Source code for grafei.model.edge_features
##########################################################################
# basf2 (Belle II Analysis Software Framework) #
# Author: The Belle II Collaboration #
# #
# See git log for contributors and copyright holders. #
# This file is licensed under LGPL-3.0, see LICENSE.md. #
##########################################################################
import sys
import numpy as np
[docs]
def compute_doca(name_values):
"""
Computes DOCA between two tracks.
Args:
name_values (dict): Dictionary of numpy arrays containing px, py, pz, x, y, z.
Returns:
numpy.ndarray: Array containing doca values.
"""
eps = 1e-7
px = name_values["px"]
py = name_values["py"]
pz = name_values["pz"]
x = name_values["x"]
y = name_values["y"]
z = name_values["z"]
p = np.array([px, py, pz]).T
r = np.array([x, y, z]).T
n_parts = len(px)
# Momenta cross-product
v = np.cross(p, p[:, None]).reshape(-1, 3)
# Norm of each cross-product
v_norm = np.linalg.norm(v, axis=1).reshape((-1, 1))
# Suppress divide by 0 warnings in the diagonal (anyway it will be ignored)
v_norm[v_norm == 0] = 1
v_u = v / v_norm
# Difference in 3-positions
dr = np.subtract(r, r[:, None]).reshape(-1, 3)
# Dot products between r and v_u
dr_x_vu = (
np.dot(dr, v_u.T).diagonal().reshape((1, -1))
)
# Doca computed here
doca = np.linalg.norm(v_u * dr_x_vu.T - dr * (v_norm < eps), axis=1).reshape(
n_parts, n_parts
)
# Remove diagonal elements and flatten
return doca[~np.eye(doca.shape[0], dtype=bool)]
[docs]
def compute_cosTheta(name_values):
"""
Computes cosinus of angle between two tracks.
Args:
name_values (dict): Dictionary of numpy arrays containing p, px, py, pz.
Returns:
numpy.ndarray: Array containing cosinus of theta values.
"""
ux = name_values["px"] / name_values["p"]
uy = name_values["py"] / name_values["p"]
uz = name_values["pz"] / name_values["p"]
u = np.array([ux, uy, uz]).T
costheta = np.inner(u, u)
# Remove diagonal elements and flatten
return costheta[~np.eye(costheta.shape[0], dtype=bool)]
# Put here available features with respective functions (prepend edge_ to the name)
available_features = {
"edge_costheta": compute_cosTheta,
"edge_doca": compute_doca,
}
def _available_edge_features(feat, name_values):
"""
Returns value of edge feature if contained in dictionary available_features.
"""
if feat not in available_features:
sys.exit(
"Requested edge feature not available, but you could add it in grafei/data/edge_features.py!"
)
return available_features[feat](name_values)
[docs]
def compute_edge_features(edge_feature_names, features, x):
"""
Computes a series of edge features starting from node features.
Args:
edge_feature_names (list): List of edge features names.
features (list): List of node feature names.
x (numpy.ndarray): Array of node features.
Returns:
numpy.ndarray: Array of edge features.
"""
# Will be filled and converted to np.ndarray of shape [E, F_e] with
# E=nodes*(nodes-1) (assume no self-interactions) and F_e number of edge features
edge_features = []
# Remove `feat_` from feature names
features = [f.replace("feat_", "") for f in features]
# Associate node feature names with values
name_values = dict(zip(features, x.T))
# Compute edge features
for feat in edge_feature_names:
feature_values = _available_edge_features(feat, name_values)
edge_features.append(feature_values)
return np.array(edge_features).T