Belle II Software development
eclHadronTimeCalibrationValidationCollectorModule Class Reference

This module generates 'TimevsCrys' histogram to later (in eclBhabhaTAlgorithm) find time offset from bhabha events. More...

#include <eclHadronTimeCalibrationValidationCollectorModule.h>

Inheritance diagram for eclHadronTimeCalibrationValidationCollectorModule:
CalibrationCollectorModule HistoModule Module PathElement

Public Types

enum  EModulePropFlags {
  c_Input = 1 ,
  c_Output = 2 ,
  c_ParallelProcessingCertified = 4 ,
  c_HistogramManager = 8 ,
  c_InternalSerializer = 16 ,
  c_TerminateInAllProcesses = 32 ,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

 eclHadronTimeCalibrationValidationCollectorModule ()
 Module constructor.
 
virtual ~eclHadronTimeCalibrationValidationCollectorModule ()
 Module destructor.
 
void inDefineHisto () override
 Replacement for defineHisto() in CalibrationCollector modules.
 
void prepare () override
 Define histograms and read payloads from DB.
 
void collect () override
 Select events and crystals and accumulate histograms.
 
void initialize () final
 Set up a default RunRange object in datastore and call prepare()
 
void event () final
 Check current experiment and run and update if needed, fill into RunRange and collect()
 
void beginRun () final
 Reset the m_runCollectOnRun flag, if necessary, to begin collection again.
 
void endRun () final
 Write the current collector objects to a file and clear their memory.
 
void terminate () final
 Write the final objects to the file.
 
void defineHisto () final
 Runs due to HistoManager, allows us to discover the correct file.
 
template<class T >
void registerObject (std::string name, T *obj)
 Register object with a name, takes ownership, do not access the pointer beyond prepare()
 
template<class T >
T * getObjectPtr (std::string name)
 Calls the CalibObjManager to get the requested stored collector data.
 
virtual std::vector< std::string > getFileNames (bool outputFiles)
 Return a list of output filenames for this modules.
 
const std::string & getName () const
 Returns the name of the module.
 
const std::string & getType () const
 Returns the type of the module (i.e.
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module.
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties.
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level.
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module.
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module.
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module.
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true.
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished.
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module.
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter.
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module.
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module.
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters.
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Protected Member Functions

virtual void startRun ()
 Replacement for beginRun(). Do anything you would normally do in beginRun here.
 
virtual void closeRun ()
 Replacement for endRun(). Do anything you would normally do in endRun here.
 
virtual void finish ()
 Replacement for terminate(). Do anything you would normally do in terminate here.
 
virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python.
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side.
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module.
 
void setType (const std::string &type)
 Set the module type.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module.
 
void setReturnValue (int value)
 Sets the return value for this module as integer.
 
void setReturnValue (bool value)
 Sets the return value for this module as bool.
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Protected Attributes

TDirectory * m_dir
 The top TDirectory that collector objects for this collector will be stored beneath.
 
CalibObjManager m_manager
 Controls the creation, collection and access to calibration objects.
 
RunRangem_runRange
 Overall list of runs processed.
 
Calibration::ExpRun m_expRun
 Current ExpRun for object retrieval (becomes -1,-1 for granularity=all)
 
StoreObjPtr< EventMetaDatam_emd
 Current EventMetaData.
 

Private Member Functions

bool getPreScaleChoice ()
 I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values.
 
std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects.
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary.
 

Private Attributes

bool m_saveTree
 If true, save TTree with more detailed event info.
 
StoreArray< Tracktracks
 Required input array of tracks.
 
StoreArray< ECLClusterm_eclClusterArray
 Required input array of ECLClusters.
 
StoreArray< ECLCalDigitm_eclCalDigitArray
 Required input array of ECLCalDigits.
 
StoreObjPtr< EventMetaDatam_EventMetaData
 Event metadata.
 
StoreObjPtr< EventT0m_eventT0
 StoreObjPtr for T0.
 
TTree * m_dbg_tree_photonClusters
 Output tree with detailed event data.
 
TTree * m_dbg_tree_event
 debug output tree for per event
 
int m_tree_evt_num = -1
 Event number for debug TTree output.
 
int m_tree_run = -1
 Run number for debug TTree output.
 
int m_tree_cid = -1
 ECL Cell ID (1..ECLElementNumbers::c_NCrystals) for debug TTree output.
 
double m_tree_dt99 = -1
 dt99 for cluster
 
double m_tree_time = -1
 Calibrated time.
 
double m_tree_time_fromE0 = -1
 Calibrated time - highest E cluster.
 
double m_tree_E0 = -1
 Highest E cluster energy.
 
double m_tree_t0 = -1
 EventT0 (not from ECL) for debug TTree output.
 
double m_tree_t0_unc = -1
 EventT0 uncertainty for debug TTree output.
 
int m_NtightTracks = -1
 Number of tight tracks.
 
int m_NphotonClusters = -1
 Number of photon clusters.
 
int m_NGoodClusters = -1
 Number of good clusters.
 
std::vector< float > m_EperCrys
 ECL Cal digit energy for each crystal.
 
double m_E_photon_clust = -1
 Photon cluster energy.
 
short m_timeAbsMax
 Events with abs(time) > m_timeAbsMax are excluded, mostly for histogram x-range purposes.
 
double m_looseTrkZ0
 Loose track z0 minimum cut.
 
double m_tightTrkZ0
 Tight track z0 minimum cut.
 
double m_looseTrkD0
 Loose track d0 minimum cut.
 
double m_tightTrkD0
 Tight track d0 minimum cut.
 
std::string m_granularity
 Granularity of data collection = run|all(= no granularity, exp,run=-1,-1)
 
int m_maxEventsPerRun
 Maximum number of events to be collected at the start of each run (-1 = no maximum)
 
float m_preScale
 Prescale module parameter, this fraction of events will have collect() run on them [0.0 -> 1.0].
 
StoreObjPtr< EventMetaDatam_evtMetaData
 Required input for EventMetaData.
 
bool m_runCollectOnRun = true
 Whether or not we will run the collect() at all this run, basically skips the event() function if false.
 
std::map< Calibration::ExpRun, int > m_expRunEvents
 How many events processed for each ExpRun so far, stops counting up once max is hit Only used/incremented if m_maxEventsPerRun > -1.
 
int * m_eventsCollectedInRun
 Will point at correct value in m_expRunEvents.
 
std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 

Detailed Description

This module generates 'TimevsCrys' histogram to later (in eclBhabhaTAlgorithm) find time offset from bhabha events.

Definition at line 42 of file eclHadronTimeCalibrationValidationCollectorModule.h.

Member Typedef Documentation

◆ EAfterConditionPath

Forward the EAfterConditionPath definition from the ModuleCondition.

Definition at line 88 of file Module.h.

Member Enumeration Documentation

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 77 of file Module.h.

77 {
78 c_Input = 1,
79 c_Output = 2,
85 };
@ c_HistogramManager
This module is used to manage histograms accumulated by other modules.
Definition: Module.h:81
@ c_Input
This module is an input module (reads data).
Definition: Module.h:78
@ c_DontCollectStatistics
No statistics is collected for this module.
Definition: Module.h:84
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
Definition: Module.h:80
@ c_InternalSerializer
This module is an internal serializer/deserializer for parallel processing.
Definition: Module.h:82
@ c_Output
This module is an output module (writes data).
Definition: Module.h:79
@ c_TerminateInAllProcesses
When using parallel processing, call this module's terminate() function in all processes().
Definition: Module.h:83

Constructor & Destructor Documentation

◆ eclHadronTimeCalibrationValidationCollectorModule()

Module constructor.

Definition at line 38 of file eclHadronTimeCalibrationValidationCollectorModule.cc.

38 :
42 m_tree_evt_num(0)//,
43 //m_GammaGammaECalib("ECLCrystalEnergyGammaGamma")
44{
45 setDescription("This module validates the ECL cluster times");
46
47 addParam("timeAbsMax", m_timeAbsMax, // (Time in ns)
48 "Events with fabs(getTimeFit) > m_timeAbsMax "
49 "are excluded", (short)80);
50
51 addParam("saveTree", m_saveTree,
52 "If true, TTree 'tree' with more detailed event info is saved in "
53 "the output file specified by HistoManager",
54 false);
55
56 addParam("looseTrkZ0", m_looseTrkZ0, "max Z0 for loose tracks (cm)", 10.);
57 addParam("tightTrkZ0", m_tightTrkZ0, "max Z0 for tight tracks (cm)", 2.);
58 addParam("looseTrkD0", m_looseTrkD0, "max D0 for loose tracks (cm)", 2.);
59 addParam("tightTrkD0", m_tightTrkD0, "max D0 for tight tracks (cm)", 0.5); // beam pipe radius = 1cm in 2019
60
61
62 // specify this flag if you need parallel processing
64}
CalibrationCollectorModule()
Constructor. Sets the default prefix for calibration dataobjects.
void setDescription(const std::string &description)
Sets the description of the module.
Definition: Module.cc:214
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
Definition: Module.cc:208
short m_timeAbsMax
Events with abs(time) > m_timeAbsMax are excluded, mostly for histogram x-range purposes.
void addParam(const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
Definition: Module.h:559

◆ ~eclHadronTimeCalibrationValidationCollectorModule()

Member Function Documentation

◆ beginRun()

void beginRun ( void  )
finalvirtualinherited

Reset the m_runCollectOnRun flag, if necessary, to begin collection again.

It seems that the beginRun() function is called in each basf2 subprocess when the run changes in each process. This is nice because it allows us to write the new (exp,run) object creation in the beginRun function as though the other processes don't exist.

Reimplemented from HistoModule.

Definition at line 77 of file CalibrationCollectorModule.cc.

78{
83 // Current (Exp,Run)
84 ExpRun expRun = make_pair(m_emd->getExperiment(), m_emd->getRun());
85 m_runRange->add(expRun.first, expRun.second);
86
87 // Do we care about the number of events collected in each (input data) ExpRun?
88 // If so, we want to create values for the events collected map
89 if (m_maxEventsPerRun > -1) {
90 // Do we have a count for this ExpRun yet? If not create one
91 auto i_eventsInExpRun = m_expRunEvents.find(expRun);
92 if (i_eventsInExpRun == m_expRunEvents.end()) {
93 m_expRunEvents[expRun] = 0;
94 }
95
96 // Set our pointer to the correct location for this ExpRun
98 // Want to reset our flag to start collection if necessary
100 B2INFO("New run has had less events than the maximum collected so far ("
102 << " < "
104 << "). Turning on collection.");
105 m_runCollectOnRun = true;
106 } else {
107 B2INFO("New run has had more events than the maximum collected so far ("
109 << " >= "
111 << "). Turning off collection.");
112 m_runCollectOnRun = false;
113 }
114 }
115 // Granularity=all removes data splitting by runs by setting
116 // always the same exp, run for calibration data objects
117 if (m_granularity == "all") {
118 m_expRun = { -1, -1};
119 } else {
120 m_expRun = expRun;
121 }
123 // Run the user's startRun() implementation if there is one
124 startRun();
125}
bool m_runCollectOnRun
Whether or not we will run the collect() at all this run, basically skips the event() function if fal...
virtual void startRun()
Replacement for beginRun(). Do anything you would normally do in beginRun here.
Calibration::ExpRun m_expRun
Current ExpRun for object retrieval (becomes -1,-1 for granularity=all)
CalibObjManager m_manager
Controls the creation, collection and access to calibration objects.
std::string m_granularity
Granularity of data collection = run|all(= no granularity, exp,run=-1,-1)
RunRange * m_runRange
Overall list of runs processed.
int * m_eventsCollectedInRun
Will point at correct value in m_expRunEvents.
StoreObjPtr< EventMetaData > m_emd
Current EventMetaData.
int m_maxEventsPerRun
Maximum number of events to be collected at the start of each run (-1 = no maximum)
std::map< Calibration::ExpRun, int > m_expRunEvents
How many events processed for each ExpRun so far, stops counting up once max is hit Only used/increme...
void add(int exp, int run)
Add an experiment and run number to the set.
Definition: RunRange.h:58
void createExpRunDirectories(Calibration::ExpRun &expRun) const
For each templated object, we create a new TDirectory for this exprun.
Struct containing exp number and run number.
Definition: Splitter.h:51

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 179 of file Module.cc.

180{
182 newModule->m_moduleParamList.setParameters(getParamList());
183 newModule->setName(getName());
184 newModule->m_package = m_package;
185 newModule->m_propertyFlags = m_propertyFlags;
186 newModule->m_logConfig = m_logConfig;
187 newModule->m_conditions = m_conditions;
188
189 return newModule;
190}
std::shared_ptr< Module > registerModule(const std::string &moduleName, std::string sharedLibPath="") noexcept(false)
Creates an instance of a module and registers it to the ModuleManager.
static ModuleManager & Instance()
Exception is thrown if the requested module could not be created by the ModuleManager.
const ModuleParamList & getParamList() const
Return module param list.
Definition: Module.h:362
const std::string & getName() const
Returns the name of the module.
Definition: Module.h:186
const std::string & getType() const
Returns the type of the module (i.e.
Definition: Module.cc:41
unsigned int m_propertyFlags
The properties of the module as bitwise or (with |) of EModulePropFlags.
Definition: Module.h:511
LogConfig m_logConfig
The log system configuration of the module.
Definition: Module.h:513
std::vector< ModuleCondition > m_conditions
Module condition, only non-null if set.
Definition: Module.h:520
std::string m_package
Package this module is found in (may be empty).
Definition: Module.h:509
std::shared_ptr< Module > ModulePtr
Defines a pointer to a module object as a boost shared pointer.
Definition: Module.h:43

◆ closeRun()

◆ collect()

void collect ( )
overridevirtual

Select events and crystals and accumulate histograms.

< number of loose tracks

< number of tight tracks

Reimplemented from CalibrationCollectorModule.

Definition at line 179 of file eclHadronTimeCalibrationValidationCollectorModule.cc.

180{
181 int cutIndexPassed = 0;
182 getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed);
183 B2DEBUG(22, "Cutflow: no cuts: index = " << cutIndexPassed);
184
185
186
187 // Storage crystal energies
189 for (auto& eclCalDigit : m_eclCalDigitArray) {
190 int tempCrysID = eclCalDigit.getCellId() - 1;
191 m_EperCrys[tempCrysID] = eclCalDigit.getEnergy();
192 }
193
194 // Getting the event t0 using the full event t0
195
196 double evt_t0 = -1000 ;
197 double evt_t0_unc = -1000 ;
198 int evt_t0_detector = 0;
199
200 // Determine if there is an event t0 to use and then extract the information about it
201 if (m_eventT0.isOptional()) {
202 if (!m_eventT0.isValid()) {
203 return;
204 }
205 if (!m_eventT0->hasEventT0()) {
206 return;
207 } else {
208 // Overall event t0 (combination of multiple event t0s from different detectors)
209 evt_t0 = m_eventT0->getEventT0() ;
210 evt_t0_unc = m_eventT0->getEventT0Uncertainty() ;
211 if (m_eventT0->isSVDEventT0()) {evt_t0_detector += 2;}
212 if (m_eventT0->isCDCEventT0()) {evt_t0_detector += 4;}
213 if (m_eventT0->isTOPEventT0()) {evt_t0_detector += 8;}
214 if (m_eventT0->isECLEventT0()) {evt_t0_detector += 32;}
215 }
216 B2DEBUG(26, "Found event t0") ;
217 }
218
219 //---------------------------------------------------------------------
220 //..Track properties. Use pion (211) mass hypothesis,
221 // which is the only particle hypothesis currently available???
222 int nTrkAll = tracks.getEntries() ;
223
224 int nTrkLoose = 0 ;
225 int nTrkTight = 0 ;
228 /* Loop over all the tracks to define the tight and loose selection tracks.
229 We will select events with only a few tight tracks and no additional loose tracks.
230 Tight tracks are a subset of looses tracks. */
231 for (int iTrk = 0 ; iTrk < nTrkAll ; iTrk++) {
232
233 // Get track biasing towards the particle being a pion
234 const TrackFitResult* tempTrackFit = tracks[iTrk]->getTrackFitResultWithClosestMass(Const::pion) ;
235 if (not tempTrackFit) {continue ;}
236
237 // Collect track info to be used for categorizing
238 //short charge = tempTrackFit->getChargeSign() ;
239 double z0 = tempTrackFit->getZ0() ;
240 double d0 = tempTrackFit->getD0() ;
241 int nCDChits = tempTrackFit->getHitPatternCDC().getNHits() ;
242 //double pt = tempTrackFit->getTransverseMomentum() ;
243 //double p = tempTrackFit->getMomentum().Mag() ;
244
245 /* Test if loose track */
246
247 // d0 and z0 cuts
248 if (fabs(d0) > m_looseTrkD0) {
249 continue;
250 }
251 if (fabs(z0) > m_looseTrkZ0) {
252 continue;
253 }
254 // Number of hits in the CDC
255 if (nCDChits < 1) {
256 continue;
257 }
258 nTrkLoose++;
259
260
261
262 /* Test if the loose track is also a tight track */
263
264 // Number of hits in the CDC
265 if (nCDChits < 20) {
266 continue;
267 }
268 // d0 and z0 cuts
269 if (fabs(d0) > m_tightTrkD0) {
270 continue;
271 }
272 if (fabs(z0) > m_tightTrkZ0) {
273 continue;
274 }
275 nTrkTight++;
276
277 }
278 // After that last section the numbers of loose and tight tracks are known
279 B2DEBUG(26, "Found loose and tight tracks") ;
280
281
282 int numGoodTightTracks_minCut = 4 ;
283 if (nTrkTight < numGoodTightTracks_minCut) {
284 return ;
285 }
286 // There are at least X tight tracks
287 cutIndexPassed++ ;
288 getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed) ;
289 B2DEBUG(22, "Cutflow: At least " << numGoodTightTracks_minCut << " tight tracks: index = " << cutIndexPassed) ;
290
291
292 int numGoodLooseTracks_minCut = numGoodTightTracks_minCut ;
293 if (nTrkLoose < numGoodLooseTracks_minCut) {
294 return ;
295 }
296 // There are more loose tracks than tight tracks then veto the event. If there are fewer loose tracks than tight tracks then veto the event, although this should be impossible
297 cutIndexPassed++ ;
298 getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed) ;
299 B2DEBUG(22, "Cutflow: No additional loose tracks: index = " << cutIndexPassed) ;
300
301
302 //------------------------------------------------------------------------
303 // Find the good ECL clusters
304 double clusterE_minCut = 0.1 ; // GeV
305 int nclust = m_eclClusterArray.getEntries();
306 int nGoodClusts = 0 ;
307 vector<int> goodClusterIdxs ;
308 for (int ic = 0; ic < nclust; ic++) {
310 if (eClust > clusterE_minCut) {
311 goodClusterIdxs.push_back(ic) ;
312 nGoodClusts++ ;
313 }
314 }
315
316
317 // Cut on the minimum number of good clusters
318 int numGoodEMclusters_minCut = 5 ;
319 if (nGoodClusts < numGoodEMclusters_minCut) {
320 return ;
321 }
322 // There are at least 5 good EM clusters (photon = basically all clusters)
323 cutIndexPassed++ ;
324 getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed) ;
325 B2DEBUG(22, "Cutflow: At least " << numGoodEMclusters_minCut << " ECL clusters: index = " << cutIndexPassed) ;
326
327
328 //------------------------------------------------------------------------
329 // Find the good photons first before doing anything with them
330
331 double photonE_minCut = 0.05 ; // GeV
332 double zernikeMVA_minCut = 0.2 ;
333 int nPhotons = 0 ;
334
335 vector<int> goodPhotonClusterIdxs ;
336 for (int ic = 0; ic < nclust; ic++) {
339 double photonTime = m_eclClusterArray[ic]->getTime();
340 double zernikeMVA = m_eclClusterArray[ic]->getZernikeMVA();
341 bool badPhotonTime = m_eclClusterArray[ic]->hasFailedFitTime();
342 bool badPhotonTimeResolution = m_eclClusterArray[ic]->hasFailedTimeResolution();
343 bool hasTrack = m_eclClusterArray[ic]->isTrack();
344 if ((eClust > photonE_minCut) &&
345 (fabs(photonTime) < m_timeAbsMax) &&
346 (!badPhotonTime) &&
347 (!badPhotonTimeResolution) &&
348 (zernikeMVA > zernikeMVA_minCut) &&
349 (!hasTrack)) {
350 goodPhotonClusterIdxs.push_back(ic) ;
351 nPhotons++;
352 }
353 }
354 }
355
356
357 // Cut on the minimum number of good photon clusters
358 int numGoodPhotonclusters_minCut = 1 ;
359 if (nPhotons < numGoodPhotonclusters_minCut) {
360 return ;
361 }
362 // There is at least one good photon in the event
363 cutIndexPassed++ ;
364 getObjectPtr<TH1F>("cutflow")->Fill(cutIndexPassed) ;
365 B2DEBUG(22, "Cutflow: At least " << numGoodPhotonclusters_minCut << " good photon: index = " << cutIndexPassed) ;
366
367
368
369 //------------------------------------------------------------------------
370 /* Extract the times of the good clusters and
371 save the maximum energy crystal information (cid) */
372 vector<double> goodClustTimes ;
373 vector<double> goodClust_dt99 ;
374 vector<double> goodClusters_crysE ;
375 vector<double> goodClustE ;
376 vector<int> goodClustMaxEcrys_cid ;
377 for (long unsigned int i = 0; i < goodPhotonClusterIdxs.size(); i++) {
378 int ic = goodPhotonClusterIdxs[i] ;
379
382 short cid = m_eclClusterArray[ic]->getMaxECellId() ;
383
384 goodClustMaxEcrys_cid.push_back(cid) ;
385 goodClustTimes.push_back(m_eclClusterArray[ic]->getTime()) ;
386 goodClust_dt99.push_back(m_eclClusterArray[ic]->getDeltaTime99()) ;
387 goodClusters_crysE.push_back(m_EperCrys[cid - 1]) ;
388 goodClustE.push_back(eClust);
389 }
390 }
391
392
393 // Define a pair (energy,time) so that we can quickly and easily sort the cluster information
394 // based on the energy of the clusters
395 vector< pair<double, double> > pair_energy_time ;
396 for (long unsigned int ic = 0; ic < goodClusters_crysE.size(); ic++) {
397 pair_energy_time.push_back(make_pair(goodClusters_crysE[ic], goodClustTimes[ic])) ;
398 }
399
400 // sorts pairs in decreasing order of their first value (energy)
401 // i.e. highest energy first
402 sort(pair_energy_time.begin(), pair_energy_time.end(), greater<>()) ;
403
404
405
406 B2DEBUG(22, "Event passed all cuts");
407
408
409 // Fill the histogram for the event level variables
410 getObjectPtr<TH1F>("eventT0")->Fill(evt_t0) ;
411 getObjectPtr<TH1F>("eventT0Detector")->Fill(evt_t0_detector + 0.00001) ;
412
413 bool isSVDt0 = m_eventT0->isSVDEventT0();
414 bool isCDCt0 = m_eventT0->isCDCEventT0();
415 bool isECLt0 = m_eventT0->isECLEventT0();
416 string t0Detector = "UNKNOWN... WHY?";
417 if (isSVDt0) {
418 t0Detector = "SVD" ;
419 } else if (isCDCt0) {
420 t0Detector = "CDC" ;
421 } else if (isECLt0) {
422 t0Detector = "ECL" ;
423 }
424
425 B2DEBUG(26, "t0 = " << evt_t0 << " ns. t0 is from SVD?=" << isSVDt0 << ", t0 is from CDC?=" << isCDCt0 << ", t0 is from ECL?=" <<
426 isECLt0 << " t0 from " <<
427 t0Detector);
428
429
430
431 //=== For each good photon cluster in the processed event and fill histogram.
432 for (long unsigned int i = 0 ; i < goodPhotonClusterIdxs.size() ; i++) {
433 getObjectPtr<TH1F>("clusterTime")->Fill(goodClustTimes[i]) ;
434 getObjectPtr<TH2F>("clusterTime_cid")->Fill(goodClustMaxEcrys_cid[i] + 0.001, goodClustTimes[i], 1) ;
435 getObjectPtr<TH2F>("clusterTime_run")->Fill(m_EventMetaData->getRun() + 0.001, goodClustTimes[i], 1) ;
436 getObjectPtr<TH2F>("clusterTimeClusterE")->Fill(goodClustE[i], goodClustTimes[i], 1) ;
437 getObjectPtr<TH2F>("dt99_clusterE")->Fill(goodClustE[i], goodClust_dt99[i], 1) ;
438
439 //== Save debug TTree with detailed information if necessary.
440 if (m_saveTree) {
441
442 m_tree_time = goodClustTimes[i] ;
443 m_E_photon_clust = goodClusters_crysE[i] ;
444 m_tree_t0 = evt_t0 ;
445 m_tree_t0_unc = evt_t0_unc ;
446 m_NtightTracks = nTrkTight ;
447 m_NphotonClusters = nPhotons ;
448 m_NGoodClusters = nGoodClusts ;
449 m_tree_evt_num = m_EventMetaData->getEvent() ;
450 m_tree_run = m_EventMetaData->getRun() ;
451 m_tree_cid = goodClustMaxEcrys_cid[i] ;
452 m_tree_dt99 = goodClust_dt99[i] ;
453
455
456 }
457 }
458 B2DEBUG(26, "Filled cluster tree") ;
459
460 //=== Fill histogram for cluster time difference of the two max E photons
461 if (pair_energy_time.size() >= 2) {
462 getObjectPtr<TH1F>("clusterTimeE0E1diff")->Fill(pair_energy_time[0].second - pair_energy_time[1].second) ;
463 }
464
465
466
467 if (m_saveTree) {
468 m_tree_t0 = evt_t0 ;
469 m_tree_t0_unc = evt_t0_unc ;
470 m_tree_evt_num = m_EventMetaData->getEvent() ;
471 m_tree_run = m_EventMetaData->getRun() ;
472 m_NtightTracks = nTrkTight ;
473 m_NphotonClusters = nPhotons ;
474 m_NGoodClusters = nGoodClusts ;
475
476 m_tree_E0 = pair_energy_time[0].first ;
477 m_tree_time_fromE0 = pair_energy_time[0].second ;
478 m_dbg_tree_event->Fill() ;
479 }
480
481 B2DEBUG(26, "Filled event tree") ;
482
483}
static const ChargedStable pion
charged pion particle
Definition: Const.h:661
@ c_nPhotons
CR is split into n photons (N1)
Values of the result of a track fit with a given particle hypothesis.
StoreArray< ECLCluster > m_eclClusterArray
Required input array of ECLClusters.
int m_tree_cid
ECL Cell ID (1..ECLElementNumbers::c_NCrystals) for debug TTree output.
StoreArray< ECLCalDigit > m_eclCalDigitArray
Required input array of ECLCalDigits.
const int c_NCrystals
Number of crystals.

◆ def_beginRun()

virtual void def_beginRun ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 425 of file Module.h.

425{ beginRun(); }
virtual void beginRun()
Called when entering a new run.
Definition: Module.h:146

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 438 of file Module.h.

438{ endRun(); }
virtual void endRun()
This method is called if the current run ends.
Definition: Module.h:165

◆ def_event()

virtual void def_event ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 431 of file Module.h.

431{ event(); }
virtual void event()
This method is the core of the module.
Definition: Module.h:156

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 419 of file Module.h.

419{ initialize(); }
virtual void initialize()
Initialize the Module.
Definition: Module.h:109

◆ def_terminate()

virtual void def_terminate ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 444 of file Module.h.

444{ terminate(); }
virtual void terminate()
This method is called at the end of the event processing.
Definition: Module.h:175

◆ defineHisto()

void defineHisto ( )
finalvirtualinherited

Runs due to HistoManager, allows us to discover the correct file.

Reimplemented from HistoModule.

Definition at line 127 of file CalibrationCollectorModule.cc.

128{
130 m_dir = gDirectory->mkdir(getName().c_str(), "", true);
132 B2INFO("Saving output to TDirectory " << m_dir->GetPath());
133 B2DEBUG(100, "Creating directories for individual collector objects.");
135 m_runRange = new RunRange();
137 m_runRange->SetName(Calibration::RUN_RANGE_OBJ_NAME.c_str());
138 m_dir->Add(m_runRange);
139 }
141}
void setDirectory(TDirectory *dir)
Change the directory that we will be using to find/store all our objects, we don't own it.
TDirectory * m_dir
The top TDirectory that collector objects for this collector will be stored beneath.
virtual void inDefineHisto()
Replacement for defineHisto(). Do anything you would normally do in defineHisto here.
static bool isWorkerProcess()
Return true if the process is a worker process.
Definition: ProcHandler.cc:230
static bool parallelProcessingUsed()
Returns true if multiple processes have been spawned, false in single-core mode.
Definition: ProcHandler.cc:226
Mergeable object holding (unique) set of (exp,run) pairs.
Definition: RunRange.h:25
void setGranularity(const std::string &granularity)
Set the m_granularity to an allowed value.
Definition: RunRange.h:100
void createDirectories()
Each object gets its own TDirectory under the main manager directory to store its objects.

◆ endRun()

void endRun ( void  )
finalvirtualinherited

Write the current collector objects to a file and clear their memory.

Reimplemented from HistoModule.

Definition at line 143 of file CalibrationCollectorModule.cc.

144{
145 closeRun();
146 // Moving between runs possibly creates new objects if getObjectPtr is called and granularity is run
147 // So we should write and clear the current memory objects.
148 if (m_granularity == "run") {
149 ExpRun expRun = make_pair(m_emd->getExperiment(), m_emd->getRun());
152 }
153}
virtual void closeRun()
Replacement for endRun(). Do anything you would normally do in endRun here.
void clearCurrentObjects(const Calibration::ExpRun &expRun)
Deletes all in-memory objects in the exprun directories for all the collector objects we know about.
void writeCurrentObjects(const Calibration::ExpRun &expRun)
For each templated object we know about, we find an in memory object for this exprun and write to the...

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 96 of file Module.cc.

97{
98 if (m_conditions.empty()) return false;
99
100 //okay, a condition was set for this Module...
101 if (!m_hasReturnValue) {
102 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
103 }
104
105 for (const auto& condition : m_conditions) {
106 if (condition.evaluate(m_returnValue)) {
107 return true;
108 }
109 }
110 return false;
111}
int m_returnValue
The return value.
Definition: Module.h:518
bool m_hasReturnValue
True, if the return value is set.
Definition: Module.h:517

◆ event()

void event ( void  )
finalvirtualinherited

Check current experiment and run and update if needed, fill into RunRange and collect()

Reimplemented from HistoModule.

Definition at line 52 of file CalibrationCollectorModule.cc.

53{
54 // Should we collect data this event based on the number collected in the run?
56 // If yes, does our preScale return true?
57 if (getPreScaleChoice()) {
58 collect();
59 // Since we collected, do we care about incrementing the number of events collected?
60 if (m_maxEventsPerRun > -1) {
61 (*m_eventsCollectedInRun) += 1;
62 // Now that we incremented, have we exceeded our maximum collected events in this run?
64 // If we have, we should skip collection until further notice
65 B2INFO("Reached maximum number of events processed by collector for this run ("
67 << " >= "
69 << "). Turning off collection.");
70 m_runCollectOnRun = false;
71 }
72 }
73 }
74 }
75}
virtual void collect()
Replacement for event(). Fill you calibration data objects here.
bool getPreScaleChoice()
I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values.

◆ exposePythonAPI()

void exposePythonAPI ( )
staticinherited

Exposes methods of the Module class to Python.

Definition at line 325 of file Module.cc.

326{
327 // to avoid confusion between std::arg and boost::python::arg we want a shorthand namespace as well
328 namespace bp = boost::python;
329
330 docstring_options options(true, true, false); //userdef, py sigs, c++ sigs
331
332 void (Module::*setReturnValueInt)(int) = &Module::setReturnValue;
333
334 enum_<Module::EAfterConditionPath>("AfterConditionPath",
335 R"(Determines execution behaviour after a conditional path has been executed:
336
337.. attribute:: END
338
339 End processing of this path after the conditional path. (this is the default for if_value() etc.)
340
341.. attribute:: CONTINUE
342
343 After the conditional path, resume execution after this module.)")
344 .value("END", Module::EAfterConditionPath::c_End)
345 .value("CONTINUE", Module::EAfterConditionPath::c_Continue)
346 ;
347
348 /* Do not change the names of >, <, ... we use them to serialize conditional paths */
349 enum_<Belle2::ModuleCondition::EConditionOperators>("ConditionOperator")
356 ;
357
358 enum_<Module::EModulePropFlags>("ModulePropFlags",
359 R"(Flags to indicate certain low-level features of modules, see :func:`Module.set_property_flags()`, :func:`Module.has_properties()`. Most useful flags are:
360
361.. attribute:: PARALLELPROCESSINGCERTIFIED
362
363 This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)
364
365.. attribute:: HISTOGRAMMANAGER
366
367 This module is used to manage histograms accumulated by other modules
368
369.. attribute:: TERMINATEINALLPROCESSES
370
371 When using parallel processing, call this module's terminate() function in all processes. This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.
372)")
373 .value("INPUT", Module::EModulePropFlags::c_Input)
374 .value("OUTPUT", Module::EModulePropFlags::c_Output)
375 .value("PARALLELPROCESSINGCERTIFIED", Module::EModulePropFlags::c_ParallelProcessingCertified)
376 .value("HISTOGRAMMANAGER", Module::EModulePropFlags::c_HistogramManager)
377 .value("INTERNALSERIALIZER", Module::EModulePropFlags::c_InternalSerializer)
378 .value("TERMINATEINALLPROCESSES", Module::EModulePropFlags::c_TerminateInAllProcesses)
379 ;
380
381 //Python class definition
382 class_<Module, PyModule> module("Module", R"(
383Base class for Modules.
384
385A module is the smallest building block of the framework.
386A typical event processing chain consists of a Path containing
387modules. By inheriting from this base class, various types of
388modules can be created. To use a module, please refer to
389:func:`Path.add_module()`. A list of modules is available by running
390``basf2 -m`` or ``basf2 -m package``, detailed information on parameters is
391given by e.g. ``basf2 -m RootInput``.
392
393The 'Module Development' section in the manual provides detailed information
394on how to create modules, setting parameters, or using return values/conditions:
395https://xwiki.desy.de/xwiki/rest/p/f4fa4/#HModuleDevelopment
396
397)");
398 module
399 .def("__str__", &Module::getPathString)
400 .def("name", &Module::getName, return_value_policy<copy_const_reference>(),
401 "Returns the name of the module. Can be changed via :func:`set_name() <Module.set_name()>`, use :func:`type() <Module.type()>` for identifying a particular module class.")
402 .def("type", &Module::getType, return_value_policy<copy_const_reference>(),
403 "Returns the type of the module (i.e. class name minus 'Module')")
404 .def("set_name", &Module::setName, args("name"), R"(
405Set custom name, e.g. to distinguish multiple modules of the same type.
406
407>>> path.add_module('EventInfoSetter')
408>>> ro = path.add_module('RootOutput', branchNames=['EventMetaData'])
409>>> ro.set_name('RootOutput_metadata_only')
410>>> print(path)
411[EventInfoSetter -> RootOutput_metadata_only]
412
413)")
414 .def("description", &Module::getDescription, return_value_policy<copy_const_reference>(),
415 "Returns the description of this module.")
416 .def("package", &Module::getPackage, return_value_policy<copy_const_reference>(),
417 "Returns the package this module belongs to.")
418 .def("available_params", &_getParamInfoListPython,
419 "Return list of all module parameters as `ModuleParamInfo` instances")
420 .def("has_properties", &Module::hasProperties, (bp::arg("properties")),
421 R"DOCSTRING(Allows to check if the module has the given properties out of `ModulePropFlags` set.
422
423>>> if module.has_properties(ModulePropFlags.PARALLELPROCESSINGCERTIFIED):
424>>> ...
425
426Parameters:
427 properties (int): bitmask of `ModulePropFlags` to check for.
428)DOCSTRING")
429 .def("set_property_flags", &Module::setPropertyFlags, args("property_mask"),
430 "Set module properties in the form of an OR combination of `ModulePropFlags`.");
431 {
432 // python signature is too crowded, make ourselves
433 docstring_options subOptions(true, false, false); //userdef, py sigs, c++ sigs
434 module
435 .def("if_value", &Module::if_value,
436 (bp::arg("expression"), bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
437 R"DOCSTRING(if_value(expression, condition_path, after_condition_path=AfterConditionPath.END)
438
439Sets a conditional sub path which will be executed after this
440module if the return value set in the module passes the given ``expression``.
441
442Modules can define a return value (int or bool) using ``setReturnValue()``,
443which can be used in the steering file to split the Path based on this value, for example
444
445>>> module_with_condition.if_value("<1", another_path)
446
447In case the return value of the ``module_with_condition`` for a given event is
448less than 1, the execution will be diverted into ``another_path`` for this event.
449
450You could for example set a special return value if an error occurs, and divert
451the execution into a path containing :b2:mod:`RootOutput` if it is found;
452saving only the data producing/produced by the error.
453
454After a conditional path has executed, basf2 will by default stop processing
455the path for this event. This behaviour can be changed by setting the
456``after_condition_path`` argument.
457
458Parameters:
459 expression (str): Expression to determine if the conditional path should be executed.
460 This should be one of the comparison operators ``<``, ``>``, ``<=``,
461 ``>=``, ``==``, or ``!=`` followed by a numerical value for the return value
462 condition_path (Path): path to execute in case the expression is fulfilled
463 after_condition_path (AfterConditionPath): What to do once the ``condition_path`` has been executed.
464)DOCSTRING")
465 .def("if_false", &Module::if_false,
466 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
467 R"DOC(if_false(condition_path, after_condition_path=AfterConditionPath.END)
468
469Sets a conditional sub path which will be executed after this module if
470the return value of the module evaluates to False. This is equivalent to
471calling `if_value` with ``expression=\"<1\"``)DOC")
472 .def("if_true", &Module::if_true,
473 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
474 R"DOC(if_true(condition_path, after_condition_path=AfterConditionPath.END)
475
476Sets a conditional sub path which will be executed after this module if
477the return value of the module evaluates to True. It is equivalent to
478calling `if_value` with ``expression=\">=1\"``)DOC");
479 }
480 module
481 .def("has_condition", &Module::hasCondition,
482 "Return true if a conditional path has been set for this module "
483 "using `if_value`, `if_true` or `if_false`")
484 .def("get_all_condition_paths", &_getAllConditionPathsPython,
485 "Return a list of all conditional paths set for this module using "
486 "`if_value`, `if_true` or `if_false`")
487 .def("get_all_conditions", &_getAllConditionsPython,
488 "Return a list of all conditional path expressions set for this module using "
489 "`if_value`, `if_true` or `if_false`")
490 .add_property("logging", make_function(&Module::getLogConfig, return_value_policy<reference_existing_object>()),
@ c_GE
Greater or equal than: ">=".
@ c_SE
Smaller or equal than: "<=".
@ c_GT
Greater than: ">"
@ c_NE
Not equal: "!=".
@ c_EQ
Equal: "=" or "=="
@ c_ST
Smaller than: "<"
Base class for Modules.
Definition: Module.h:72
LogConfig & getLogConfig()
Returns the log system configuration.
Definition: Module.h:224
void if_value(const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
Add a condition to the module.
Definition: Module.cc:79
void if_true(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to set the condition of the module.
Definition: Module.cc:90
void setReturnValue(int value)
Sets the return value for this module as integer.
Definition: Module.cc:220
void setLogConfig(const LogConfig &logConfig)
Set the log system configuration.
Definition: Module.h:229
const std::string & getDescription() const
Returns the description of the module.
Definition: Module.h:201
void if_false(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to add a condition to the module.
Definition: Module.cc:85
bool hasCondition() const
Returns true if at least one condition was set for the module.
Definition: Module.h:310
const std::string & getPackage() const
Returns the package this module is in.
Definition: Module.h:196
void setName(const std::string &name)
Set the name of the module.
Definition: Module.h:213
bool hasProperties(unsigned int propertyFlags) const
Returns true if all specified property flags are available in this module.
Definition: Module.cc:160
std::string getPathString() const override
return the module name.
Definition: Module.cc:192

◆ finish()

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 133 of file Module.cc.

134{
135 if (m_conditions.empty()) return EAfterConditionPath::c_End;
136
137 //okay, a condition was set for this Module...
138 if (!m_hasReturnValue) {
139 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
140 }
141
142 for (const auto& condition : m_conditions) {
143 if (condition.evaluate(m_returnValue)) {
144 return condition.getAfterConditionPath();
145 }
146 }
147
148 return EAfterConditionPath::c_End;
149}

◆ getAllConditionPaths()

std::vector< std::shared_ptr< Path > > getAllConditionPaths ( ) const
inherited

Return all condition paths currently set (no matter if the condition is true or not).

Definition at line 150 of file Module.cc.

151{
152 std::vector<std::shared_ptr<Path>> allConditionPaths;
153 for (const auto& condition : m_conditions) {
154 allConditionPaths.push_back(condition.getPath());
155 }
156
157 return allConditionPaths;
158}

◆ getAllConditions()

const std::vector< ModuleCondition > & getAllConditions ( ) const
inlineinherited

Return all set conditions for this module.

Definition at line 323 of file Module.h.

324 {
325 return m_conditions;
326 }

◆ getCondition()

const ModuleCondition * getCondition ( ) const
inlineinherited

Return a pointer to the first condition (or nullptr, if none was set)

Definition at line 313 of file Module.h.

314 {
315 if (m_conditions.empty()) {
316 return nullptr;
317 } else {
318 return &m_conditions.front();
319 }
320 }

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 113 of file Module.cc.

114{
115 PathPtr p;
116 if (m_conditions.empty()) return p;
117
118 //okay, a condition was set for this Module...
119 if (!m_hasReturnValue) {
120 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
121 }
122
123 for (const auto& condition : m_conditions) {
124 if (condition.evaluate(m_returnValue)) {
125 return condition.getPath();
126 }
127 }
128
129 // if none of the conditions were true, return a null pointer.
130 return p;
131}
std::shared_ptr< Path > PathPtr
Defines a pointer to a path object as a boost shared pointer.
Definition: Path.h:35

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Returns the description of the module.

Definition at line 201 of file Module.h.

201{return m_description;}
std::string m_description
The description of the module.
Definition: Module.h:510

◆ getFileNames()

virtual std::vector< std::string > getFileNames ( bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Reimplemented in RootInputModule, StorageRootOutputModule, and RootOutputModule.

Definition at line 133 of file Module.h.

134 {
135 return std::vector<std::string>();
136 }

◆ getLogConfig()

LogConfig & getLogConfig ( )
inlineinherited

Returns the log system configuration.

Definition at line 224 of file Module.h.

224{return m_logConfig;}

◆ getModules()

std::list< ModulePtr > getModules ( ) const
inlineoverrideprivatevirtualinherited

no submodules, return empty list

Implements PathElement.

Definition at line 505 of file Module.h.

505{ return std::list<ModulePtr>(); }

◆ getName()

const std::string & getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 186 of file Module.h.

186{return m_name;}
std::string m_name
The name of the module, saved as a string (user-modifiable)
Definition: Module.h:507

◆ getObjectPtr()

T * getObjectPtr ( std::string  name)
inlineinherited

Calls the CalibObjManager to get the requested stored collector data.

Definition at line 64 of file CalibrationCollectorModule.h.

65 {
66 return m_manager.getObject<T>(name, m_expRun);
67 }
T * getObject(const std::string &name, const Belle2::Calibration::ExpRun expRun)
Gets the collector object of this name for the given exprun.

◆ getPackage()

const std::string & getPackage ( ) const
inlineinherited

Returns the package this module is in.

Definition at line 196 of file Module.h.

196{return m_package;}

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 279 of file Module.cc.

280{
282}
std::shared_ptr< boost::python::list > getParamInfoListPython() const
Returns a python list of all parameters.
ModuleParamList m_moduleParamList
List storing and managing all parameter of the module.
Definition: Module.h:515

◆ getParamList()

const ModuleParamList & getParamList ( ) const
inlineinherited

Return module param list.

Definition at line 362 of file Module.h.

362{ return m_moduleParamList; }

◆ getPathString()

std::string getPathString ( ) const
overrideprivatevirtualinherited

return the module name.

Implements PathElement.

Definition at line 192 of file Module.cc.

193{
194
195 std::string output = getName();
196
197 for (const auto& condition : m_conditions) {
198 output += condition.getString();
199 }
200
201 return output;
202}

◆ getPreScaleChoice()

bool getPreScaleChoice ( )
inlineprivateinherited

I'm a little worried about floating point precision when comparing to 0.0 and 1.0 as special values.

But since a user will have set them (or left them as default) as exactly equal to 0.0 or 1.0 rather than calculating them in almost every case, I think we can assume that the equalities hold.

Definition at line 122 of file CalibrationCollectorModule.h.

123 {
124 if (m_preScale == 1.) {
125 return true;
126 } else if (m_preScale == 0.) {
127 return false;
128 } else {
129 const double randomNumber = gRandom->Uniform();
130 return randomNumber < m_preScale;
131 }
132 }
float m_preScale
Prescale module parameter, this fraction of events will have collect() run on them [0....

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 380 of file Module.h.

380{ return m_returnValue; }

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 41 of file Module.cc.

42{
43 if (m_type.empty())
44 B2FATAL("Module type not set for " << getName());
45 return m_type;
46}
std::string m_type
The type of the module, saved as a string.
Definition: Module.h:508

◆ hasCondition()

bool hasCondition ( ) const
inlineinherited

Returns true if at least one condition was set for the module.

Definition at line 310 of file Module.h.

310{ return not m_conditions.empty(); };

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 160 of file Module.cc.

161{
162 return (propertyFlags & m_propertyFlags) == propertyFlags;
163}

◆ hasReturnValue()

bool hasReturnValue ( ) const
inlineinherited

Return true if this module has a valid return value set.

Definition at line 377 of file Module.h.

377{ return m_hasReturnValue; }

◆ hasUnsetForcedParams()

bool hasUnsetForcedParams ( ) const
inherited

Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.

Definition at line 166 of file Module.cc.

167{
169 std::string allMissing = "";
170 for (const auto& s : missing)
171 allMissing += s + " ";
172 if (!missing.empty())
173 B2ERROR("The following required parameters of Module '" << getName() << "' were not specified: " << allMissing <<
174 "\nPlease add them to your steering file.");
175 return !missing.empty();
176}
std::vector< std::string > getUnsetForcedParams() const
Returns list of unset parameters (if they are required to have a value.

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 85 of file Module.cc.

86{
87 if_value("<1", path, afterConditionPath);
88}

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 90 of file Module.cc.

91{
92 if_value(">=1", path, afterConditionPath);
93}

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://xwiki.desy.de/xwiki/rest/p/a94f2 or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 79 of file Module.cc.

80{
81 m_conditions.emplace_back(expression, path, afterConditionPath);
82}

◆ inDefineHisto()

void inDefineHisto ( )
overridevirtual

Replacement for defineHisto() in CalibrationCollector modules.

Reimplemented from CalibrationCollectorModule.

Definition at line 70 of file eclHadronTimeCalibrationValidationCollectorModule.cc.

71{
72
73 //=== Prepare TTree for debug output
74 if (m_saveTree) {
75 // Per photon cluster
76 m_dbg_tree_photonClusters = new TTree("tree_photonClusters",
77 "Validating crystal and crate time calibrations using photon clusters in events with lots of tracks and clusters") ;
78 m_dbg_tree_photonClusters->Branch("EventNum", &m_tree_evt_num) ->SetTitle("Event number") ;
79 m_dbg_tree_photonClusters->Branch("cluster_time", &m_tree_time) ->SetTitle("Cluster time t (calibrated), ns") ;
80 m_dbg_tree_photonClusters->Branch("clust_E", &m_E_photon_clust) ->SetTitle("Photon type cluster energy, GeV") ;
81 m_dbg_tree_photonClusters->Branch("Ntracks", &m_NtightTracks) ->SetTitle("Number of tracks") ;
82 m_dbg_tree_photonClusters->Branch("NphotonClusters", &m_NphotonClusters) ->SetTitle("Number of photons") ;
83 m_dbg_tree_photonClusters->Branch("NGoodClusters", &m_NGoodClusters) ->SetTitle("Number of good ECL clusters") ;
84 m_dbg_tree_photonClusters->Branch("t0", &m_tree_t0) ->SetTitle("T0, ns") ;
85 m_dbg_tree_photonClusters->Branch("t0_unc", &m_tree_t0_unc) ->SetTitle("T0 uncertainty, ns") ;
86 m_dbg_tree_photonClusters->Branch("runNum", &m_tree_run) ->SetTitle("Run number") ;
87 m_dbg_tree_photonClusters->Branch("CrystalCellID", &m_tree_cid) ->SetTitle("Cell ID, 1..8736") ;
88 m_dbg_tree_photonClusters->Branch("dt99", &m_tree_dt99) ->SetTitle("Cluster dt99, ns") ;
89 m_dbg_tree_photonClusters->SetAutoSave(10) ;
90
91 // Per event
92 m_dbg_tree_event = new TTree("tree_event",
93 "Validating crystal and crate time calibrations using photon clusters in events with lots of tracks and clusters") ;
94 m_dbg_tree_event->Branch("EventNum", &m_tree_evt_num) ->SetTitle("Event number") ;
95 m_dbg_tree_event->Branch("t0", &m_tree_t0) ->SetTitle("T0, ns") ;
96 m_dbg_tree_event->Branch("t0_unc", &m_tree_t0_unc) ->SetTitle("T0 uncertainty, ns") ;
97 m_dbg_tree_event->Branch("runNum", &m_tree_run) ->SetTitle("Run number") ;
98 m_dbg_tree_event->Branch("Ntracks", &m_NtightTracks) ->SetTitle("Number of tracks") ;
99 m_dbg_tree_event->Branch("NphotonClusters", &m_NphotonClusters) ->SetTitle("Number of photons") ;
100 m_dbg_tree_event->Branch("NGoodClusters", &m_NGoodClusters) ->SetTitle("Number of good ECL clusters") ;
101 m_dbg_tree_event->Branch("E0", &m_tree_E0) ->SetTitle("Highest E cluster E") ;
102 m_dbg_tree_event->Branch("time_E0", &m_tree_time_fromE0) ->SetTitle("Cluster time of highest E cluster") ;
103 m_dbg_tree_event->SetAutoSave(10) ;
104 }
105}

◆ initialize()

void initialize ( void  )
finalvirtualinherited

Set up a default RunRange object in datastore and call prepare()

Reimplemented from HistoModule.

Definition at line 44 of file CalibrationCollectorModule.cc.

45{
46 m_evtMetaData.isRequired();
47 REG_HISTOGRAM
48 prepare();
49}
virtual void prepare()
Replacement for initialize(). Register calibration dataobjects here as well.
StoreObjPtr< EventMetaData > m_evtMetaData
Required input for EventMetaData.

◆ prepare()

void prepare ( )
overridevirtual

Define histograms and read payloads from DB.

Reimplemented from CalibrationCollectorModule.

Definition at line 107 of file eclHadronTimeCalibrationValidationCollectorModule.cc.

108{
109 //=== MetaData
110 B2INFO("eclHadronTimeCalibrationValidationCollector: Experiment = " << m_EventMetaData->getExperiment() <<
111 " run = " << m_EventMetaData->getRun()) ;
112
113 //=== Create histograms and register them in the data store
114
115 // Define the bin size, which is equivalent to the
116 double binSize = 2000.0 / pow(2, 12);
117 double halfBinSize = binSize / 2.0;
118
119 /* Determine the number of bins required to go from the edge of the bin centred
120 on zero to a value just larger than the negative cut off */
121 double nBinsNeg = floor((m_timeAbsMax - halfBinSize) / binSize);
122 double min_t = -nBinsNeg * binSize - halfBinSize; // lower edge value of left most bin
123 int nbins = nBinsNeg * 2 + 1; // number of negative time bins + t=0 bin + number of positive time bins
124 double max_t = min_t + nbins * binSize; // upper edge value of right most bin
125
126 /* Variable bin width information for the time information vs energy since
127 the time width should vary as a function of 1/E */
128 const Int_t N_E_BIN_EDGES = 64;
129 const Int_t N_E_BINS = N_E_BIN_EDGES - 1;
130 Double_t energyBinEdges[N_E_BIN_EDGES] = {0, 0.05, 0.051, 0.052, 0.053, 0.054, 0.055, 0.056, 0.057, 0.058, 0.059, 0.06, 0.062, 0.064, 0.066, 0.068, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.25, 2.5, 2.8, 3.2, 3.6, 4, 4.4, 4.8, 5.2, 5.6, 6, 6.4, 6.8, 7.2, 7.6, 8};
131
132
133 auto cutflow = new TH1F("cutflow", " ;Cut label number ;Number of events passing cut", 10, 0, 10) ;
134 registerObject<TH1F>("cutflow", cutflow) ;
135
136 auto clusterTime = new TH1F("clusterTime", ";Photon ECL cluster time [ns]; number of photon ECL clusters", nbins, min_t, max_t) ;
137 registerObject<TH1F>("clusterTime", clusterTime) ;
138
139 auto clusterTime_cid = new TH2F("clusterTime_cid",
140 ";crystal Cell ID ;Photon ECL cluster time [ns]", ECLElementNumbers::c_NCrystals, 1, ECLElementNumbers::c_NCrystals + 1, nbins,
141 min_t, max_t) ;
142 registerObject<TH2F>("clusterTime_cid", clusterTime_cid) ;
143
144 auto clusterTime_run = new TH2F("clusterTime_run",
145 ";Run number ;Photon ECL cluster time [ns]", 7000, 0, 7000, nbins, min_t, max_t) ;
146 registerObject<TH2F>("clusterTime_run", clusterTime_run) ;
147
148
149 auto clusterTimeClusterE = new TH2F("clusterTimeClusterE",
150 ";Photon cluster energy [GeV];Photon cluster time [ns]", N_E_BINS, energyBinEdges, nbins, min_t, max_t) ;
151 registerObject<TH2F>("clusterTimeClusterE", clusterTimeClusterE) ;
152
153
154 auto dt99_clusterE = new TH2F("dt99_clusterE",
155 ";Photon cluster energy [GeV];dt99 [ns]", N_E_BINS, energyBinEdges, nbins, 0, max_t) ;
156 registerObject<TH2F>("dt99_clusterE", dt99_clusterE) ;
157
158
159 auto eventT0 = new TH1F("eventT0", ";event t0 [ns]; number of events", nbins, min_t, max_t) ;
160 registerObject<TH1F>("eventT0", eventT0) ;
161
162 auto eventT0Detector = new TH1F("eventT0Detector",
163 "detector used for eventT0 (SVD=2, CDC=4, TOP=8, ECL=32);detector number; number of events", 48, 0, 48) ;
164 registerObject<TH1F>("eventT0Detector", eventT0Detector) ;
165
166 auto clusterTimeE0E1diff = new TH1F("clusterTimeE0E1diff",
167 ";ECL cluster time of max E photon - ECL cluster time of 2nd max E photon [ns]; number of photon ECL cluster time differences",
168 nbins, min_t, max_t) ;
169 registerObject<TH1F>("clusterTimeE0E1diff", clusterTimeE0E1diff) ;
170
171
172 //=== Required data objects
173 tracks.isRequired() ;
174 m_eclClusterArray.isRequired() ;
175 m_eclCalDigitArray.isRequired() ;
176
177}

◆ registerObject()

void registerObject ( std::string  name,
T *  obj 
)
inlineinherited

Register object with a name, takes ownership, do not access the pointer beyond prepare()

Definition at line 55 of file CalibrationCollectorModule.h.

56 {
57 std::shared_ptr<T> calObj(obj);
58 calObj->SetName(name.c_str());
59 m_manager.addObject(name, calObj);
60 }
void addObject(const std::string &name, std::shared_ptr< TNamed > object)
Add a new object to manage, this is used as a template for creating future/missing objects.

◆ setAbortLevel()

void setAbortLevel ( int  abortLevel)
inherited

Configure the abort log level.

Definition at line 67 of file Module.cc.

68{
69 m_logConfig.setAbortLevel(static_cast<LogConfig::ELogLevel>(abortLevel));
70}
ELogLevel
Definition of the supported log levels.
Definition: LogConfig.h:26
void setAbortLevel(ELogLevel abortLevel)
Configure the abort level.
Definition: LogConfig.h:112

◆ setDebugLevel()

void setDebugLevel ( int  debugLevel)
inherited

Configure the debug messaging level.

Definition at line 61 of file Module.cc.

62{
63 m_logConfig.setDebugLevel(debugLevel);
64}
void setDebugLevel(int debugLevel)
Configure the debug messaging level.
Definition: LogConfig.h:98

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 214 of file Module.cc.

215{
216 m_description = description;
217}

◆ setLogConfig()

void setLogConfig ( const LogConfig logConfig)
inlineinherited

Set the log system configuration.

Definition at line 229 of file Module.h.

229{m_logConfig = logConfig;}

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 73 of file Module.cc.

74{
75 m_logConfig.setLogInfo(static_cast<LogConfig::ELogLevel>(logLevel), logInfo);
76}
void setLogInfo(ELogLevel logLevel, unsigned int logInfo)
Configure the printed log information for the given level.
Definition: LogConfig.h:127

◆ setLogLevel()

void setLogLevel ( int  logLevel)
inherited

Configure the log level.

Definition at line 55 of file Module.cc.

56{
57 m_logConfig.setLogLevel(static_cast<LogConfig::ELogLevel>(logLevel));
58}
void setLogLevel(ELogLevel logLevel)
Configure the log level.
Definition: LogConfig.cc:25

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 213 of file Module.h.

213{ m_name = name; };

◆ setParamList()

void setParamList ( const ModuleParamList params)
inlineprotectedinherited

Replace existing parameter list.

Definition at line 500 of file Module.h.

500{ m_moduleParamList = params; }

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 234 of file Module.cc.

235{
236 LogSystem& logSystem = LogSystem::Instance();
237 logSystem.updateModule(&(getLogConfig()), getName());
238 try {
240 } catch (std::runtime_error& e) {
241 throw std::runtime_error("Cannot set parameter '" + name + "' for module '"
242 + m_name + "': " + e.what());
243 }
244
245 logSystem.updateModule(nullptr);
246}
Class for logging debug, info and error messages.
Definition: LogSystem.h:46
void updateModule(const LogConfig *moduleLogConfig=nullptr, const std::string &moduleName="")
Sets the log configuration to the given module log configuration and sets the module name This method...
Definition: LogSystem.h:191
static LogSystem & Instance()
Static method to get a reference to the LogSystem instance.
Definition: LogSystem.cc:28
void setParamPython(const std::string &name, const PythonObject &pyObj)
Implements a method for setting boost::python objects.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 249 of file Module.cc.

250{
251
252 LogSystem& logSystem = LogSystem::Instance();
253 logSystem.updateModule(&(getLogConfig()), getName());
254
255 boost::python::list dictKeys = dictionary.keys();
256 int nKey = boost::python::len(dictKeys);
257
258 //Loop over all keys in the dictionary
259 for (int iKey = 0; iKey < nKey; ++iKey) {
260 boost::python::object currKey = dictKeys[iKey];
261 boost::python::extract<std::string> keyProxy(currKey);
262
263 if (keyProxy.check()) {
264 const boost::python::object& currValue = dictionary[currKey];
265 setParamPython(keyProxy, currValue);
266 } else {
267 B2ERROR("Setting the module parameters from a python dictionary: invalid key in dictionary!");
268 }
269 }
270
271 logSystem.updateModule(nullptr);
272}
void setParamPython(const std::string &name, const boost::python::object &pyObj)
Implements a method for setting boost::python objects.
Definition: Module.cc:234

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 208 of file Module.cc.

209{
210 m_propertyFlags = propertyFlags;
211}

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 227 of file Module.cc.

228{
229 m_hasReturnValue = true;
230 m_returnValue = value;
231}

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 220 of file Module.cc.

221{
222 m_hasReturnValue = true;
223 m_returnValue = value;
224}

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 48 of file Module.cc.

49{
50 if (!m_type.empty())
51 B2FATAL("Trying to change module type from " << m_type << " is not allowed, the value is assumed to be fixed.");
52 m_type = type;
53}

◆ startRun()

◆ terminate()

void terminate ( void  )
finalvirtualinherited

Write the final objects to the file.

Reimplemented from HistoModule.

Definition at line 155 of file CalibrationCollectorModule.cc.

156{
157 finish();
158 // actually this should be done by the write() called by HistoManager....
159
160 // Haven't written objects yet if collecting with granularity == all
161 // Write them now that everything is done.
162// if (m_granularity == "all") {
163// m_manager.writeCurrentObjects(m_expRun);
164// m_manager.clearCurrentObjects(m_expRun);
165// }
167}
virtual void finish()
Replacement for terminate(). Do anything you would normally do in terminate here.
void deleteHeldObjects()
Clears the map of templated objects -> causing their destruction.

Member Data Documentation

◆ m_conditions

std::vector<ModuleCondition> m_conditions
privateinherited

Module condition, only non-null if set.

Definition at line 520 of file Module.h.

◆ m_dbg_tree_event

TTree* m_dbg_tree_event
private

debug output tree for per event

Definition at line 88 of file eclHadronTimeCalibrationValidationCollectorModule.h.

◆ m_dbg_tree_photonClusters

TTree* m_dbg_tree_photonClusters
private

Output tree with detailed event data.

debug output tree for per electron cluster

Definition at line 87 of file eclHadronTimeCalibrationValidationCollectorModule.h.

◆ m_description

std::string m_description
privateinherited

The description of the module.

Definition at line 510 of file Module.h.

◆ m_dir

TDirectory* m_dir
protectedinherited

The top TDirectory that collector objects for this collector will be stored beneath.

Definition at line 84 of file CalibrationCollectorModule.h.

◆ m_E_photon_clust

double m_E_photon_clust = -1
private

Photon cluster energy.

Definition at line 113 of file eclHadronTimeCalibrationValidationCollectorModule.h.

◆ m_eclCalDigitArray

StoreArray<ECLCalDigit> m_eclCalDigitArray
private

Required input array of ECLCalDigits.

Definition at line 74 of file eclHadronTimeCalibrationValidationCollectorModule.h.

◆ m_eclClusterArray

StoreArray<ECLCluster> m_eclClusterArray
private

Required input array of ECLClusters.

Definition at line 72 of file eclHadronTimeCalibrationValidationCollectorModule.h.

◆ m_emd

StoreObjPtr<EventMetaData> m_emd
protectedinherited

Current EventMetaData.

Definition at line 96 of file CalibrationCollectorModule.h.

◆ m_EperCrys

std::vector<float> m_EperCrys
private

ECL Cal digit energy for each crystal.

Definition at line 110 of file eclHadronTimeCalibrationValidationCollectorModule.h.

◆ m_EventMetaData

StoreObjPtr<EventMetaData> m_EventMetaData
private

Event metadata.

Definition at line 77 of file eclHadronTimeCalibrationValidationCollectorModule.h.

◆ m_eventsCollectedInRun

int* m_eventsCollectedInRun
privateinherited

Will point at correct value in m_expRunEvents.

Definition at line 117 of file CalibrationCollectorModule.h.

◆ m_eventT0

StoreObjPtr<EventT0> m_eventT0
private

StoreObjPtr for T0.

The event t0 class has an overall event t0 so use that as presumably some code has been run to determine what the best t0 is to use.

Definition at line 82 of file eclHadronTimeCalibrationValidationCollectorModule.h.

◆ m_evtMetaData

StoreObjPtr<EventMetaData> m_evtMetaData
privateinherited

Required input for EventMetaData.

Definition at line 108 of file CalibrationCollectorModule.h.

◆ m_expRun

Calibration::ExpRun m_expRun
protectedinherited

Current ExpRun for object retrieval (becomes -1,-1 for granularity=all)

Definition at line 93 of file CalibrationCollectorModule.h.

◆ m_expRunEvents

std::map<Calibration::ExpRun, int> m_expRunEvents
privateinherited

How many events processed for each ExpRun so far, stops counting up once max is hit Only used/incremented if m_maxEventsPerRun > -1.

Definition at line 115 of file CalibrationCollectorModule.h.

◆ m_granularity

std::string m_granularity
privateinherited

Granularity of data collection = run|all(= no granularity, exp,run=-1,-1)

Definition at line 101 of file CalibrationCollectorModule.h.

◆ m_hasReturnValue

bool m_hasReturnValue
privateinherited

True, if the return value is set.

Definition at line 517 of file Module.h.

◆ m_logConfig

LogConfig m_logConfig
privateinherited

The log system configuration of the module.

Definition at line 513 of file Module.h.

◆ m_looseTrkD0

double m_looseTrkD0
private

Loose track d0 minimum cut.

Definition at line 120 of file eclHadronTimeCalibrationValidationCollectorModule.h.

◆ m_looseTrkZ0

double m_looseTrkZ0
private

Loose track z0 minimum cut.

Definition at line 118 of file eclHadronTimeCalibrationValidationCollectorModule.h.

◆ m_manager

CalibObjManager m_manager
protectedinherited

Controls the creation, collection and access to calibration objects.

Definition at line 87 of file CalibrationCollectorModule.h.

◆ m_maxEventsPerRun

int m_maxEventsPerRun
privateinherited

Maximum number of events to be collected at the start of each run (-1 = no maximum)

Definition at line 103 of file CalibrationCollectorModule.h.

◆ m_moduleParamList

ModuleParamList m_moduleParamList
privateinherited

List storing and managing all parameter of the module.

Definition at line 515 of file Module.h.

◆ m_name

std::string m_name
privateinherited

The name of the module, saved as a string (user-modifiable)

Definition at line 507 of file Module.h.

◆ m_NGoodClusters

int m_NGoodClusters = -1
private

Number of good clusters.

Definition at line 106 of file eclHadronTimeCalibrationValidationCollectorModule.h.

◆ m_NphotonClusters

int m_NphotonClusters = -1
private

Number of photon clusters.

Definition at line 105 of file eclHadronTimeCalibrationValidationCollectorModule.h.

◆ m_NtightTracks

int m_NtightTracks = -1
private

Number of tight tracks.

Definition at line 104 of file eclHadronTimeCalibrationValidationCollectorModule.h.

◆ m_package

std::string m_package
privateinherited

Package this module is found in (may be empty).

Definition at line 509 of file Module.h.

◆ m_preScale

float m_preScale
privateinherited

Prescale module parameter, this fraction of events will have collect() run on them [0.0 -> 1.0].

Definition at line 105 of file CalibrationCollectorModule.h.

◆ m_propertyFlags

unsigned int m_propertyFlags
privateinherited

The properties of the module as bitwise or (with |) of EModulePropFlags.

Definition at line 511 of file Module.h.

◆ m_returnValue

int m_returnValue
privateinherited

The return value.

Definition at line 518 of file Module.h.

◆ m_runCollectOnRun

bool m_runCollectOnRun = true
privateinherited

Whether or not we will run the collect() at all this run, basically skips the event() function if false.

Definition at line 111 of file CalibrationCollectorModule.h.

◆ m_runRange

RunRange* m_runRange
protectedinherited

Overall list of runs processed.

Definition at line 90 of file CalibrationCollectorModule.h.

◆ m_saveTree

bool m_saveTree
private

If true, save TTree with more detailed event info.

Definition at line 66 of file eclHadronTimeCalibrationValidationCollectorModule.h.

◆ m_tightTrkD0

double m_tightTrkD0
private

Tight track d0 minimum cut.

Definition at line 121 of file eclHadronTimeCalibrationValidationCollectorModule.h.

◆ m_tightTrkZ0

double m_tightTrkZ0
private

Tight track z0 minimum cut.

Definition at line 119 of file eclHadronTimeCalibrationValidationCollectorModule.h.

◆ m_timeAbsMax

short m_timeAbsMax
private

Events with abs(time) > m_timeAbsMax are excluded, mostly for histogram x-range purposes.

Definition at line 116 of file eclHadronTimeCalibrationValidationCollectorModule.h.

◆ m_tree_cid

int m_tree_cid = -1
private

ECL Cell ID (1..ECLElementNumbers::c_NCrystals) for debug TTree output.

Definition at line 94 of file eclHadronTimeCalibrationValidationCollectorModule.h.

◆ m_tree_dt99

double m_tree_dt99 = -1
private

dt99 for cluster

Definition at line 95 of file eclHadronTimeCalibrationValidationCollectorModule.h.

◆ m_tree_E0

double m_tree_E0 = -1
private

Highest E cluster energy.

Definition at line 99 of file eclHadronTimeCalibrationValidationCollectorModule.h.

◆ m_tree_evt_num

int m_tree_evt_num = -1
private

Event number for debug TTree output.

Definition at line 92 of file eclHadronTimeCalibrationValidationCollectorModule.h.

◆ m_tree_run

int m_tree_run = -1
private

Run number for debug TTree output.

Definition at line 93 of file eclHadronTimeCalibrationValidationCollectorModule.h.

◆ m_tree_t0

double m_tree_t0 = -1
private

EventT0 (not from ECL) for debug TTree output.

Definition at line 101 of file eclHadronTimeCalibrationValidationCollectorModule.h.

◆ m_tree_t0_unc

double m_tree_t0_unc = -1
private

EventT0 uncertainty for debug TTree output.

Definition at line 102 of file eclHadronTimeCalibrationValidationCollectorModule.h.

◆ m_tree_time

double m_tree_time = -1
private

Calibrated time.

Definition at line 96 of file eclHadronTimeCalibrationValidationCollectorModule.h.

◆ m_tree_time_fromE0

double m_tree_time_fromE0 = -1
private

Calibrated time - highest E cluster.

Definition at line 98 of file eclHadronTimeCalibrationValidationCollectorModule.h.

◆ m_type

std::string m_type
privateinherited

The type of the module, saved as a string.

Definition at line 508 of file Module.h.

◆ tracks

StoreArray<Track> tracks
private

Required input array of tracks.

Definition at line 71 of file eclHadronTimeCalibrationValidationCollectorModule.h.


The documentation for this class was generated from the following files: