0; bin < h[0]->GetXaxis()->GetNbins(); bin++) {
402 float num = h1_Track->GetBinContent(bin + 1);
403 float den = h1_RecoTrack->GetBinContent(bin + 1);
404 double eff = 0.;
405 double err = 0.;
406
407 if (den > 0) {
408 eff = (double)num / den;
409 err = sqrt(eff * (1 - eff)) / sqrt(den);
410 }
411 h[0]->SetBinContent(bin + 1, eff);
412 h[0]->SetBinError(bin + 1, err);
413 }
414
415 h[1] = (TH1F*)duplicateHistogram(total1.c_str(), title1.c_str(), h1_MC, histoList);
416 h[1]->GetYaxis()->SetRangeUser(0., 1);
417
418 for (int bin = 0; bin < h[1]->GetXaxis()->GetNbins(); bin++) {
419 float num = h1_Track->GetBinContent(bin + 1);
420 float den = h1_MC->GetBinContent(bin + 1);
421 double eff = 0.;
422 double err = 0.;
423
424 if (den > 0) {
425 eff = (double)num / den;
426 err = sqrt(eff * (1 - eff)) / sqrt(den);
427 }
428 h[1]->SetBinContent(bin + 1, eff);
429 h[1]->SetBinError(bin + 1, err);
430 }
431
432 if (histoList) {
433 histoList->Add(h[0]);
434 histoList->Add(h[1]);
435 }
436
437 return *h;
438}

◆ effPlot2D() [1/2]

TH2F * effPlot2D ( TH2F *  h2_den,
TH2F *  h2_num,
const char *  name,
const char *  title,
bool  geo_accettance,
TList *  histoList = nullptr 
)
inherited

Create a 2D efficiency histogram and add it to the TList of 2D-histograms.

Definition at line 440 of file PerformanceEvaluationBaseClass.cc.

442{
443 if (h2_den == nullptr or h2_num == nullptr) {
444 B2ERROR("One of the input histograms for function effPlot1D is a nullptr, "\
445 "can't create new histograms from this. Returning a nullptr.");
446 return nullptr;
447 }
448
449 std::string err_char = "_error_";
450 std::string addTitle = "Errors, ";
451
452 std::string total;
453 std::string error;
454 std::string trueTitle;
455
456 std::string titleErr = addTitle + std::string(title);
457
458 if (geo_accettance == false) {
459 std::string name1 = "_noGeoAcc";
460 total = std::string(name) + name1;
461 trueTitle = std::string(title) + name1;
462 error = std::string(name) + err_char + std::string(name1);
463 } else {
464 std::string name2 = "_withGeoAcc";
465 total = std::string(name) + name2;
466 trueTitle = std::string(title) + name2;
467 error = std::string(name) + err_char + std::string(name2);
468 }
469
470 TH2F* h2[2];
471 h2[0] = (TH2F*)duplicateHistogram(total.c_str(), trueTitle.c_str(), h2_den, histoList);
472 h2[1] = (TH2F*)duplicateHistogram(error.c_str(), titleErr.c_str(), h2_den, histoList);
473
474 for (int binX = 0; binX < h2[0]->GetXaxis()->GetNbins(); binX++) {
475 for (int binY = 0; binY < h2[0]->GetYaxis()->GetNbins(); binY++) {
476 float num = h2_num->GetBinContent(binX + 1, binY + 1);
477 float den = h2_den->GetBinContent(binX + 1, binY + 1);
478 double eff = 0.;
479 double err = 0.;
480
481 if (den > 0) {
482 eff = (double)num / den;
483 err = sqrt(eff * (1 - eff)) / sqrt(den);
484 }
485
486 h2[0]->SetBinContent(binX + 1, binY + 1, eff);
487 h2[0]->SetBinError(binX + 1, binY + 1, err);
488 h2[1]->SetBinContent(binX + 1, binY + 1, err);
489 }
490 }
491
492
493 if (histoList) {
494 histoList->Add(h2[0]);
495 histoList->Add(h2[1]);
496 }
497
498 return *h2;
499
500}

◆ effPlot2D() [2/2]

TH2F * effPlot2D ( TH2F *  h2_MC,
TH2F *  h2_RecoTrack,
TH2F *  h2_Track,
const char *  name,
const char *  title,
TList *  histoList 
)
inherited

Create a 2D efficiency histogram and add it to the TList of 2D-histograms.

Definition at line 502 of file PerformanceEvaluationBaseClass.cc.

504{
505 if (h2_MC == nullptr or h2_RecoTrack == nullptr or h2_Track == nullptr) {
506 B2ERROR("One of the input histograms for function effPlot1D is a nullptr, "\
507 "can't create new histograms from this. Returning a nullptr.");
508 return nullptr;
509 }
510
511 std::string name1 = "_noGeoAcc";
512 std::string name2 = "_withGeoAcc";
513 std::string err_char = "_error_";
514 std::string addTitle = "Errors, ";
515
516 std::string total1 = std::string(name) + name1;
517 std::string total2 = std::string(name) + name2;
518
519 std::string title1 = std::string(title) + name1;
520 std::string title2 = std::string(title) + name2;
521
522 std::string error1 = std::string(name) + err_char + name1;
523 std::string error2 = std::string(name) + err_char + name2;
524 std::string titleErr = addTitle + std::string(title);
525
526 TH2F* h2[4];
527
528 h2[0] = (TH2F*)duplicateHistogram(total2.c_str(), title2.c_str(), h2_RecoTrack, histoList);
529 h2[1] = (TH2F*)duplicateHistogram(error2.c_str(), titleErr.c_str(), h2_RecoTrack, histoList);
530
531 for (int binX = 0; binX < h2[0]->GetXaxis()->GetNbins(); binX++) {
532 for (int binY = 0; binY < h2[0]->GetYaxis()->GetNbins(); binY++) {
533 float num = h2_Track->GetBinContent(binX + 1, binY + 1);
534 float den = h2_RecoTrack->GetBinContent(binX + 1, binY + 1);
535 double eff = 0.;
536 double err = 0.;
537
538 if (den > 0) {
539 eff = num / den;
540 err = sqrt(eff * (1 - eff)) / sqrt(den);
541 }
542
543 h2[0]->SetBinContent(binX + 1, binY + 1, eff);
544 h2[0]->SetBinError(binX + 1, binY + 1, err);
545 h2[1]->SetBinContent(binX + 1, binY + 1, err);
546 }
547 }
548
549 h2[2] = (TH2F*)duplicateHistogram(total1.c_str(), title1.c_str(), h2_MC, histoList);
550 h2[3] = (TH2F*)duplicateHistogram(error1.c_str(), titleErr.c_str(), h2_MC, histoList);
551
552 for (int binX = 0; binX < h2[2]->GetXaxis()->GetNbins(); binX++) {
553 for (int binY = 0; binY < h2[2]->GetYaxis()->GetNbins(); binY++) {
554 float num = h2_Track->GetBinContent(binX + 1, binY + 1);
555 float den = h2_MC->GetBinContent(binX + 1, binY + 1);
556 double eff = 0.;
557 double err = 0.;
558
559 if (den > 0) {
560 eff = num / den;
561 err = sqrt(eff * (1 - eff)) / sqrt(den);
562 }
563
564 h2[2]->SetBinContent(binX + 1, binY + 1, eff);
565 h2[2]->SetBinError(binX + 1, binY + 1, err);
566 h2[3]->SetBinContent(binX + 1, binY + 1, err);
567 }
568 }
569
570 if (histoList) {
571 histoList->Add(h2[0]);
572 histoList->Add(h2[1]);
573 histoList->Add(h2[2]);
574 histoList->Add(h2[3]);
575 }
576
577 return *h2;
578}

◆ endRun()

void endRun ( void  )
overridevirtual

This method is called if the current run ends.

Reimplemented from Module.

Definition at line 593 of file TrackingPerformanceEvaluationModule.cc.

594{
595
596 double num = 0;
597 double den = 0;
598
599 for (int bin = 1; bin < m_multiplicityFittedTracks->GetNbinsX(); bin ++)
600 num += m_multiplicityFittedTracks->GetBinContent(bin + 1);
601 den = m_multiplicityFittedTracks->GetEntries();
602 double efficiency = num / den ;
603 double efficiencyErr = sqrt(efficiency * (1 - efficiency)) / sqrt(den);
604
605 double nFittedTracksMCRT = 0;
606 for (int bin = 1; bin < m_multiplicityFittedTracksPerMCRT->GetNbinsX(); bin ++)
607 nFittedTracksMCRT += m_multiplicityFittedTracksPerMCRT->GetBinContent(bin + 1);
608 double efficiencyMCRT = nFittedTracksMCRT / m_multiplicityFittedTracksPerMCRT->GetEntries();
609 double efficiencyMCRTErr = sqrt(efficiencyMCRT * (1 - efficiencyMCRT)) / sqrt(m_multiplicityFittedTracksPerMCRT->GetEntries());
610
611 double nRecoTrack = 0;
612 for (int bin = 1; bin < m_multiplicityRecoTracksPerMCRT->GetNbinsX(); bin ++)
613 nRecoTrack += m_multiplicityRecoTracksPerMCRT->GetBinContent(bin + 1);
614 double efficiencyPR = nRecoTrack / m_multiplicityRecoTracksPerMCRT->GetEntries();
615 double efficiencyPRErr = sqrt(efficiencyPR * (1 - efficiencyPR)) / sqrt(m_multiplicityRecoTracksPerMCRT->GetEntries());
616
617 double nMCRecoTrack = 0;
618 for (int bin = 1; bin < m_multiplicityMCRecoTracksPerRT->GetNbinsX(); bin ++)
619 nMCRecoTrack += m_multiplicityMCRecoTracksPerRT->GetBinContent(bin + 1);
620 double purityPR = nMCRecoTrack / m_multiplicityMCRecoTracksPerRT->GetEntries();
621 double purityPRErr = sqrt(purityPR * (1 - purityPR)) / sqrt(m_multiplicityMCRecoTracksPerRT->GetEntries());
622
623 double nMCParticles = 0;
624 for (int bin = 1; bin < m_multiplicityMCParticlesPerTrack->GetNbinsX(); bin ++)
625 nMCParticles += m_multiplicityMCParticlesPerTrack->GetBinContent(bin + 1);
626 double purity = nMCParticles / m_multiplicityMCParticlesPerTrack->GetEntries();
627 double purityErr = sqrt(purity * (1 - purity)) / sqrt(m_multiplicityMCParticlesPerTrack->GetEntries());
628
629 B2INFO("");
630 B2INFO("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
631 B2INFO("~ Tracking Performance Evaluation ~ SHORT SUMMARY ~");
632 B2INFO("");
633 B2INFO(" + overall:");
634 B2INFO(" efficiency = (" << efficiency * 100 << " +/- " << efficiencyErr * 100 << ")% ");
635 B2INFO(" purity = " << purity * 100 << " +/- " << purityErr * 100 << ")% ");
636 B2INFO("");
637 B2INFO(" + factorizing geometrical acceptance:");
638 B2INFO(" efficiency = " << efficiencyMCRT * 100 << " +/- " << efficiencyMCRTErr * 100 << ")% ");
639 B2INFO("");
640 B2INFO(" + pattern recognition:");
641 B2INFO(" efficiency = " << efficiencyPR * 100 << " +/- " << efficiencyPRErr * 100 << ")% ");
642 B2INFO(" purity = " << purityPR * 100 << " +/- " << purityPRErr * 100 << ")% ");
643 B2INFO("");
644 B2INFO("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
645}
TH1F * m_multiplicityMCRecoTracksPerRT
number of MCRecoTracks per RecoTracks
TH1F * m_multiplicityFittedTracks
number of fitted tracks per MCParticles
TH1F * m_multiplicityRecoTracksPerMCRT
number of RecoTracks per MCRecoTracks
TH1F * m_multiplicityMCParticlesPerTrack
number of MCParticles per fitted Track
TH1F * m_multiplicityFittedTracksPerMCRT
number of fitted tracks per MCRecoTrack

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 96 of file Module.cc.

97{
98 if (m_conditions.empty()) return false;
99
100 //okay, a condition was set for this Module...
101 if (!m_hasReturnValue) {
102 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
103 }
104
105 for (const auto& condition : m_conditions) {
106 if (condition.evaluate(m_returnValue)) {
107 return true;
108 }
109 }
110 return false;
111}
int m_returnValue
The return value.
Definition: Module.h:519
bool m_hasReturnValue
True, if the return value is set.
Definition: Module.h:518

◆ event()

void event ( void  )
overridevirtual

This method is called for each event.

Reimplemented from Module.

Definition at line 345 of file TrackingPerformanceEvaluationModule.cc.

346{
347 ROOT::Math::XYZVector magField = BFieldManager::getField(0, 0, 0) / Unit::T;
348
349 bool hasTrack = false;
350 B2DEBUG(29, "+++++ 1. loop on MCParticles");
351 for (const MCParticle& mcParticle : m_MCParticles) {
352
353 if (! isTraceable(mcParticle))
354 continue;
355
356 int pdgCode = mcParticle.getPDG();
357 B2DEBUG(29, "MCParticle has PDG code " << pdgCode);
358
359 int nFittedTracksMCRT = 0;
360 int nFittedTracks = 0;
361
362 MCParticleInfo mcParticleInfo(mcParticle, magField);
363
364 hasTrack = false;
365
366 m_h3_MCParticle->Fill(mcParticleInfo.getPt(), mcParticleInfo.getPtheta(), mcParticleInfo.getPphi());
367
368 if (mcParticleInfo.getCharge() > 0)
369 m_h3_MCParticle_plus->Fill(mcParticleInfo.getPt(), mcParticleInfo.getPtheta(), mcParticleInfo.getPphi());
370 else if (mcParticleInfo.getCharge() < 0)
371 m_h3_MCParticle_minus->Fill(mcParticleInfo.getPt(), mcParticleInfo.getPtheta(), mcParticleInfo.getPphi());
372 else
373 continue;
374
375 if (mcParticle.hasSeenInDetector(Const::PXD))
376 m_h3_MCParticleswPXDHits->Fill(mcParticleInfo.getPt(), mcParticleInfo.getPtheta(), mcParticleInfo.getPphi());
377
378 //1. retrieve all the Tracks related to the MCParticle
379
380 //1.0 check if there is a RecoTrack
381 RelationVector<RecoTrack> MCRecoTracks_fromMCParticle =
382 DataStore::getRelationsWithObj<RecoTrack>(&mcParticle, m_MCRecoTracksName);
383
384 if (MCRecoTracks_fromMCParticle.size() > 0)
385 if (MCRecoTracks_fromMCParticle[0]->hasPXDHits()) {
386 m_h3_RecoTrackswPXDHitsPerMCParticle->Fill(mcParticleInfo.getPt(), mcParticleInfo.getPtheta(), mcParticleInfo.getPphi());
387 if (mcParticle.hasSeenInDetector(Const::PXD))
388 m_h3_RecoTrackswPXDHitsPerMCParticlewPXDHits->Fill(mcParticleInfo.getPt(), mcParticleInfo.getPtheta(), mcParticleInfo.getPphi());
389 }
390 m_multiplicityMCRecoTracks->Fill(MCRecoTracks_fromMCParticle.size());
391
392 RelationVector<RecoTrack> RecoTracks_fromMCParticle =
393 DataStore::getRelationsWithObj<RecoTrack>(&mcParticle, m_RecoTracksName);
394
395 m_multiplicityRecoTracks->Fill(RecoTracks_fromMCParticle.size());
396
397 if (MCRecoTracks_fromMCParticle.size() > 0) {
398 m_h3_MCRecoTrack->Fill(mcParticleInfo.getPt(), mcParticleInfo.getPtheta(), mcParticleInfo.getPphi());
399
400 if (mcParticleInfo.getCharge() > 0)
401 m_h3_MCRecoTrack_plus->Fill(mcParticleInfo.getPt(), mcParticleInfo.getPtheta(), mcParticleInfo.getPphi());
402 else if (mcParticleInfo.getCharge() < 0)
403 m_h3_MCRecoTrack_minus->Fill(mcParticleInfo.getPt(), mcParticleInfo.getPtheta(), mcParticleInfo.getPphi());
404 else
405 continue;
406 }
407
408 //1.a retrieve all Tracks related to the MCParticle
409 RelationVector<Track> Tracks_fromMCParticle = DataStore::getRelationsWithObj<Track>(&mcParticle);
410 m_multiplicityTracks->Fill(Tracks_fromMCParticle.size());
411
412 B2DEBUG(29, Tracks_fromMCParticle.size() << " Tracks related to this MCParticle");
413
414 for (int trk = 0; trk < (int)Tracks_fromMCParticle.size(); trk++) {
415
416 const TrackFitResult* fitResult = Tracks_fromMCParticle[trk]->getTrackFitResult(Const::ChargedStable(m_ParticleHypothesis));
417
418 if ((fitResult == nullptr) || (fitResult->getParticleType() != Const::ChargedStable(m_ParticleHypothesis)))
419 B2WARNING(" the TrackFitResult is not found!");
420
421 else { // valid TrackFitResult found
422
423 if (!hasTrack) {
424
425 hasTrack = true;
426
427 nFittedTracks++;
428
429 if (fitResult->getHitPatternVXD().getNPXDHits() > 0) {
430 m_h3_TrackswPXDHitsPerMCParticle->Fill(mcParticleInfo.getPt(), mcParticleInfo.getPtheta(), mcParticleInfo.getPphi());
431 }
432
433 m_h3_TracksPerMCParticle->Fill(mcParticleInfo.getPt(), mcParticleInfo.getPtheta(), mcParticleInfo.getPphi());
434 if (mcParticleInfo.getCharge() > 0)
435 m_h3_TracksPerMCParticle_plus->Fill(mcParticleInfo.getPt(), mcParticleInfo.getPtheta(), mcParticleInfo.getPphi());
436 else if (mcParticleInfo.getCharge() < 0)
437 m_h3_TracksPerMCParticle_minus->Fill(mcParticleInfo.getPt(), mcParticleInfo.getPtheta(), mcParticleInfo.getPphi());
438 else
439 continue;
440
441 if (MCRecoTracks_fromMCParticle.size() > 0) {
442 nFittedTracksMCRT++;
443 m_h3_TracksPerMCRecoTrack->Fill(mcParticleInfo.getPt(), mcParticleInfo.getPtheta(), mcParticleInfo.getPphi());
444 if (mcParticleInfo.getCharge() > 0)
445 m_h3_TracksPerMCRecoTrack_plus->Fill(mcParticleInfo.getPt(), mcParticleInfo.getPtheta(), mcParticleInfo.getPphi());
446 else if (mcParticleInfo.getCharge() < 0)
447 m_h3_TracksPerMCRecoTrack_minus->Fill(mcParticleInfo.getPt(), mcParticleInfo.getPtheta(), mcParticleInfo.getPphi());
448 else
449 continue;
450 }
451
452
453 }
454
455
456 fillTrackParams1DHistograms(fitResult, mcParticleInfo);
457
458 }
459 }
460
461 m_multiplicityFittedTracks->Fill(nFittedTracks);
462 if (MCRecoTracks_fromMCParticle.size() > 0)
463 m_multiplicityFittedTracksPerMCRT->Fill(nFittedTracksMCRT);
464
465 }
466
467
468 B2DEBUG(29, "+++++ 2. loop on Tracks");
469
470 //2. retrieve all the MCParticles related to the Tracks
472
473 for (const Track& track : m_Tracks) {
474
475 int nMCParticles = 0;
476
477 //check if the track has been fitted
478 const TrackFitResult* fitResult = track.getTrackFitResult(Const::ChargedStable(m_ParticleHypothesis));
479
480 if ((fitResult == nullptr) || (fitResult->getParticleType() != Const::ChargedStable(m_ParticleHypothesis)))
481 continue;
482
483 m_h1_pValue->Fill(fitResult->getPValue());
484
485 ROOT::Math::XYZVector momentum = fitResult->getMomentum();
486 m_h3_Tracks->Fill(momentum.Rho(), momentum.Theta(), momentum.Phi());
487
489
491
492 for (int layer = 0; layer < 56; layer++) {
493 if (fitResult->getHitPatternCDC().hasLayer(layer))
494 m_h1_nCDChitsUsed->Fill(layer);
495 }
496 for (int layer = 1; layer <= 2; layer++) {
497 for (int i = 0; i < fitResult->getHitPatternVXD().getPXDLayer(layer); i++)
498 m_h1_nVXDhitsUsed->Fill(layer);
499 }
500 for (int layer = 3; layer <= 6; layer++) {
501 int n1 = fitResult->getHitPatternVXD().getSVDLayer(layer).first;
502 int n2 = fitResult->getHitPatternVXD().getSVDLayer(layer).second;
503 int N = n1 + n2;
504
505 for (int i = 0; i < N; i++)
506 m_h1_nVXDhitsUsed->Fill(layer);
507 }
508
509
510 RelationVector<MCParticle> MCParticles_fromTrack = DataStore::getRelationsWithObj<MCParticle>(&track);
511
512 for (int mcp = 0; mcp < (int)MCParticles_fromTrack.size(); mcp++)
513 if (isTraceable(*MCParticles_fromTrack[mcp])) {
514 nMCParticles ++;
515 m_h3_MCParticlesPerTrack->Fill(momentum.Rho(), momentum.Theta(), momentum.Phi());
516 }
517 // }
518
519 m_multiplicityMCParticlesPerTrack->Fill(nMCParticles);
520
521 }
522
523
524 B2DEBUG(29, "+++++ 3. loop on MCRecoTracks");
525
526 for (const RecoTrack& mcRecoTrack : m_MCRecoTracks) {
527
528 bool hasRecoTrack = false;
529
530 //3.a retrieve the RecoTrack
531 RelationVector<RecoTrack> RecoTracks_fromMCRecoTrack = DataStore::getRelationsWithObj<RecoTrack>(&mcRecoTrack);
532 B2DEBUG(29, "~ " << RecoTracks_fromMCRecoTrack.size() << " RecoTracks related to this MCRecoTrack");
533 m_multiplicityRecoTracksPerMCRT->Fill(RecoTracks_fromMCRecoTrack.size());
534
535 //3.a retrieve the MCParticle
536 RelationVector<MCParticle> MCParticles_fromMCRecoTrack = DataStore::getRelationsWithObj<MCParticle>(&mcRecoTrack);
537
538 B2DEBUG(29, "~~~ " << MCParticles_fromMCRecoTrack.size() << " MCParticles related to this MCRecoTrack");
539 for (int mcp = 0; mcp < (int)MCParticles_fromMCRecoTrack.size(); mcp++) {
540
541 //3.b retrieve all RecoTracks related to the MCRecoTrack
542 RelationVector<RecoTrack> RecoTracks_fromMCParticle = DataStore::getRelationsWithObj<RecoTrack>
543 (MCParticles_fromMCRecoTrack[mcp]);
544
545 B2DEBUG(29, "~~~~~ " << RecoTracks_fromMCParticle.size() << " RecoTracks related to this MCParticle");
546 for (int tc = 0; tc < (int)RecoTracks_fromMCParticle.size(); tc++)
547 if (!hasRecoTrack) {
548 hasRecoTrack = true;
549 }
550
551 }
552
553 }
554
555
556 B2DEBUG(29, "+++++ 4. loop on RecoTracks");
557
558 //4. retrieve all RecoTracks
559
560 for (const RecoTrack& recoTrack : m_PRRecoTracks) {
561
562 // int nMCRecoTrack = 0;
563
564 // retrieve the MCRecoTrack
565 RelationVector<RecoTrack> MCRecoTracks_fromRecoTrack = DataStore::getRelationsWithObj<RecoTrack>(&recoTrack, m_MCRecoTracksName);
566 m_multiplicityMCRecoTracksPerRT->Fill(MCRecoTracks_fromRecoTrack.size());
567
568
569 /*
570 //4.a retrieve the MCParticle
571 RelationVector<MCParticle> MCParticles_fromRecoTrack = DataStore::getRelationsWithObj<MCParticle>(&recoTrack);
572
573 B2DEBUG(29, "~~~ " << MCParticles_fromRecoTrack.size() << " MCParticles related to this RecoTrack");
574 for (int mcp = 0; mcp < (int)MCParticles_fromRecoTrack.size(); mcp++) {
575
576 //4.b retrieve all MCRecoTracks related to the RecoTrack
577 RelationVector<RecoTrack> mcRecoTracks_fromMCParticle = DataStore::getRelationsWithObj<RecoTrack>
578 (MCParticles_fromRecoTrack[mcp], m_MCRecoTracksName);
579
580 B2DEBUG(29, "~~~~~ " << mcRecoTracks_fromMCParticle.size() << " MCRecoTracks related to this MCParticle");
581 for (int mctc = 0; mctc < (int)mcRecoTracks_fromMCParticle.size(); mctc++) {
582 nMCRecoTrack++;
583
584 }
585 }
586
587 // m_multiplicityMCRecoTracksPerRT->Fill(nMCRecoTrack);
588 */
589 }
590
591}
Provides a type-safe way to pass members of the chargedStableSet set.
Definition: Const.h:589
bool hasLayer(const unsigned short layer) const
Getter for single layer.
unsigned short getNPXDHits() const
Get total number of hits in the PXD.
std::pair< const unsigned short, const unsigned short > getSVDLayer(const unsigned short layerId) const
Get the number of hits in a specific layer of the SVD.
This struct is used by the TrackingPerformanceEvaluation Module to save information of reconstructed ...
A Class to store the Monte Carlo particle information.
Definition: MCParticle.h:32
This is the Reconstruction Event-Data Model Track.
Definition: RecoTrack.h:79
Class for type safe access to objects that are referred to in relations.
size_t size() const
Get number of relations.
Accessor to arrays stored in the data store.
Definition: StoreArray.h:113
Values of the result of a track fit with a given particle hypothesis.
double getPValue() const
Getter for Chi2 Probability of the track fit.
Const::ParticleType getParticleType() const
Getter for ParticleType of the mass hypothesis of the track fit.
ROOT::Math::XYZVector getMomentum() const
Getter for vector of momentum at closest approach of track in r/phi projection.
HitPatternCDC getHitPatternCDC() const
Getter for the hit pattern in the CDC;.
HitPatternVXD getHitPatternVXD() const
Getter for the hit pattern in the VXD;.
Class that bundles various TrackFitResults.
Definition: Track.h:25
TH1F * m_multiplicityTracks
number of tracks per MCParticles
TH1F * m_multiplicityMCRecoTracks
number of MCRecoTracks per MCParticles
StoreArray< RecoTrack > m_PRRecoTracks
PR RecoTracks StoreArray.
bool isTraceable(const MCParticle &the_mcParticle)
is traceable
void fillTrackParams1DHistograms(const TrackFitResult *fitResult, MCParticleInfo mcParticleInfo)
fills err, resid and pull TH1F for each of the 5 track parameters
StoreArray< RecoTrack > m_MCRecoTracks
MC RecoTracks StoreArray.
TH1F * m_multiplicityRecoTracks
number of recoTracks per MCParticles
void fillTrackErrParams2DHistograms(const TrackFitResult *fitResult)
fills TH2F
StoreArray< MCParticle > m_MCParticles
MCParticles StoreArray.
static const double T
[tesla]
Definition: Unit.h:120
static void getField(const double *pos, double *field)
return the magnetic field at a given position.
Definition: BFieldManager.h:91

◆ exposePythonAPI()

void exposePythonAPI ( )
staticinherited

Exposes methods of the Module class to Python.

Definition at line 325 of file Module.cc.

326{
327 // to avoid confusion between std::arg and boost::python::arg we want a shorthand namespace as well
328 namespace bp = boost::python;
329
330 docstring_options options(true, true, false); //userdef, py sigs, c++ sigs
331
332 void (Module::*setReturnValueInt)(int) = &Module::setReturnValue;
333
334 enum_<Module::EAfterConditionPath>("AfterConditionPath",
335 R"(Determines execution behaviour after a conditional path has been executed:
336
337.. attribute:: END
338
339 End processing of this path after the conditional path. (this is the default for if_value() etc.)
340
341.. attribute:: CONTINUE
342
343 After the conditional path, resume execution after this module.)")
344 .value("END", Module::EAfterConditionPath::c_End)
345 .value("CONTINUE", Module::EAfterConditionPath::c_Continue)
346 ;
347
348 /* Do not change the names of >, <, ... we use them to serialize conditional pathes */
349 enum_<Belle2::ModuleCondition::EConditionOperators>("ConditionOperator")
356 ;
357
358 enum_<Module::EModulePropFlags>("ModulePropFlags",
359 R"(Flags to indicate certain low-level features of modules, see :func:`Module.set_property_flags()`, :func:`Module.has_properties()`. Most useful flags are:
360
361.. attribute:: PARALLELPROCESSINGCERTIFIED
362
363 This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)
364
365.. attribute:: HISTOGRAMMANAGER
366
367 This module is used to manage histograms accumulated by other modules
368
369.. attribute:: TERMINATEINALLPROCESSES
370
371 When using parallel processing, call this module's terminate() function in all processes. This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.
372)")
373 .value("INPUT", Module::EModulePropFlags::c_Input)
374 .value("OUTPUT", Module::EModulePropFlags::c_Output)
375 .value("PARALLELPROCESSINGCERTIFIED", Module::EModulePropFlags::c_ParallelProcessingCertified)
376 .value("HISTOGRAMMANAGER", Module::EModulePropFlags::c_HistogramManager)
377 .value("INTERNALSERIALIZER", Module::EModulePropFlags::c_InternalSerializer)
378 .value("TERMINATEINALLPROCESSES", Module::EModulePropFlags::c_TerminateInAllProcesses)
379 ;
380
381 //Python class definition
382 class_<Module, PyModule> module("Module", R"(
383Base class for Modules.
384
385A module is the smallest building block of the framework.
386A typical event processing chain consists of a Path containing
387modules. By inheriting from this base class, various types of
388modules can be created. To use a module, please refer to
389:func:`Path.add_module()`. A list of modules is available by running
390``basf2 -m`` or ``basf2 -m package``, detailed information on parameters is
391given by e.g. ``basf2 -m RootInput``.
392
393The 'Module Development' section in the manual provides detailed information
394on how to create modules, setting parameters, or using return values/conditions:
395https://confluence.desy.de/display/BI/Software+Basf2manual#Module_Development
396
397)");
398 module
399 .def("__str__", &Module::getPathString)
400 .def("name", &Module::getName, return_value_policy<copy_const_reference>(),
401 "Returns the name of the module. Can be changed via :func:`set_name() <Module.set_name()>`, use :func:`type() <Module.type()>` for identifying a particular module class.")
402 .def("type", &Module::getType, return_value_policy<copy_const_reference>(),
403 "Returns the type of the module (i.e. class name minus 'Module')")
404 .def("set_name", &Module::setName, args("name"), R"(
405Set custom name, e.g. to distinguish multiple modules of the same type.
406
407>>> path.add_module('EventInfoSetter')
408>>> ro = path.add_module('RootOutput', branchNames=['EventMetaData'])
409>>> ro.set_name('RootOutput_metadata_only')
410>>> print(path)
411[EventInfoSetter -> RootOutput_metadata_only]
412
413)")
414 .def("description", &Module::getDescription, return_value_policy<copy_const_reference>(),
415 "Returns the description of this module.")
416 .def("package", &Module::getPackage, return_value_policy<copy_const_reference>(),
417 "Returns the package this module belongs to.")
418 .def("available_params", &_getParamInfoListPython,
419 "Return list of all module parameters as `ModuleParamInfo` instances")
420 .def("has_properties", &Module::hasProperties, (bp::arg("properties")),
421 R"DOCSTRING(Allows to check if the module has the given properties out of `ModulePropFlags` set.
422
423>>> if module.has_properties(ModulePropFlags.PARALLELPROCESSINGCERTIFIED):
424>>> ...
425
426Parameters:
427 properties (int): bitmask of `ModulePropFlags` to check for.
428)DOCSTRING")
429 .def("set_property_flags", &Module::setPropertyFlags, args("property_mask"),
430 "Set module properties in the form of an OR combination of `ModulePropFlags`.");
431 {
432 // python signature is too crowded, make ourselves
433 docstring_options subOptions(true, false, false); //userdef, py sigs, c++ sigs
434 module
435 .def("if_value", &Module::if_value,
436 (bp::arg("expression"), bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
437 R"DOCSTRING(if_value(expression, condition_path, after_condition_path=AfterConditionPath.END)
438
439Sets a conditional sub path which will be executed after this
440module if the return value set in the module passes the given ``expression``.
441
442Modules can define a return value (int or bool) using ``setReturnValue()``,
443which can be used in the steering file to split the Path based on this value, for example
444
445>>> module_with_condition.if_value("<1", another_path)
446
447In case the return value of the ``module_with_condition`` for a given event is
448less than 1, the execution will be diverted into ``another_path`` for this event.
449
450You could for example set a special return value if an error occurs, and divert
451the execution into a path containing :b2:mod:`RootOutput` if it is found;
452saving only the data producing/produced by the error.
453
454After a conditional path has executed, basf2 will by default stop processing
455the path for this event. This behaviour can be changed by setting the
456``after_condition_path`` argument.
457
458Parameters:
459 expression (str): Expression to determine if the conditional path should be executed.
460 This should be one of the comparison operators ``<``, ``>``, ``<=``,
461 ``>=``, ``==``, or ``!=`` followed by a numerical value for the return value
462 condition_path (Path): path to execute in case the expression is fulfilled
463 after_condition_path (AfterConditionPath): What to do once the ``condition_path`` has been executed.
464)DOCSTRING")
465 .def("if_false", &Module::if_false,
466 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
467 R"DOC(if_false(condition_path, after_condition_path=AfterConditionPath.END)
468
469Sets a conditional sub path which will be executed after this module if
470the return value of the module evaluates to False. This is equivalent to
471calling `if_value` with ``expression=\"<1\"``)DOC")
472 .def("if_true", &Module::if_true,
473 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
474 R"DOC(if_true(condition_path, after_condition_path=AfterConditionPath.END)
475
476Sets a conditional sub path which will be executed after this module if
477the return value of the module evaluates to True. It is equivalent to
478calling `if_value` with ``expression=\">=1\"``)DOC");
479 }
480 module
481 .def("has_condition", &Module::hasCondition,
482 "Return true if a conditional path has been set for this module "
483 "using `if_value`, `if_true` or `if_false`")
484 .def("get_all_condition_paths", &_getAllConditionPathsPython,
485 "Return a list of all conditional paths set for this module using "
486 "`if_value`, `if_true` or `if_false`")
487 .def("get_all_conditions", &_getAllConditionsPython,
488 "Return a list of all conditional path expressions set for this module using "
489 "`if_value`, `if_true` or `if_false`")
490 .add_property("logging", make_function(&Module::getLogConfig, return_value_policy<reference_existing_object>()),
@ c_GE
Greater or equal than: ">=".
@ c_SE
Smaller or equal than: "<=".
@ c_GT
Greater than: ">"
@ c_NE
Not equal: "!=".
@ c_EQ
Equal: "=" or "=="
@ c_ST
Smaller than: "<"
Base class for Modules.
Definition: Module.h:72
LogConfig & getLogConfig()
Returns the log system configuration.
Definition: Module.h:225
void if_value(const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
Add a condition to the module.
Definition: Module.cc:79
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
Definition: Module.cc:208
void if_true(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to set the condition of the module.
Definition: Module.cc:90
void setReturnValue(int value)
Sets the return value for this module as integer.
Definition: Module.cc:220
void setLogConfig(const LogConfig &logConfig)
Set the log system configuration.
Definition: Module.h:230
const std::string & getDescription() const
Returns the description of the module.
Definition: Module.h:202
void if_false(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to add a condition to the module.
Definition: Module.cc:85
bool hasCondition() const
Returns true if at least one condition was set for the module.
Definition: Module.h:311
const std::string & getPackage() const
Returns the package this module is in.
Definition: Module.h:197
void setName(const std::string &name)
Set the name of the module.
Definition: Module.h:214
bool hasProperties(unsigned int propertyFlags) const
Returns true if all specified property flags are available in this module.
Definition: Module.cc:160
std::string getPathString() const override
return the module name.
Definition: Module.cc:192

◆ fillHitsUsedInTrackFitHistograms()

void fillHitsUsedInTrackFitHistograms ( const Track track)
private

fill TH2F

Definition at line 802 of file TrackingPerformanceEvaluationModule.cc.

803{
804
805 //hits used in the fit
806
807 const TrackFitResult* fitResult = theTrack.getTrackFitResult(Const::ChargedStable(m_ParticleHypothesis));
808
809 const VXD::GeoCache& aGeometry = VXD::GeoCache::getInstance();
810
811 bool hasPXDhit = false;
812 bool isTrueHit = false;
813
814 double d0_err = -999;
815 double z0_err = -999;
816 double pt = -999;
817
818 if (fitResult) {
819 d0_err = sqrt((fitResult->getCovariance5())[0][0]);
820 z0_err = sqrt((fitResult->getCovariance5())[3][3]);
821 pt = fitResult->getMomentum().Rho();
822 }
823
824 const bool hasCDChit[56] = { false };
825
826 RelationVector<RecoTrack> RecoTracks_fromTrack = DataStore::getRelationsWithObj<RecoTrack>(&theTrack);
827
828 for (int tc = 0; tc < (int)RecoTracks_fromTrack.size(); tc++) {
829
830 const std::vector< genfit::TrackPoint* >& tp_vector = RecoTracks_fromTrack[tc]->getHitPointsWithMeasurement();
831 for (int i = 0; i < (int) tp_vector.size(); i++) {
832 genfit::TrackPoint* tp = tp_vector[i];
833
834 int nMea = tp->getNumRawMeasurements();
835 for (int mea = 0; mea < nMea; mea++) {
836
837 genfit::AbsMeasurement* absMeas = tp->getRawMeasurement(mea);
838 double weight = 0;
839
840 std::vector<double> weights;
841 genfit::KalmanFitterInfo* kalmanInfo = tp->getKalmanFitterInfo();
842 if (kalmanInfo)
843 weights = kalmanInfo->getWeights();
844 else //no kalman fitter info, fill the weights vector with 0 (VXD), or 0,0 (CDC)
845 B2WARNING(" No KalmanFitterInfo associated to the TrackPoint!");
846
847 double detId(-999);
848 ROOT::Math::XYZVector globalHit(-999, -999, -999);
849
850 PXDRecoHit* pxdHit = dynamic_cast<PXDRecoHit*>(absMeas);
851 SVDRecoHit2D* svdHit2D = dynamic_cast<SVDRecoHit2D*>(absMeas);
852 SVDRecoHit* svdHit = dynamic_cast<SVDRecoHit*>(absMeas);
853 CDCRecoHit* cdcHit = dynamic_cast<CDCRecoHit*>(absMeas);
854
855 if (pxdHit) {
856 hasPXDhit = true;
857 isTrueHit = false;
858
859 if (kalmanInfo)
860 weight = weights.at(mea);
861
862 detId = 0;
863 double uCoor = pxdHit->getU();
864 double vCoor = pxdHit->getV();
865 VxdID sensor = pxdHit->getSensorID();
866
867 m_h1_nVXDhitsPR->Fill(sensor.getLayerNumber());
868
869 m_h1_nVXDhitsWeighted->Fill(sensor.getLayerNumber(), weight);
870
871 m_h2_TrackPointFitWeightVXD->Fill(sensor.getLayerNumber(), weight);
872 const VXD::SensorInfoBase& aSensorInfo = aGeometry.getSensorInfo(sensor);
873 globalHit = aSensorInfo.pointToGlobal(ROOT::Math::XYZVector(uCoor, vCoor, 0), true);
874
875
876 const PXDCluster* pxdcl = pxdHit->getCluster();
877 RelationVector<PXDTrueHit> pxdth_fromcl = DataStore::getRelationsWithObj<PXDTrueHit>(pxdcl);
878
879 if ((int)pxdth_fromcl.size() != 0) {
880 const PXDTrueHit* trueHit = pxdth_fromcl[0];
881
882 if (trueHit) {
883 int trueHitIndex = trueHit->getArrayIndex();
884 RelationVector<MCParticle> MCParticles_fromTrack = DataStore::getRelationsWithObj<MCParticle>(&theTrack);
885 for (int mcp = 0; mcp < (int)MCParticles_fromTrack.size(); mcp++) {
886 RelationVector<PXDTrueHit> trueHit_fromMCParticles = DataStore::getRelationsWithObj<PXDTrueHit>(MCParticles_fromTrack[mcp]);
887 for (int th = 0; th < (int)trueHit_fromMCParticles.size(); th++) {
888 if (trueHit_fromMCParticles[th]->getArrayIndex() == trueHitIndex)
889 isTrueHit = true;
890 }
891 }
892 }
893 }
894
895 } else if (svdHit2D) {
896
897 if (kalmanInfo)
898 weight = weights.at(mea);
899
900 detId = 1;
901 double uCoor = svdHit2D->getU();
902 double vCoor = svdHit2D->getV();
903 VxdID sensor = svdHit2D->getSensorID();
904
905 m_h1_nVXDhitsPR->Fill(sensor.getLayerNumber());
906
907 m_h1_nVXDhitsWeighted->Fill(sensor.getLayerNumber(), weight);
908
909 m_h2_TrackPointFitWeightVXD->Fill(sensor.getLayerNumber(), weight);
910
911 const VXD::SensorInfoBase& aSensorInfo = aGeometry.getSensorInfo(sensor);
912 globalHit = aSensorInfo.pointToGlobal(ROOT::Math::XYZVector(uCoor, vCoor, 0), true);
913
914 } else if (svdHit) {
915
916 if (kalmanInfo)
917 weight = weights.at(mea);
918
919 detId = 2;
920 double uCoor = 0;
921 double vCoor = 0;
922 if (svdHit->isU())
923 uCoor = svdHit->getPosition();
924 else
925 vCoor = svdHit->getPosition();
926
927 VxdID sensor = svdHit->getSensorID();
928 m_h1_nVXDhitsPR->Fill(sensor.getLayerNumber());
929
930 m_h1_nVXDhitsWeighted->Fill(sensor.getLayerNumber(), weight);
931
932 m_h2_TrackPointFitWeightVXD->Fill(sensor.getLayerNumber(), weight);
933 const VXD::SensorInfoBase& aSensorInfo = aGeometry.getSensorInfo(sensor);
934 globalHit = aSensorInfo.pointToGlobal(ROOT::Math::XYZVector(uCoor, vCoor, 0), true);
935 } else if (cdcHit) {
936
937 if (kalmanInfo)
938 weight = weights.at(mea);
939
940 WireID wire = cdcHit->getWireID();
941 if (! hasCDChit[wire.getICLayer()]) { //needed to validate the HitPatternCDC filling
942 m_h1_nCDChitsPR->Fill(wire.getICLayer());
943
944 m_h1_nCDChitsWeighted->Fill(wire.getICLayer(), weight);
945 // hasCDChit[wire.getICLayer()] = true; //to validate the HitPatternCDC filling: uncomment this
946 }
947 m_h2_TrackPointFitWeightCDC->Fill(wire.getICLayer(), weight);
948 detId = 3;
949 }
950
951
952 m_h1_nHitDetID ->Fill(detId);
953
954 m_h2_VXDhitsPR_xy->Fill(globalHit.X(), globalHit.Y());
955
956 m_h2_VXDhitsPR_rz->Fill(globalHit.Z(), globalHit.Rho());
957
958 }
959
960 }
961 }
962
963 if ((fitResult != nullptr) && (fitResult->getParticleType() == Const::ChargedStable(m_ParticleHypothesis))) {
964 if (hasPXDhit) {
965 m_h2_d0errVSpt_wpxd->Fill(pt, d0_err);
966 m_h2_z0errVSpt_wpxd->Fill(pt, z0_err);
967 if (isTrueHit) {
968 m_h2_d0errVSpt_wtpxd->Fill(pt, d0_err);
969 m_h2_z0errVSpt_wtpxd->Fill(pt, z0_err);
970 } else {
971 m_h2_d0errVSpt_wfpxd->Fill(pt, d0_err);
972 m_h2_z0errVSpt_wfpxd->Fill(pt, z0_err);
973 }
974 } else {
975 m_h2_d0errVSpt_wopxd->Fill(pt, d0_err);
976 m_h2_z0errVSpt_wopxd->Fill(pt, z0_err);
977 }
978 }
979
980}
This class is used to transfer CDC information to the track fit.
Definition: CDCRecoHit.h:32
WireID getWireID() const
Getter for WireID object.
Definition: CDCRecoHit.h:49
The PXD Cluster class This class stores all information about reconstructed PXD clusters The position...
Definition: PXDCluster.h:30
PXDRecoHit - an extended form of PXDCluster containing geometry information.
Definition: PXDRecoHit.h:49
float getV() const
Get v coordinate.
Definition: PXDRecoHit.h:111
const PXDCluster * getCluster() const
Get pointer to the Cluster used when creating this RecoHit, can be NULL if created from something els...
Definition: PXDRecoHit.h:106
VxdID getSensorID() const
Get the compact ID.
Definition: PXDRecoHit.h:101
float getU() const
Get u coordinate.
Definition: PXDRecoHit.h:109
Class PXDTrueHit - Records of tracks that either enter or leave the sensitive volume.
Definition: PXDTrueHit.h:31
int getArrayIndex() const
Returns this object's array index (in StoreArray), or -1 if not found.
SVDRecoHit - an extended form of SVDHit containing geometry information.
Definition: SVDRecoHit2D.h:46
float getV() const
Get v coordinate.
Definition: SVDRecoHit2D.h:112
VxdID getSensorID() const
Get the compact ID.
Definition: SVDRecoHit2D.h:100
float getU() const
Get u coordinate.
Definition: SVDRecoHit2D.h:110
SVDRecoHit - an extended form of SVDHit containing geometry information.
Definition: SVDRecoHit.h:47
bool isU() const
Is the coordinate u or v?
Definition: SVDRecoHit.h:91
float getPosition() const
Get coordinate.
Definition: SVDRecoHit.h:94
VxdID getSensorID() const
Get the compact ID.
Definition: SVDRecoHit.h:82
TMatrixDSym getCovariance5() const
Getter for covariance matrix of perigee parameters in matrix form.
Class to faciliate easy access to sensor information of the VXD like coordinate transformations or pi...
Definition: GeoCache.h:39
const SensorInfoBase & getSensorInfo(Belle2::VxdID id) const
Return a referecne to the SensorInfo of a given SensorID.
Definition: GeoCache.cc:67
static GeoCache & getInstance()
Return a reference to the singleton instance.
Definition: GeoCache.cc:214
Base class to provide Sensor Information for PXD and SVD.
ROOT::Math::XYZVector pointToGlobal(const ROOT::Math::XYZVector &local, bool reco=false) const
Convert a point from local to global coordinates.
Class to uniquely identify a any structure of the PXD and SVD.
Definition: VxdID.h:33
Class to identify a wire inside the CDC.
Definition: WireID.h:34
unsigned short getICLayer() const
Getter for continuous layer numbering.
Definition: WireID.cc:24

◆ fillTrackErrParams2DHistograms()

void fillTrackErrParams2DHistograms ( const TrackFitResult fitResult)
private

fills TH2F

Definition at line 767 of file TrackingPerformanceEvaluationModule.cc.

768{
769
770
771 double d0_err = sqrt((fitResult->getCovariance5())[0][0]);
772 double phi_err = sqrt((fitResult->getCovariance5())[1][1]);
773 double z0_err = sqrt((fitResult->getCovariance5())[3][3]);
774 double cotTheta_err = sqrt((fitResult->getCovariance5())[4][4]);
775
776 ROOT::Math::XYZVector momentum = fitResult->getMomentum();
777
778 double px = momentum.x();
779 double py = momentum.y();
780 double pz = momentum.z();
781 double pt = momentum.Rho();
782 double p = momentum.R();
783 double mass = fitResult->getParticleType().getMass();
784 double beta = p / sqrt(p * p + mass * mass);
785 double sinTheta = TMath::Sin(momentum.Theta());
786
787 m_h2_d0errphi0err_xy->Fill(d0_err / phi_err * px / pt,
788 d0_err / phi_err * py / pt);
789 m_h2_z0errcotThetaerr_xy->Fill(z0_err / cotTheta_err * px / pt,
790 z0_err / cotTheta_err * py / pt);
791 m_h2_d0errphi0err_rz->Fill(d0_err / phi_err * pz / pt,
792 d0_err / phi_err);
793
794 m_h2_d0errVSpt->Fill(pt, d0_err);
795
796 m_h2_z0errVSpt->Fill(pt, z0_err);
797
798 m_h2_d0errMSVSpt->Fill(pt, d0_err * beta * p * pow(sinTheta, 3 / 2) / 0.0136);
799
800}
double getMass() const
Particle mass.
Definition: UnitConst.cc:356

◆ fillTrackParams1DHistograms()

void fillTrackParams1DHistograms ( const TrackFitResult fitResult,
MCParticleInfo  mcParticleInfo 
)
private

fills err, resid and pull TH1F for each of the 5 track parameters

Definition at line 695 of file TrackingPerformanceEvaluationModule.cc.

697{
698
699 //track parameters errors
700 double d0_err = sqrt((fitResult->getCovariance5())[0][0]);
701 double phi_err = sqrt((fitResult->getCovariance5())[1][1]);
702 double omega_err = sqrt((fitResult->getCovariance5())[2][2]);
703 double z0_err = sqrt((fitResult->getCovariance5())[3][3]);
704 double cotTheta_err = sqrt((fitResult->getCovariance5())[4][4]);
705
706 //track parameters residuals:
707 double d0_res = fitResult->getD0() - mcParticleInfo.getD0();
708 double phi_res = TMath::ASin(TMath::Sin(fitResult->getPhi() - mcParticleInfo.getPhi()));
709 double omega_res = fitResult->getOmega() - mcParticleInfo.getOmega();
710 double z0_res = fitResult->getZ0() - mcParticleInfo.getZ0();
711 double cotTheta_res = fitResult->getCotTheta() - mcParticleInfo.getCotTheta();
712
713 //track parameters residuals in momentum:
714 double px_res = fitResult->getMomentum().X() - mcParticleInfo.getPx();
715 double py_res = fitResult->getMomentum().Y() - mcParticleInfo.getPy();
716 double pz_res = fitResult->getMomentum().Z() - mcParticleInfo.getPz();
717 double p_res = (fitResult->getMomentum().R() - mcParticleInfo.getP()) / mcParticleInfo.getP();
718 double pt_res = (fitResult->getMomentum().Rho() - mcParticleInfo.getPt()) / mcParticleInfo.getPt();
719
720 //track parameters residuals in position:
721 double x_res = fitResult->getPosition().X() - mcParticleInfo.getX();
722 double y_res = fitResult->getPosition().Y() - mcParticleInfo.getY();
723 double z_res = fitResult->getPosition().Z() - mcParticleInfo.getZ();
724 double r_res = fitResult->getPosition().Rho() - sqrt(mcParticleInfo.getX() * mcParticleInfo.getX() + mcParticleInfo.getY() *
725 mcParticleInfo.getY());
726 double rtot_res = fitResult->getPosition().R() - sqrt(mcParticleInfo.getX() * mcParticleInfo.getX() + mcParticleInfo.getY() *
727 mcParticleInfo.getY() + mcParticleInfo.getZ() * mcParticleInfo.getZ());
728
729 m_h1_d0_err->Fill(d0_err);
730 m_h1_phi_err->Fill(phi_err);
731 m_h1_omega_err->Fill(omega_err);
732 m_h1_z0_err->Fill(z0_err);
733 m_h1_cotTheta_err->Fill(cotTheta_err);
734
735 m_h1_d0_res->Fill(d0_res);
736 m_h1_phi_res->Fill(phi_res);
737 m_h1_omega_res->Fill(omega_res);
738 m_h1_z0_res->Fill(z0_res);
739 m_h1_cotTheta_res->Fill(cotTheta_res);
740
741 m_h1_px_res->Fill(px_res);
742 m_h1_py_res->Fill(py_res);
743 m_h1_pz_res->Fill(pz_res);
744 m_h1_p_res->Fill(p_res);
745 m_h1_pt_res->Fill(pt_res);
746
747 m_h1_x_res->Fill(x_res);
748 m_h1_y_res->Fill(y_res);
749 m_h1_z_res->Fill(z_res);
750 m_h1_r_res->Fill(r_res);
751 m_h1_rtot_res->Fill(rtot_res);
752
753 m_h2_chargeVSchargeMC->Fill(mcParticleInfo.getCharge(), fitResult->getChargeSign());
754
755 m_h1_d0_pll->Fill(d0_res / d0_err);
756 m_h1_phi_pll->Fill(phi_res / phi_err);
757 m_h1_omega_pll->Fill(omega_res / omega_err);
758 m_h1_z0_pll->Fill(z0_res / z0_err);
759 m_h1_cotTheta_pll->Fill(cotTheta_res / cotTheta_err);
760
761
762 m_h2_OmegaerrOmegaVSpt->Fill(fitResult->getMomentum().Rho(), omega_err / mcParticleInfo.getOmega());
763
764
765}
double getPx()
Getter for x component of momentum.
double getZ()
Getter for z component of vertex.
double getPt()
Getter for transverse momentum.
double getY()
Getter for y component of vertex.
double getCharge()
Getter for electric charge of particle.
double getZ0()
Getter for Z0.
double getX()
Getter for x component of vertex.
double getPy()
Getter for y component of momentum.
double getCotTheta()
Getter for Theta.
double getPhi()
Getter for Phi.
double getPz()
Getter for z component of momentum.
double getOmega()
Getter for Omega.
double getD0()
Getter for D0.
double getP()
Getter for magnitut of momentum.
double getPhi() const
Getter for phi0 with CDF naming convention.
short getChargeSign() const
Return track charge (1 or -1).
double getCotTheta() const
Getter for tanLambda with CDF naming convention.
double getOmega() const
Getter for omega.
double getD0() const
Getter for d0.
double getZ0() const
Getter for z0.
ROOT::Math::XYZVector getPosition() const
Getter for vector of position at closest approach of track in r/phi projection.
TH1F * m_h1_r_res
R residual (in cylindrical coordinates)

◆ geoAcc1D()

TH1F * geoAcc1D ( TH1F *  h1_den,
TH1F *  h1_num,
const char *  name,
const char *  title,
TList *  histoList = nullptr 
)
inherited

Create a 1D efficiency histogram for geometric acceptance and add it to the TList of 1D-histograms.

Definition at line 580 of file PerformanceEvaluationBaseClass.cc.

581{
582 TH1F* h = (TH1F*)duplicateHistogram(name, title, h1_den, histoList);
583 h->GetYaxis()->SetRangeUser(0., 1);
584
585 for (int bin = 0; bin < h->GetXaxis()->GetNbins(); bin++) {
586 float num = h1_num->GetBinContent(bin + 1);
587 float den = h1_den->GetBinContent(bin + 1);
588 double eff = 0.;
589 double err = 0.;
590
591 if (den > 0) {
592 eff = (double)num / den;
593 err = sqrt(eff * (1 - eff)) / sqrt(den);
594 }
595 h->SetBinContent(bin + 1, eff);
596 h->SetBinError(bin + 1, err);
597 }
598
599 if (histoList)
600 histoList->Add(h);
601
602 return h;
603}

◆ geoAcc2D()

TH2F * geoAcc2D ( TH2F *  h2_den,
TH2F *  h2_num,
const char *  name,
const char *  title,
TList *  histoList = nullptr 
)
inherited

Create a 2D efficiency histogram for geometric acceptance and add it to the TList of 2D-histograms.

Definition at line 605 of file PerformanceEvaluationBaseClass.cc.

607{
608 std::string err_char = "_err";
609 std::string addTitle = "Errors, ";
610
611 std::string error = std::string(name) + err_char;
612 std::string titleErr = addTitle + std::string(title);
613
614 TH2F* h2[2];
615 h2[0] = (TH2F*)duplicateHistogram(name, title, h2_den, histoList);
616 h2[1] = (TH2F*)duplicateHistogram(error.c_str(), titleErr.c_str(), h2_den, histoList);
617
618 for (int binX = 0; binX < h2[0]->GetXaxis()->GetNbins(); binX++) {
619 for (int binY = 0; binY < h2[0]->GetYaxis()->GetNbins(); binY++) {
620 float num = h2_num->GetBinContent(binX + 1, binY + 1);
621 float den = h2_den->GetBinContent(binX + 1, binY + 1);
622 double eff = 0.;
623 double err = 0.;
624
625 if (den > 0) {
626 eff = (double)num / den;
627 err = sqrt(eff * (1 - eff)) / sqrt(den);
628 }
629 h2[0]->SetBinContent(binX + 1, binY + 1, eff);
630 h2[0]->SetBinError(binX + 1, binY + 1, err);
631 h2[1]->SetBinContent(binX + 1, binY + 1, err);
632 }
633 }
634
635 if (histoList) {
636 histoList->Add(h2[0]);
637 histoList->Add(h2[1]);
638 }
639
640 return *h2;
641
642}

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 133 of file Module.cc.

134{
135 if (m_conditions.empty()) return EAfterConditionPath::c_End;
136
137 //okay, a condition was set for this Module...
138 if (!m_hasReturnValue) {
139 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
140 }
141
142 for (const auto& condition : m_conditions) {
143 if (condition.evaluate(m_returnValue)) {
144 return condition.getAfterConditionPath();
145 }
146 }
147
148 return EAfterConditionPath::c_End;
149}

◆ getAllConditionPaths()

std::vector< std::shared_ptr< Path > > getAllConditionPaths ( ) const
inherited

Return all condition paths currently set (no matter if the condition is true or not).

Definition at line 150 of file Module.cc.

151{
152 std::vector<std::shared_ptr<Path>> allConditionPaths;
153 for (const auto& condition : m_conditions) {
154 allConditionPaths.push_back(condition.getPath());
155 }
156
157 return allConditionPaths;
158}

◆ getAllConditions()

const std::vector< ModuleCondition > & getAllConditions ( ) const
inlineinherited

Return all set conditions for this module.

Definition at line 324 of file Module.h.

325 {
326 return m_conditions;
327 }

◆ getCondition()

const ModuleCondition * getCondition ( ) const
inlineinherited

Return a pointer to the first condition (or nullptr, if none was set)

Definition at line 314 of file Module.h.

315 {
316 if (m_conditions.empty()) {
317 return nullptr;
318 } else {
319 return &m_conditions.front();
320 }
321 }

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 113 of file Module.cc.

114{
115 PathPtr p;
116 if (m_conditions.empty()) return p;
117
118 //okay, a condition was set for this Module...
119 if (!m_hasReturnValue) {
120 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
121 }
122
123 for (const auto& condition : m_conditions) {
124 if (condition.evaluate(m_returnValue)) {
125 return condition.getPath();
126 }
127 }
128
129 // if none of the conditions were true, return a null pointer.
130 return p;
131}
std::shared_ptr< Path > PathPtr
Defines a pointer to a path object as a boost shared pointer.
Definition: Path.h:35

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Returns the description of the module.

Definition at line 202 of file Module.h.

202{return m_description;}
std::string m_description
The description of the module.
Definition: Module.h:511

◆ getFileNames()

virtual std::vector< std::string > getFileNames ( bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Reimplemented in RootInputModule, StorageRootOutputModule, and RootOutputModule.

Definition at line 134 of file Module.h.

135 {
136 return std::vector<std::string>();
137 }

◆ getLogConfig()

LogConfig & getLogConfig ( )
inlineinherited

Returns the log system configuration.

Definition at line 225 of file Module.h.

225{return m_logConfig;}

◆ getModules()

std::list< ModulePtr > getModules ( ) const
inlineoverrideprivatevirtualinherited

no submodules, return empty list

Implements PathElement.

Definition at line 506 of file Module.h.

506{ return std::list<ModulePtr>(); }

◆ getName()

const std::string & getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 187 of file Module.h.

187{return m_name;}
std::string m_name
The name of the module, saved as a string (user-modifiable)
Definition: Module.h:508

◆ getPackage()

const std::string & getPackage ( ) const
inlineinherited

Returns the package this module is in.

Definition at line 197 of file Module.h.

197{return m_package;}

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 279 of file Module.cc.

280{
282}
std::shared_ptr< boost::python::list > getParamInfoListPython() const
Returns a python list of all parameters.
ModuleParamList m_moduleParamList
List storing and managing all parameter of the module.
Definition: Module.h:516

◆ getParamList()

const ModuleParamList & getParamList ( ) const
inlineinherited

Return module param list.

Definition at line 363 of file Module.h.

363{ return m_moduleParamList; }

◆ getPathString()

std::string getPathString ( ) const
overrideprivatevirtualinherited

return the module name.

Implements PathElement.

Definition at line 192 of file Module.cc.

193{
194
195 std::string output = getName();
196
197 for (const auto& condition : m_conditions) {
198 output += condition.getString();
199 }
200
201 return output;
202}

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 381 of file Module.h.

381{ return m_returnValue; }

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 41 of file Module.cc.

42{
43 if (m_type.empty())
44 B2FATAL("Module type not set for " << getName());
45 return m_type;
46}
std::string m_type
The type of the module, saved as a string.
Definition: Module.h:509

◆ hasCondition()

bool hasCondition ( ) const
inlineinherited

Returns true if at least one condition was set for the module.

Definition at line 311 of file Module.h.

311{ return not m_conditions.empty(); };

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 160 of file Module.cc.

161{
162 return (propertyFlags & m_propertyFlags) == propertyFlags;
163}

◆ hasReturnValue()

bool hasReturnValue ( ) const
inlineinherited

Return true if this module has a valid return value set.

Definition at line 378 of file Module.h.

378{ return m_hasReturnValue; }

◆ hasUnsetForcedParams()

bool hasUnsetForcedParams ( ) const
inherited

Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.

Definition at line 166 of file Module.cc.

167{
169 std::string allMissing = "";
170 for (const auto& s : missing)
171 allMissing += s + " ";
172 if (!missing.empty())
173 B2ERROR("The following required parameters of Module '" << getName() << "' were not specified: " << allMissing <<
174 "\nPlease add them to your steering file.");
175 return !missing.empty();
176}
std::vector< std::string > getUnsetForcedParams() const
Returns list of unset parameters (if they are required to have a value.

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 85 of file Module.cc.

86{
87 if_value("<1", path, afterConditionPath);
88}

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 90 of file Module.cc.

91{
92 if_value(">=1", path, afterConditionPath);
93}

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://confluence.desy.de/display/BI/Software+ModCondTut or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 79 of file Module.cc.

80{
81 m_conditions.emplace_back(expression, path, afterConditionPath);
82}

◆ initialize()

void initialize ( void  )
overridevirtual

Initializer.

Reimplemented from Module.

Definition at line 63 of file TrackingPerformanceEvaluationModule.cc.

64{
65 // MCParticles, Tracks, RecoTracks, MCRecoTracks needed for this module
69
70 m_Tracks.isRequired(m_TracksName);
71
72 //create list of histograms to be saved in the rootfile
73 m_histoList = new TList;
74 m_histoList_multiplicity = new TList;
76 m_histoList_trkQuality = new TList;
77 m_histoList_firstHit = new TList;
78 m_histoList_pr = new TList;
79 m_histoList_fit = new TList;
80 m_histoList_efficiency = new TList;
81 m_histoList_purity = new TList;
82 m_histoList_others = new TList;
83
84 //set the ROOT File
85 m_rootFilePtr = new TFile(m_rootFileName.c_str(), "RECREATE");
86
87 //now create histograms
88
89 //multiplicity histograms
90 m_multiplicityTracks = createHistogram1D("h1nTrk", "number of tracks per MC Particle", 8, -0.5, 7.5, "# tracks",
92
93 m_multiplicityRecoTracks = createHistogram1D("h1nRcTrk", "number of recoTracks per MC Particle", 8, -0.5, 7.5, "# tracks",
95
96 m_multiplicityMCRecoTracks = createHistogram1D("h1nMCRcTrk", "number of MC recoTracks per MC Particle", 8, -0.5, 7.5, "# tracks",
98
99 m_multiplicityFittedTracks = createHistogram1D("h1nFitTrk", "number of fitted tracks per MC Particle", 5, -0.5, 4.5,
100 "# fitted tracks", m_histoList_multiplicity);
101 m_multiplicityFittedTracksPerMCRT = createHistogram1D("h1nFitTrkMCRT", "number of fitted tracks per MCRecoTrack", 5, -0.5, 4.5,
102 "# fitted tracks", m_histoList_multiplicity);
103 m_multiplicityMCParticlesPerTrack = createHistogram1D("h1nMCPrtcl", "number of MCParticles per fitted tracks", 5, -0.5, 4.5,
104 "# MCParticles", m_histoList_multiplicity);
105 m_multiplicityRecoTracksPerMCRT = createHistogram1D("h1nRecoTrack", "number of RecoTrack per MCRecoTrack", 5, -0.5, 4.5,
106 "# RecoTrack",
108 m_multiplicityMCRecoTracksPerRT = createHistogram1D("h1nMCRecoTrack", "number of MCRecoTrack per RecoTrack", 5, -0.5, 4.5,
109 "# MCRecoTrack", m_histoList_multiplicity);
110
111 //tracks pValue
112 m_h1_pValue = createHistogram1D("h1pValue", "pValue of the fit", 100, 0, 1, "pValue", m_histoList_trkQuality);
113
114
115 //track parameters errors
116 m_h1_d0_err = createHistogram1D("h1d0err", "d0 error", 100, 0, 0.1, "#sigma_{d0} (cm)", m_histoList_trkQuality);
117 m_h1_phi_err = createHistogram1D("h1phierr", "#phi error", 100, 0, 0.02, "#sigma_{#phi} (rad)", m_histoList_trkQuality);
118 m_h1_omega_err = createHistogram1D("h1omegaerr", "#omega error", 100, 0, 0.002, "#sigma_{#omega} (cm^{-1})",
120 m_h1_z0_err = createHistogram1D("h1z0err", "z0 error", 100, 0, 0.1, "#sigma_{z0} (cm)", m_histoList_trkQuality);
121 m_h1_cotTheta_err = createHistogram1D("h1cotThetaerr", "cot#theta error", 100, 0, 0.03, "#sigma_{cot#theta}",
123
124 //track parameters residuals
125 m_h1_d0_res = createHistogram1D("h1d0res", "d0 residuals", 100, -0.1, 0.1, "d0 resid (cm)", m_histoList_trkQuality);
126 m_h1_phi_res = createHistogram1D("h1phires", "#phi residuals", 100, -0.1, 0.1, "#phi resid (rad)", m_histoList_trkQuality);
127 m_h1_omega_res = createHistogram1D("h1omegares", "#omega residuals", 100, -0.0005, 0.0005, "#omega resid (cm^{-1})",
129 m_h1_z0_res = createHistogram1D("h1z0res", "z0 residuals", 100, -0.1, 0.1, "z0 resid (cm)", m_histoList_trkQuality);
130 m_h1_cotTheta_res = createHistogram1D("h1cotThetares", "cot#theta residuals", 100, -0.1, 0.1, "cot#theta resid",
132
133 //track parameters residuals - momentum
134 m_h1_px_res = createHistogram1D("h1pxres", "px absolute residuals", 200, -0.05, 0.05, "px_{reco} - px_{MC} (GeV/c)",
136 m_h1_py_res = createHistogram1D("h1pyres", "py absolute residuals", 200, -0.05, 0.05, "py_{reco} - py_{MC} (GeV/c)",
138 m_h1_pz_res = createHistogram1D("h1pzres", "pz absolute residuals", 200, -0.05, 0.05, "pz_{reco} - pz_{MC} (GeV/c)",
140 m_h1_p_res = createHistogram1D("h1pres", "p relative residuals", 200, -0.05, 0.05, "p_{reco} - p_{MC} / p_{MC}",
142 m_h1_pt_res = createHistogram1D("h1ptres", "pt relative residuals", 200, -0.05, 0.05, "pt_{reco} - pt_{MC} / pt_{MC}",
144 //track parameters residuals - position
145 m_h1_x_res = createHistogram1D("h1xres", " residuals", 200, -0.05, 0.05, "x_{reco} - x_{MC} (cm)", m_histoList_trkQuality);
146 m_h1_y_res = createHistogram1D("h1yres", " residuals", 200, -0.05, 0.05, "y_{reco} - y_{MC} (cm)", m_histoList_trkQuality);
147 m_h1_z_res = createHistogram1D("h1zres", " residuals", 200, -0.05, 0.05, "z_{reco} - z_{MC} (cm)", m_histoList_trkQuality);
148 m_h1_r_res = createHistogram1D("h1rres", " residuals", 200, -0.05, 0.05, "r_{reco} - r_{MC} (cm)", m_histoList_trkQuality);
149 m_h1_rtot_res = createHistogram1D("h1rtotres", " residuals", 200, -0.05, 0.05, "rtot_{reco} - rtot_{MC} (cm)",
151
152 m_h2_chargeVSchargeMC = createHistogram2D("h2chargecheck", "chargeVSchargeMC", 3, -1.5, 1.5, "charge MC", 3, -1.5, 1.5,
153 "charge reco", m_histoList_trkQuality);
154
155 //track parameters pulls
156 m_h1_d0_pll = createHistogram1D("h1d0pll", "d0 pulls", 100, -5, 5, "d0 pull", m_histoList_trkQuality);
157 m_h1_phi_pll = createHistogram1D("h1phipll", "#phi pulls", 100, -5, 5, "#phi pull", m_histoList_trkQuality);
158 m_h1_omega_pll = createHistogram1D("h1omegapll", "#omega pulls", 100, -5, 5, "#omega pull", m_histoList_trkQuality);
159 m_h1_z0_pll = createHistogram1D("h1z0pll", "z0 pulls", 100, -5, 5, "z0 pull", m_histoList_trkQuality);
160 m_h1_cotTheta_pll = createHistogram1D("h1cotThetapll", "cot#theta pulls", 100, -5, 5, "cot#theta pull", m_histoList_trkQuality);
161
162
163 //first hit position using track parameters errors
164 m_h2_d0errphi0err_xy = createHistogram2D("h2d0errphierrXY", "#sigma_{d0}/#sigma_{#phi} projected on x,y",
165 2000, -10, 10, "x (cm)",
166 2000, -10, 10, "y (cm)",
168
169 m_h2_d0errphi0err_rz = createHistogram2D("h2d0errphierrRZ", "#sigma_{d0}/#sigma_{#phi} projected on z and r_{t}=#sqrt{x^{2}+y^{2}}",
170 2000, -30, 40, "z (cm)",
171 2000, 0, 15, "r_{t} (cm)",
173
174 m_h2_z0errcotThetaerr_xy = (TH2F*)duplicateHistogram("h2z0errcotThetaerrXY", "#sigma_{z0}/#sigma_{cot#theta} projected on x,y",
177
178 m_h2_OmegaerrOmegaVSpt = createHistogram2D("h2OmegaerrOmegaVSpt", "#sigma_{#omega}/#omega VS p_{t}",
179 100, 0, 3, "p_{t} (GeV/c)",
180 1000, 0, 0.2, "#sigma_{#omega}/#omega",
182
183
184 m_h2_z0errVSpt = createHistogram2D("h2z0errVSpt", "#sigma_{z0} VS p_{t}",
185 100, 0, 3, "p_{t} (GeV/c)",
186 100, 0, 0.1, "#sigma_{z0} (cm)",
188
189 m_h2_z0errVSpt_wtpxd = (TH2F*)duplicateHistogram("h2z0errVSpt_wTruePXD", "#sigma_{z0} VS p_{t}, with True PXD hits", m_h2_z0errVSpt,
191 m_h2_z0errVSpt_wfpxd = (TH2F*)duplicateHistogram("h2z0errVSpt_wFalsePXD", "#sigma_{z0} VS p_{t}, with False PXD hits",
194 m_h2_z0errVSpt_wpxd = (TH2F*)duplicateHistogram("h2z0errVSpt_wPXD", "#sigma_{z0} VS p_{t}, with PXD hits", m_h2_z0errVSpt,
196
197 m_h2_z0errVSpt_wopxd = (TH2F*)duplicateHistogram("h2z0errVSpt_woPXD", "#sigma_{z0} VS p_{t}, no PXD hits", m_h2_z0errVSpt,
199
200 m_h2_d0errVSpt = createHistogram2D("h2d0errVSpt", "#sigma_{d0} VS p_{t}",
201 100, 0, 3, "p_{t} (GeV/c)",
202 100, 0, 0.1, "#sigma_{d0} (cm)",
204 m_h2_d0errVSpt_wtpxd = (TH2F*)duplicateHistogram("h2d0errVSpt_wTruePXD", "#sigma_{d0} VS p_{t}, with True PXD hits", m_h2_d0errVSpt,
206 m_h2_d0errVSpt_wfpxd = (TH2F*)duplicateHistogram("h2d0errVSpt_wFalsePXD", "#sigma_{d0} VS p_{t}, with False PXD hits",
209 m_h2_d0errVSpt_wpxd = (TH2F*)duplicateHistogram("h2d0errVSpt_wPXD", "#sigma_{d0} VS p_{t}, with PXD hits", m_h2_d0errVSpt,
211
212 m_h2_d0errVSpt_wopxd = (TH2F*)duplicateHistogram("h2d0errVSpt_woPXD", "#sigma_{d0} VS p_{t}, no PXD hits", m_h2_d0errVSpt,
214 m_h2_d0errMSVSpt = createHistogram2D("h2d0errMSVSpt", "#sigma_{d0} * #betapsin^{3/2}#theta VS p_{t}",
215 50, 0, 2.5, "p_{t} (GeV/c)",
216 500, 0, 1, "cm",
218
219 //hits used in the fit
220 m_h2_TrackPointFitWeightVXD = createHistogram2D("h2TPFitWeightVXD", "VXD TrackPoint Fit Weight", 6, 0.5, 6.5, "VXD layer", 20, 0, 1,
221 "weight", m_histoList);
222 m_h2_TrackPointFitWeightCDC = createHistogram2D("h2TPFitWeightCDC", "CDC TrackPoint Fit Weight", 56, -0.5, 55.5, "CDC layer", 20, 0,
223 1, "weight", m_histoList);
224
225 m_h1_nHitDetID = createHistogram1D("h1nHitDetID", "detector ID per hit", 4, -0.5, 3.5, "0=PXD, 1=SVD2D, 2=SVD,3=CDC", m_histoList);
226 m_h1_nCDChitsPR = createHistogram1D("h1nCDCHitsPR", "number of CDC hits from PR per Layer", 56, -0.5, 55.5, "CDC Layer",
228 m_h1_nCDChitsWeighted = (TH1F*)duplicateHistogram("h1nCDCHitsWeighted", "CDC hits used in the fit per Layer, weighted",
230 m_h1_nCDChitsUsed = (TH1F*)duplicateHistogram("h1nCDCHitsUsed",
231 "approximated number of CDC hits used in the fit per Layer, weighted", m_h1_nCDChitsPR, m_histoList);
232 m_h1_nVXDhitsPR = createHistogram1D("h1nVXDHitsPR", "number of VXD hits from PR per Layer", 6, 0.5, 6.5, "VXD Layer", m_histoList);
233 m_h1_nVXDhitsWeighted = (TH1F*)duplicateHistogram("h1nVXDHitsWeighted", "number of VXD hits used in the fit per Layer, weighted",
235 m_h1_nVXDhitsUsed = (TH1F*)duplicateHistogram("h1nVXDHitsUsed",
236 "approximate number of VXD hits used in the fit per Layer, weighted", m_h1_nVXDhitsPR, m_histoList);
237 m_h2_VXDhitsPR_xy = createHistogram2D("h2hitsPRXY", "Pattern Recognition hits, transverse plane",
238 2000, -15, 15, "x (cm)",
239 2000, -15, 15, "y (cm)",
241
242 m_h2_VXDhitsPR_rz = createHistogram2D("h2hitsPRRZ", "Pattern Recognition Hits, r_{t} z",
243 2000, -30, 40, "z (cm)",
244 2000, 0, 15, "r_{t} (cm)",
246
247
248
249 //histograms to produce efficiency plots
250 Double_t bins_pt[10 + 1] = {0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.5, 1, 1.5, 2, 3.5}; //GeV/c
251 Double_t bins_theta[10 + 1] = {0, 0.25, 0.5, 0.75, 0.75 + 0.32, 0.75 + 2 * 0.32, 0.75 + 3 * 0.32, 0.75 + 4 * 0.32, 0.75 + 5 * 0.32, 2.65, TMath::Pi()};
252 Double_t bins_phi[14 + 1];
253 Double_t width_phi = 2 * TMath::Pi() / 14;
254 for (int bin = 0; bin < 14 + 1; bin++)
255 bins_phi[bin] = - TMath::Pi() + bin * width_phi;
256
257
258 m_h3_MCParticle = createHistogram3D("h3MCParticle", "entry per MCParticle",
259 10, bins_pt, "p_{t} (GeV/c)",
260 10, bins_theta, "#theta",
261 14, bins_phi, "#phi" /*, m_histoList*/);
262
263 m_h3_TracksPerMCParticle = (TH3F*)duplicateHistogram("h3TracksPerMCParticle",
264 "entry per Track connected to a MCParticle",
265 m_h3_MCParticle /*, m_histoList*/);
266
267 m_h3_TrackswPXDHitsPerMCParticle = (TH3F*)duplicateHistogram("h3TrackswPXDHitsPerMCParticle",
268 "entry per Track with PXD hits connected to a MCParticle",
269 m_h3_MCParticle /*, m_histoList*/);
270
271 m_h3_RecoTrackswPXDHitsPerMCParticle = (TH3F*)duplicateHistogram("h3RecoTrackswPXDHitsPerMCParticle",
272 "entry per RecoTrack with PXD hits connected to a MCParticle",
273 m_h3_MCParticle /*, m_histoList*/);
274
275 m_h3_RecoTrackswPXDHitsPerMCParticlewPXDHits = (TH3F*)duplicateHistogram("h3RecoTrackswPXDHitsPerMCParticlewPXDHits",
276 "entry per RecoTrack with PXD hits connected to a MCParticle with PXD hits",
277 m_h3_MCParticle /*, m_histoList*/);
278
279 m_h3_MCParticleswPXDHits = (TH3F*)duplicateHistogram("h3MCParticleswPXDHitsPerMCParticle",
280 "entry per MCParticle with PXD hits",
281 m_h3_MCParticle /*, m_histoList*/);
282
283 m_h3_MCRecoTrack = (TH3F*)duplicateHistogram("h3MCRecoTrack",
284 "entry per MCRecoTrack connected to the MCParticle",
285 m_h3_MCParticle /*, m_histoList*/);
286
287 m_h3_TracksPerMCRecoTrack = (TH3F*)duplicateHistogram("h3TracksPerMCRecoTrack",
288 "entry per Track connected to an MCRecoTrack",
289 m_h3_MCParticle /*, m_histoList*/);
290 //plus
291 m_h3_MCParticle_plus = (TH3F*)duplicateHistogram("h3MCParticle_plus", "entry per positive MCParticle",
292 m_h3_MCParticle /*, m_histoList*/);
293
294 m_h3_TracksPerMCParticle_plus = (TH3F*)duplicateHistogram("h3TracksPerMCParticle_plus",
295 "entry per Track connected to a positive MCParticle",
296 m_h3_MCParticle /*, m_histoList*/);
297
298 m_h3_MCRecoTrack_plus = (TH3F*)duplicateHistogram("h3MCRecoTrack_plus",
299 "entry per MCRecoTrack connected to the positive MCParticle",
300 m_h3_MCParticle /*, m_histoList*/);
301
302 m_h3_TracksPerMCRecoTrack_plus = (TH3F*)duplicateHistogram("h3TracksPerMCRecoTrack_plus",
303 "entry per Track connected to a positive MCRecoTrack",
304 m_h3_MCParticle /*, m_histoList*/);
305
306
307 //minus
308 m_h3_MCParticle_minus = (TH3F*)duplicateHistogram("h3MCParticlee_minus", "entry per negative MCParticle",
309 m_h3_MCParticle /*, m_histoList*/);
310
311 m_h3_TracksPerMCParticle_minus = (TH3F*)duplicateHistogram("h3TracksPerMCParticle_minus",
312 "entry per Track connected to a negative MCParticle",
313 m_h3_MCParticle /*, m_histoList*/);
314
315 m_h3_MCRecoTrack_minus = (TH3F*)duplicateHistogram("h3MCRecoTrack_minus",
316 "entry per MCRecoTrack connected to the negative MCParticle",
317 m_h3_MCParticle /*, m_histoList*/);
318
319 m_h3_TracksPerMCRecoTrack_minus = (TH3F*)duplicateHistogram("h3TracksPerMCRecoTrack_minus",
320 "entry per Track connected to a negative MCRecoTrack",
321 m_h3_MCParticle /*, m_histoList*/);
322
323 //histograms to produce efficiency plots
324 m_h1_HitsRecoTrackPerMCRecoTrack = createHistogram1D("h1hitsTCperMCRT", "RecoTrack per MCRecoTrack Hit in VXD layers", 6, 0.5, 6.5,
325 "# VXD layer" /*, m_histoList*/);
326
327 m_h1_HitsMCRecoTrack = (TH1F*) duplicateHistogram("h1hitsMCRT", " MCRecoTrack Hit in VXD layers",
328 m_h1_HitsRecoTrackPerMCRecoTrack /*, m_histoList*/);
329
330
331 //histograms to produce purity plots
332 m_h3_Tracks = (TH3F*)duplicateHistogram("h3Tracks", "entry per Track",
333 m_h3_MCParticle /*, m_histoList*/);
334
335 m_h3_MCParticlesPerTrack = (TH3F*)duplicateHistogram("h3MCParticlesPerTrack",
336 "entry per MCParticle connected to a Track",
337 m_h3_MCParticle /*, m_histoList*/);
338}
TH1F * createHistogram1D(const char *name, const char *title, Int_t nbins, Double_t min, Double_t max, const char *xtitle, TList *histoList=nullptr)
Create a 1D histogram and add it to the TList of 1D-histograms.
TList * m_histoList_evtCharacterization
List of event-characterization histograms.
TList * m_histoList_fit
List of track-fit histograms.
TList * m_histoList_others
List of other performance-evaluation histograms.
TList * m_histoList_pr
List of pattern-recognition histograms.
TList * m_histoList_trkQuality
List of track-quality histograms.
TList * m_histoList_purity
List of purity histograms.
TList * m_histoList
List of performance-evaluation histograms.
TList * m_histoList_multiplicity
List of multiplicity histograms.
TList * m_histoList_firstHit
List of first-hit-position histograms.
TH3F * createHistogram3D(const char *name, const char *title, Int_t nbinsX, Double_t minX, Double_t maxX, const char *titleX, Int_t nbinsY, Double_t minY, Double_t maxY, const char *titleY, Int_t nbinsZ, Double_t minZ, Double_t maxZ, const char *titleZ, TList *histoList=nullptr)
Create a 3D histogram and add it to the TList of 3D-histograms.
TH2F * createHistogram2D(const char *name, const char *title, Int_t nbinsX, Double_t minX, Double_t maxX, const char *titleX, Int_t nbinsY, Double_t minY, Double_t maxY, const char *titleY, TList *histoList=nullptr)
Create a 2D histogram and add it to the TList of 2D-histograms.
TFile * m_rootFilePtr
pointer at root file used for storing histograms
TList * m_histoList_efficiency
List of efficiency histograms.
bool isRequired(const std::string &name="")
Ensure this array/object has been registered previously.

◆ isTraceable()

bool isTraceable ( const MCParticle the_mcParticle)
private

is traceable

Definition at line 1137 of file TrackingPerformanceEvaluationModule.cc.

1138{
1139
1140 bool isChargedStable = Const::chargedStableSet.find(abs(the_mcParticle.getPDG())) != Const::invalidParticle;
1141
1142 bool isPrimary = the_mcParticle.hasStatus(MCParticle::c_PrimaryParticle);
1143
1144 return (isPrimary && isChargedStable);
1145
1146}
const ParticleType & find(int pdg) const
Returns particle in set with given PDG code, or invalidParticle if not found.
Definition: Const.h:571
static const ParticleSet chargedStableSet
set of charged stable particles
Definition: Const.h:618
static const ParticleType invalidParticle
Invalid particle, used internally.
Definition: Const.h:681
@ c_PrimaryParticle
bit 0: Particle is primary particle.
Definition: MCParticle.h:47
bool hasStatus(unsigned short int bitmask) const
Return if specific status bit is set.
Definition: MCParticle.h:129
int getPDG() const
Return PDG code of particle.
Definition: MCParticle.h:112

◆ setAbortLevel()

void setAbortLevel ( int  abortLevel)
inherited

Configure the abort log level.

Definition at line 67 of file Module.cc.

68{
69 m_logConfig.setAbortLevel(static_cast<LogConfig::ELogLevel>(abortLevel));
70}
ELogLevel
Definition of the supported log levels.
Definition: LogConfig.h:26
void setAbortLevel(ELogLevel abortLevel)
Configure the abort level.
Definition: LogConfig.h:112

◆ setDebugLevel()

void setDebugLevel ( int  debugLevel)
inherited

Configure the debug messaging level.

Definition at line 61 of file Module.cc.

62{
63 m_logConfig.setDebugLevel(debugLevel);
64}
void setDebugLevel(int debugLevel)
Configure the debug messaging level.
Definition: LogConfig.h:98

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 214 of file Module.cc.

215{
216 m_description = description;
217}

◆ setLogConfig()

void setLogConfig ( const LogConfig logConfig)
inlineinherited

Set the log system configuration.

Definition at line 230 of file Module.h.

230{m_logConfig = logConfig;}

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 73 of file Module.cc.

74{
75 m_logConfig.setLogInfo(static_cast<LogConfig::ELogLevel>(logLevel), logInfo);
76}
void setLogInfo(ELogLevel logLevel, unsigned int logInfo)
Configure the printed log information for the given level.
Definition: LogConfig.h:127

◆ setLogLevel()

void setLogLevel ( int  logLevel)
inherited

Configure the log level.

Definition at line 55 of file Module.cc.

56{
57 m_logConfig.setLogLevel(static_cast<LogConfig::ELogLevel>(logLevel));
58}
void setLogLevel(ELogLevel logLevel)
Configure the log level.
Definition: LogConfig.cc:25

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 214 of file Module.h.

214{ m_name = name; };

◆ setParamList()

void setParamList ( const ModuleParamList params)
inlineprotectedinherited

Replace existing parameter list.

Definition at line 501 of file Module.h.

501{ m_moduleParamList = params; }

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 234 of file Module.cc.

235{
236 LogSystem& logSystem = LogSystem::Instance();
237 logSystem.updateModule(&(getLogConfig()), getName());
238 try {
240 } catch (std::runtime_error& e) {
241 throw std::runtime_error("Cannot set parameter '" + name + "' for module '"
242 + m_name + "': " + e.what());
243 }
244
245 logSystem.updateModule(nullptr);
246}
Class for logging debug, info and error messages.
Definition: LogSystem.h:46
void updateModule(const LogConfig *moduleLogConfig=nullptr, const std::string &moduleName="")
Sets the log configuration to the given module log configuration and sets the module name This method...
Definition: LogSystem.h:191
static LogSystem & Instance()
Static method to get a reference to the LogSystem instance.
Definition: LogSystem.cc:31
void setParamPython(const std::string &name, const PythonObject &pyObj)
Implements a method for setting boost::python objects.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 249 of file Module.cc.

250{
251
252 LogSystem& logSystem = LogSystem::Instance();
253 logSystem.updateModule(&(getLogConfig()), getName());
254
255 boost::python::list dictKeys = dictionary.keys();
256 int nKey = boost::python::len(dictKeys);
257
258 //Loop over all keys in the dictionary
259 for (int iKey = 0; iKey < nKey; ++iKey) {
260 boost::python::object currKey = dictKeys[iKey];
261 boost::python::extract<std::string> keyProxy(currKey);
262
263 if (keyProxy.check()) {
264 const boost::python::object& currValue = dictionary[currKey];
265 setParamPython(keyProxy, currValue);
266 } else {
267 B2ERROR("Setting the module parameters from a python dictionary: invalid key in dictionary!");
268 }
269 }
270
271 logSystem.updateModule(nullptr);
272}
void setParamPython(const std::string &name, const boost::python::object &pyObj)
Implements a method for setting boost::python objects.
Definition: Module.cc:234

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 208 of file Module.cc.

209{
210 m_propertyFlags = propertyFlags;
211}

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 227 of file Module.cc.

228{
229 m_hasReturnValue = true;
230 m_returnValue = value;
231}

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 220 of file Module.cc.

221{
222 m_hasReturnValue = true;
223 m_returnValue = value;
224}

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 48 of file Module.cc.

49{
50 if (!m_type.empty())
51 B2FATAL("Trying to change module type from " << m_type << " is not allowed, the value is assumed to be fixed.");
52 m_type = type;
53}

◆ terminate()

void terminate ( void  )
overridevirtual

This method is called at the end of the event processing.

Reimplemented from Module.

Definition at line 647 of file TrackingPerformanceEvaluationModule.cc.

648{
649
650
653
655
656 if (m_rootFilePtr != nullptr) {
657 m_rootFilePtr->cd();
658
659 TDirectory* oldDir = gDirectory;
660
661 TDirectory* dir_multiplicity = oldDir->mkdir("multiplicity");
662 dir_multiplicity->cd();
663 TIter nextH_multiplicity(m_histoList_multiplicity);
664 TObject* obj;
665 while ((obj = nextH_multiplicity()))
666 obj->Write();
667
668 TDirectory* dir_efficiency = oldDir->mkdir("efficiency");
669 dir_efficiency->cd();
670 TIter nextH_efficiency(m_histoList_efficiency);
671 while ((obj = nextH_efficiency()))
672 obj->Write();
673
674 TDirectory* dir_trkQuality = oldDir->mkdir("trkQuality");
675 dir_trkQuality->cd();
676 TIter nextH_trkQuality(m_histoList_trkQuality);
677 while ((obj = nextH_trkQuality()))
678 obj->Write();
679
680 TDirectory* dir_firstHit = oldDir->mkdir("firstHit");
681 dir_firstHit->cd();
682 TIter nextH_firstHit(m_histoList_firstHit);
683 while ((obj = nextH_firstHit()))
684 obj->Write();
685
686
687
688
689 m_rootFilePtr->Close();
690 }
691
692}
void addPurityPlots(TList *graphList=nullptr, TH3F *h3_xPerMCParticle=nullptr, TH3F *h3_MCParticle=nullptr)
Create pt-, theta- and phi-purity 1D histograms and add them to the TList of 1D-histograms.
void addMoreEfficiencyPlots(TList *histoList)
add efficiency plots
void addMoreInefficiencyPlots(TList *histoList)
add inefficiency plots

◆ V0FinderEff()

TH1F * V0FinderEff ( TH1F *  h1_dau0,
TH1F *  h1_dau1,
TH1F *  h1_Mother,
const char *  name,
const char *  title,
TList *  histoList = nullptr 
)
inherited

Create a 1D efficiency histogram for V0 finding and add it to the TList of 1D-histograms.

Definition at line 644 of file PerformanceEvaluationBaseClass.cc.

646{
647
648 TH1F* h = (TH1F*)duplicateHistogram(name, title, h1_Mother, histoList);
649 h->GetYaxis()->SetRangeUser(0., 1);
650
651 for (int bin = 0; bin < h->GetXaxis()->GetNbins(); bin++) {
652 double dau0 = h1_dau0->GetBinContent(bin);
653 double dau1 = h1_dau1->GetBinContent(bin);
654 double Mother = h1_Mother->GetBinContent(bin);
655 double dau0Err = h1_dau0->GetBinError(bin);
656 double dau1Err = h1_dau1->GetBinError(bin);
657 double MotherErr = h1_Mother->GetBinError(bin);
658
659 double binCont = 1. * Mother / dau0 / dau1;
660 double binErr = binCont * sqrt((dau0Err / dau0) * (dau0Err / dau0) + (dau1Err / dau1) * (dau1Err / dau1) * (MotherErr / Mother) *
661 (MotherErr / Mother));
662
663 h->SetBinContent(bin, binCont);
664 h->SetBinError(bin, binErr);
665 }
666
667 if (histoList)
668 histoList->Add(h);
669
670 return h;
671}

Member Data Documentation

◆ m_conditions

std::vector<ModuleCondition> m_conditions
privateinherited

Module condition, only non-null if set.

Definition at line 521 of file Module.h.

◆ m_description

std::string m_description
privateinherited

The description of the module.

Definition at line 511 of file Module.h.

◆ m_h1_cotTheta_err

TH1F* m_h1_cotTheta_err = nullptr
private

error

Definition at line 119 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_cotTheta_pll

TH1F* m_h1_cotTheta_pll = nullptr
private

pull distribution cotTheta

Definition at line 143 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_cotTheta_res

TH1F* m_h1_cotTheta_res = nullptr
private

error

Definition at line 125 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_d0_err

TH1F* m_h1_d0_err = nullptr
private

error

Definition at line 115 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_d0_pll

TH1F* m_h1_d0_pll = nullptr
private

pull distribution d0

Definition at line 139 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_d0_res

TH1F* m_h1_d0_res = nullptr
private

error

Definition at line 121 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_HitsMCRecoTrack

TH1F* m_h1_HitsMCRecoTrack = nullptr
private

hits

Definition at line 183 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_HitsRecoTrackPerMCRecoTrack

TH1F* m_h1_HitsRecoTrackPerMCRecoTrack = nullptr
private

hits

Definition at line 182 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_nCDChitsPR

TH1F* m_h1_nCDChitsPR = nullptr
private

PR.

Definition at line 156 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_nCDChitsUsed

TH1F* m_h1_nCDChitsUsed = nullptr
private

used

Definition at line 158 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_nCDChitsWeighted

TH1F* m_h1_nCDChitsWeighted = nullptr
private

weighted

Definition at line 157 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_nHitDetID

TH1F* m_h1_nHitDetID = nullptr
private

det ID

Definition at line 159 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_nVXDhitsPR

TH1F* m_h1_nVXDhitsPR = nullptr
private

PR.

Definition at line 153 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_nVXDhitsUsed

TH1F* m_h1_nVXDhitsUsed = nullptr
private

hits used

Definition at line 155 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_nVXDhitsWeighted

TH1F* m_h1_nVXDhitsWeighted = nullptr
private

weighted

Definition at line 154 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_omega_err

TH1F* m_h1_omega_err = nullptr
private

error

Definition at line 117 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_omega_pll

TH1F* m_h1_omega_pll = nullptr
private

pull distribution omega

Definition at line 141 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_omega_res

TH1F* m_h1_omega_res = nullptr
private

error

Definition at line 123 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_p_res

TH1F* m_h1_p_res = nullptr
private

p residual

Definition at line 130 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_phi_err

TH1F* m_h1_phi_err = nullptr
private

error

Definition at line 116 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_phi_pll

TH1F* m_h1_phi_pll = nullptr
private

pull distribution phi

Definition at line 140 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_phi_res

TH1F* m_h1_phi_res = nullptr
private

error

Definition at line 122 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_pt_res

TH1F* m_h1_pt_res = nullptr
private

pt residual

Definition at line 131 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_pValue

TH1F* m_h1_pValue = nullptr
private

p val

Definition at line 163 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_px_res

TH1F* m_h1_px_res = nullptr
private

px residual

Definition at line 127 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_py_res

TH1F* m_h1_py_res = nullptr
private

py residual

Definition at line 128 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_pz_res

TH1F* m_h1_pz_res = nullptr
private

pz residual

Definition at line 129 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_r_res

TH1F* m_h1_r_res = nullptr
private

R residual (in cylindrical coordinates)

Definition at line 136 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_rtot_res

TH1F* m_h1_rtot_res = nullptr
private

r residual (3D distance)

Definition at line 137 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_x_res

TH1F* m_h1_x_res = nullptr
private

x residual

Definition at line 133 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_y_res

TH1F* m_h1_y_res = nullptr
private

y residual

Definition at line 134 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_z0_err

TH1F* m_h1_z0_err = nullptr
private

error

Definition at line 118 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_z0_pll

TH1F* m_h1_z0_pll = nullptr
private

pull distribution z0

Definition at line 142 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_z0_res

TH1F* m_h1_z0_res = nullptr
private

error

Definition at line 124 of file TrackingPerformanceEvaluationModule.h.

◆ m_h1_z_res

TH1F* m_h1_z_res = nullptr
private

z residual

Definition at line 135 of file TrackingPerformanceEvaluationModule.h.

◆ m_h2_chargeVSchargeMC

TH2F* m_h2_chargeVSchargeMC = nullptr
private

charge comparison

Definition at line 179 of file TrackingPerformanceEvaluationModule.h.

◆ m_h2_d0errMSVSpt

TH2F* m_h2_d0errMSVSpt = nullptr
private

error

Definition at line 177 of file TrackingPerformanceEvaluationModule.h.

◆ m_h2_d0errphi0err_rz

TH2F* m_h2_d0errphi0err_rz = nullptr
private

error

Definition at line 148 of file TrackingPerformanceEvaluationModule.h.

◆ m_h2_d0errphi0err_xy

TH2F* m_h2_d0errphi0err_xy = nullptr
private

error

Definition at line 147 of file TrackingPerformanceEvaluationModule.h.

◆ m_h2_d0errVSpt

TH2F* m_h2_d0errVSpt = nullptr
private

error

Definition at line 176 of file TrackingPerformanceEvaluationModule.h.

◆ m_h2_d0errVSpt_wfpxd

TH2F* m_h2_d0errVSpt_wfpxd = nullptr
private

error

Definition at line 173 of file TrackingPerformanceEvaluationModule.h.

◆ m_h2_d0errVSpt_wopxd

TH2F* m_h2_d0errVSpt_wopxd = nullptr
private

error

Definition at line 175 of file TrackingPerformanceEvaluationModule.h.

◆ m_h2_d0errVSpt_wpxd

TH2F* m_h2_d0errVSpt_wpxd = nullptr
private

error

Definition at line 174 of file TrackingPerformanceEvaluationModule.h.

◆ m_h2_d0errVSpt_wtpxd

TH2F* m_h2_d0errVSpt_wtpxd = nullptr
private

error

Definition at line 172 of file TrackingPerformanceEvaluationModule.h.

◆ m_h2_OmegaerrOmegaVSpt

TH2F* m_h2_OmegaerrOmegaVSpt = nullptr
private

error

Definition at line 165 of file TrackingPerformanceEvaluationModule.h.

◆ m_h2_TrackPointFitWeightCDC

TH2F* m_h2_TrackPointFitWeightCDC = nullptr
private

TP.

Definition at line 161 of file TrackingPerformanceEvaluationModule.h.

◆ m_h2_TrackPointFitWeightVXD

TH2F* m_h2_TrackPointFitWeightVXD = nullptr
private

TP.

Definition at line 160 of file TrackingPerformanceEvaluationModule.h.

◆ m_h2_VXDhitsPR_rz

TH2F* m_h2_VXDhitsPR_rz = nullptr
private

PR.

Definition at line 152 of file TrackingPerformanceEvaluationModule.h.

◆ m_h2_VXDhitsPR_xy

TH2F* m_h2_VXDhitsPR_xy = nullptr
private

PR.

Definition at line 151 of file TrackingPerformanceEvaluationModule.h.

◆ m_h2_z0errcotThetaerr_xy

TH2F* m_h2_z0errcotThetaerr_xy = nullptr
private

error

Definition at line 149 of file TrackingPerformanceEvaluationModule.h.

◆ m_h2_z0errVSpt

TH2F* m_h2_z0errVSpt = nullptr
private

error

Definition at line 171 of file TrackingPerformanceEvaluationModule.h.

◆ m_h2_z0errVSpt_wfpxd

TH2F* m_h2_z0errVSpt_wfpxd = nullptr
private

error

Definition at line 168 of file TrackingPerformanceEvaluationModule.h.

◆ m_h2_z0errVSpt_wopxd

TH2F* m_h2_z0errVSpt_wopxd = nullptr
private

error

Definition at line 170 of file TrackingPerformanceEvaluationModule.h.

◆ m_h2_z0errVSpt_wpxd

TH2F* m_h2_z0errVSpt_wpxd = nullptr
private

error

Definition at line 169 of file TrackingPerformanceEvaluationModule.h.

◆ m_h2_z0errVSpt_wtpxd

TH2F* m_h2_z0errVSpt_wtpxd = nullptr
private

error

Definition at line 167 of file TrackingPerformanceEvaluationModule.h.

◆ m_h3_MCParticle

TH3F* m_h3_MCParticle = nullptr
private

efficiency

Definition at line 185 of file TrackingPerformanceEvaluationModule.h.

◆ m_h3_MCParticle_minus

TH3F* m_h3_MCParticle_minus = nullptr
private

efficiency

Definition at line 198 of file TrackingPerformanceEvaluationModule.h.

◆ m_h3_MCParticle_plus

TH3F* m_h3_MCParticle_plus = nullptr
private

efficiency

Definition at line 194 of file TrackingPerformanceEvaluationModule.h.

◆ m_h3_MCParticlesPerTrack

TH3F* m_h3_MCParticlesPerTrack = nullptr
private

purity

Definition at line 204 of file TrackingPerformanceEvaluationModule.h.

◆ m_h3_MCParticleswPXDHits

TH3F* m_h3_MCParticleswPXDHits = nullptr
private

efficiency

Definition at line 186 of file TrackingPerformanceEvaluationModule.h.

◆ m_h3_MCRecoTrack

TH3F* m_h3_MCRecoTrack = nullptr
private

efficiency

Definition at line 191 of file TrackingPerformanceEvaluationModule.h.

◆ m_h3_MCRecoTrack_minus

TH3F* m_h3_MCRecoTrack_minus = nullptr
private

efficiency

Definition at line 200 of file TrackingPerformanceEvaluationModule.h.

◆ m_h3_MCRecoTrack_plus

TH3F* m_h3_MCRecoTrack_plus = nullptr
private

efficiency

Definition at line 196 of file TrackingPerformanceEvaluationModule.h.

◆ m_h3_RecoTrackswPXDHitsPerMCParticle

TH3F* m_h3_RecoTrackswPXDHitsPerMCParticle = nullptr
private

efficiency

Definition at line 189 of file TrackingPerformanceEvaluationModule.h.

◆ m_h3_RecoTrackswPXDHitsPerMCParticlewPXDHits

TH3F* m_h3_RecoTrackswPXDHitsPerMCParticlewPXDHits = nullptr
private

efficiency

Definition at line 190 of file TrackingPerformanceEvaluationModule.h.

◆ m_h3_Tracks

TH3F* m_h3_Tracks = nullptr
private

purity

Definition at line 205 of file TrackingPerformanceEvaluationModule.h.

◆ m_h3_TracksPerMCParticle

TH3F* m_h3_TracksPerMCParticle = nullptr
private

efficiency

Definition at line 187 of file TrackingPerformanceEvaluationModule.h.

◆ m_h3_TracksPerMCParticle_minus

TH3F* m_h3_TracksPerMCParticle_minus = nullptr
private

efficiency

Definition at line 199 of file TrackingPerformanceEvaluationModule.h.

◆ m_h3_TracksPerMCParticle_plus

TH3F* m_h3_TracksPerMCParticle_plus = nullptr
private

efficiency

Definition at line 195 of file TrackingPerformanceEvaluationModule.h.

◆ m_h3_TracksPerMCRecoTrack

TH3F* m_h3_TracksPerMCRecoTrack = nullptr
private

efficiency

Definition at line 192 of file TrackingPerformanceEvaluationModule.h.

◆ m_h3_TracksPerMCRecoTrack_minus

TH3F* m_h3_TracksPerMCRecoTrack_minus = nullptr
private

efficiency

Definition at line 201 of file TrackingPerformanceEvaluationModule.h.

◆ m_h3_TracksPerMCRecoTrack_plus

TH3F* m_h3_TracksPerMCRecoTrack_plus = nullptr
private

efficiency

Definition at line 197 of file TrackingPerformanceEvaluationModule.h.

◆ m_h3_TrackswPXDHitsPerMCParticle

TH3F* m_h3_TrackswPXDHitsPerMCParticle = nullptr
private

efficiency

Definition at line 188 of file TrackingPerformanceEvaluationModule.h.

◆ m_hasReturnValue

bool m_hasReturnValue
privateinherited

True, if the return value is set.

Definition at line 518 of file Module.h.

◆ m_histoList

TList* m_histoList = nullptr
inherited

List of performance-evaluation histograms.

Definition at line 38 of file PerformanceEvaluationBaseClass.h.

◆ m_histoList_efficiency

TList* m_histoList_efficiency = nullptr
inherited

List of efficiency histograms.

Definition at line 46 of file PerformanceEvaluationBaseClass.h.

◆ m_histoList_evtCharacterization

TList* m_histoList_evtCharacterization = nullptr
inherited

List of event-characterization histograms.

Definition at line 41 of file PerformanceEvaluationBaseClass.h.

◆ m_histoList_firstHit

TList* m_histoList_firstHit = nullptr
inherited

List of first-hit-position histograms.

Definition at line 43 of file PerformanceEvaluationBaseClass.h.

◆ m_histoList_fit

TList* m_histoList_fit = nullptr
inherited

List of track-fit histograms.

Definition at line 45 of file PerformanceEvaluationBaseClass.h.

◆ m_histoList_multiplicity

TList* m_histoList_multiplicity = nullptr
inherited

List of multiplicity histograms.

Definition at line 40 of file PerformanceEvaluationBaseClass.h.

◆ m_histoList_others

TList* m_histoList_others = nullptr
inherited

List of other performance-evaluation histograms.

Definition at line 48 of file PerformanceEvaluationBaseClass.h.

◆ m_histoList_pr

TList* m_histoList_pr = nullptr
inherited

List of pattern-recognition histograms.

Definition at line 44 of file PerformanceEvaluationBaseClass.h.

◆ m_histoList_purity

TList* m_histoList_purity = nullptr
inherited

List of purity histograms.

Definition at line 47 of file PerformanceEvaluationBaseClass.h.

◆ m_histoList_trkQuality

TList* m_histoList_trkQuality = nullptr
inherited

List of track-quality histograms.

Definition at line 42 of file PerformanceEvaluationBaseClass.h.

◆ m_logConfig

LogConfig m_logConfig
privateinherited

The log system configuration of the module.

Definition at line 514 of file Module.h.

◆ m_MCParticles

StoreArray<MCParticle> m_MCParticles
private

MCParticles StoreArray.

Definition at line 98 of file TrackingPerformanceEvaluationModule.h.

◆ m_MCParticlesName

std::string m_MCParticlesName
private

◆ m_MCRecoTracks

StoreArray<RecoTrack> m_MCRecoTracks
private

MC RecoTracks StoreArray.

Definition at line 100 of file TrackingPerformanceEvaluationModule.h.

◆ m_MCRecoTracksName

std::string m_MCRecoTracksName
private

MCRecoTrack StoreArray name.

Definition at line 93 of file TrackingPerformanceEvaluationModule.h.

◆ m_moduleParamList

ModuleParamList m_moduleParamList
privateinherited

List storing and managing all parameter of the module.

Definition at line 516 of file Module.h.

◆ m_multiplicityFittedTracks

TH1F* m_multiplicityFittedTracks = nullptr
private

number of fitted tracks per MCParticles

Definition at line 108 of file TrackingPerformanceEvaluationModule.h.

◆ m_multiplicityFittedTracksPerMCRT

TH1F* m_multiplicityFittedTracksPerMCRT = nullptr
private

number of fitted tracks per MCRecoTrack

Definition at line 109 of file TrackingPerformanceEvaluationModule.h.

◆ m_multiplicityMCParticlesPerTrack

TH1F* m_multiplicityMCParticlesPerTrack = nullptr
private

number of MCParticles per fitted Track

Definition at line 110 of file TrackingPerformanceEvaluationModule.h.

◆ m_multiplicityMCRecoTracks

TH1F* m_multiplicityMCRecoTracks = nullptr
private

number of MCRecoTracks per MCParticles

Definition at line 107 of file TrackingPerformanceEvaluationModule.h.

◆ m_multiplicityMCRecoTracksPerRT

TH1F* m_multiplicityMCRecoTracksPerRT = nullptr
private

number of MCRecoTracks per RecoTracks

Definition at line 112 of file TrackingPerformanceEvaluationModule.h.

◆ m_multiplicityRecoTracks

TH1F* m_multiplicityRecoTracks = nullptr
private

number of recoTracks per MCParticles

Definition at line 106 of file TrackingPerformanceEvaluationModule.h.

◆ m_multiplicityRecoTracksPerMCRT

TH1F* m_multiplicityRecoTracksPerMCRT = nullptr
private

number of RecoTracks per MCRecoTracks

Definition at line 111 of file TrackingPerformanceEvaluationModule.h.

◆ m_multiplicityTracks

TH1F* m_multiplicityTracks = nullptr
private

number of tracks per MCParticles

Definition at line 105 of file TrackingPerformanceEvaluationModule.h.

◆ m_name

std::string m_name
privateinherited

The name of the module, saved as a string (user-modifiable)

Definition at line 508 of file Module.h.

◆ m_package

std::string m_package
privateinherited

Package this module is found in (may be empty).

Definition at line 510 of file Module.h.

◆ m_ParticleHypothesis

int m_ParticleHypothesis
private

Particle Hypothesis for the track fit (default: 211)

Definition at line 96 of file TrackingPerformanceEvaluationModule.h.

◆ m_propertyFlags

unsigned int m_propertyFlags
privateinherited

The properties of the module as bitwise or (with |) of EModulePropFlags.

Definition at line 512 of file Module.h.

◆ m_PRRecoTracks

StoreArray<RecoTrack> m_PRRecoTracks
private

PR RecoTracks StoreArray.

Definition at line 99 of file TrackingPerformanceEvaluationModule.h.

◆ m_RecoTracksName

std::string m_RecoTracksName
private

RecoTrack StoreArray name.

Definition at line 94 of file TrackingPerformanceEvaluationModule.h.

◆ m_returnValue

int m_returnValue
privateinherited

The return value.

Definition at line 519 of file Module.h.

◆ m_rootFileName

std::string m_rootFileName
inherited

root file name

Definition at line 137 of file PerformanceEvaluationBaseClass.h.

◆ m_rootFilePtr

TFile* m_rootFilePtr = nullptr
inherited

pointer at root file used for storing histograms

Definition at line 140 of file PerformanceEvaluationBaseClass.h.

◆ m_Tracks

StoreArray<Track> m_Tracks
private

Tracks StoreArray.

Definition at line 101 of file TrackingPerformanceEvaluationModule.h.

◆ m_TracksName

std::string m_TracksName
private

Track StoreArray name.

Definition at line 95 of file TrackingPerformanceEvaluationModule.h.

◆ m_type

std::string m_type
privateinherited

The type of the module, saved as a string.

Definition at line 509 of file Module.h.


The documentation for this class was generated from the following files: