Belle II Software development
OverlapResidualsModule Class Reference

The module studies VXD hits from overlapping sensors of a same VXD layer. More...

#include <OverlapResidualsModule.h>

Inheritance diagram for OverlapResidualsModule:
HistoModule Module PathElement

Public Types

enum  EModulePropFlags {
  c_Input = 1 ,
  c_Output = 2 ,
  c_ParallelProcessingCertified = 4 ,
  c_HistogramManager = 8 ,
  c_InternalSerializer = 16 ,
  c_TerminateInAllProcesses = 32 ,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

 OverlapResidualsModule ()
 Constructor.
 
void initialize () override
 Register input and output data.
 
void event () override
 Compute the difference of coordinate residuals between two hits in overlapping sensors of a same VXD layer.
 
void defineHisto () override
 Histogram definitions such as TH1(), TH2(), TNtuple(), TTree()....
 
virtual void beginRun () override
 Function to process begin_run record.
 
virtual void endRun () override
 Function to process end_run record.
 
virtual void terminate () override
 Function to terminate module.
 
virtual std::vector< std::string > getFileNames (bool outputFiles)
 Return a list of output filenames for this modules.
 
const std::string & getName () const
 Returns the name of the module.
 
const std::string & getType () const
 Returns the type of the module (i.e.
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module.
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties.
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level.
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module.
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module.
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module.
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true.
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished.
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module.
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter.
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module.
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module.
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters.
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Protected Member Functions

virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python.
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side.
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module.
 
void setType (const std::string &type)
 Set the module type.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module.
 
void setReturnValue (int value)
 Sets the return value for this module as integer.
 
void setReturnValue (bool value)
 Sets the return value for this module as bool.
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Private Member Functions

std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects.
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary.
 

Private Attributes

bool m_ExpertLevel
 Expert level switch.
 
std::string m_recoTracksStoreArrayName {"RecoTracks"}
 StoreArray name of the input and output RecoTracks.
 
StoreArray< PXDClusterm_pxdcluster
 Array storing PXD clusters.
 
StoreArray< SVDClusterm_svdcluster
 Array storing SVD clusters.
 
TH1F * h_U_DeltaRes = nullptr
 Histogram of VXD ( PXD + SVD ) differences of u-coordinate residuals.
 
TH1F * h_V_DeltaRes = nullptr
 Histogram of VXD ( PXD + SVD ) differences of v-coordinate residuals.
 
TH1F * h_U_DeltaRes_PXD = nullptr
 Histogram of PXD u-coordinate differences of residuals.
 
TH1F * h_U_DeltaRes_PXD_Lyr1 = nullptr
 Histogram of PXD layer-1 u-coordinate differences of residuals.
 
TH1F * h_U_DeltaRes_PXD_Lyr2 = nullptr
 Histogram of PXD layer-2 u-coordinate differences of residuals.
 
TH1F * h_V_DeltaRes_PXD = nullptr
 Histogram of PXD v-coordinate differences of residuals.
 
TH1F * h_V_DeltaRes_PXD_Lyr1 = nullptr
 Histogram of PXD layer-1 v-coordinate differences of residuals.
 
TH1F * h_V_DeltaRes_PXD_Lyr2 = nullptr
 Histogram of PXD layer-2 v-coordinate differences of residuals.
 
TH1F * h_U_DeltaRes_SVD = nullptr
 Histogram of SVD u-coordinate differences of residuals.
 
TH1F * h_U_DeltaRes_SVD_Lyr3 = nullptr
 Histogram of SVD layer-3 u-coordinate differences of residuals.
 
TH1F * h_U_DeltaRes_SVD_Lyr4 = nullptr
 Histogram of SVD layer-4 u-coordinate differences of residuals.
 
TH1F * h_U_DeltaRes_SVD_Lyr5 = nullptr
 Histogram of SVD layer-5 u-coordinate differences of residuals.
 
TH1F * h_U_DeltaRes_SVD_Lyr6 = nullptr
 Histogram of SVD layer-6 u-coordinate differences of residuals.
 
TH1F * h_V_DeltaRes_SVD = nullptr
 Histogram of SVD v-coordinate differences of residuals.
 
TH1F * h_V_DeltaRes_SVD_Lyr3 = nullptr
 Histogram of SVD layer-3 v-coordinate differences of residuals.
 
TH1F * h_V_DeltaRes_SVD_Lyr4 = nullptr
 Histogram of SVD layer-4 v-coordinate differences of residuals.
 
TH1F * h_V_DeltaRes_SVD_Lyr5 = nullptr
 Histogram of SVD layer-5 v-coordinate differences of residuals.
 
TH1F * h_V_DeltaRes_SVD_Lyr6 = nullptr
 Histogram of SVD layer-6 v-coordinate differences of residuals.
 
TH2F * h_DeltaResUPhi_Lyr6 = nullptr
 2D histogram of DeltaRes_u vs phi of VXD overlaps for layer 6
 
TH2F * h_DeltaResUPhi_Lyr5 = nullptr
 2D histogram of DeltaRes_u vs phi of VXD overlaps for layer 5
 
TH2F * h_DeltaResUPhi_Lyr4 = nullptr
 2D histogram of DeltaRes_u vs phi of VXD overlaps for layer 4
 
TH2F * h_DeltaResUPhi_Lyr3 = nullptr
 2D histogram of DeltaRes_u vs phi of VXD overlaps for layer 3
 
TH2F * h_DeltaResUPhi_Lyr2 = nullptr
 2D histogram of DeltaRes_u vs phi of VXD overlaps for layer 2
 
TH2F * h_DeltaResUPhi_Lyr1 = nullptr
 2D Histogram of DeltaRes_u vs phi of VXD overlaps for layer 1
 
TH2F * h_DeltaResUz_Lyr6 = nullptr
 2D histogram of DeltaRes_u vs z of VXD overlaps for layer 6
 
TH2F * h_DeltaResUz_Lyr5 = nullptr
 2D histogram of DeltaRes_u vs z of VXD overlaps for layer 5
 
TH2F * h_DeltaResUz_Lyr4 = nullptr
 2D histogram of DeltaRes_u vs z of VXD overlaps for layer 4
 
TH2F * h_DeltaResUz_Lyr3 = nullptr
 2D histogram of DeltaRes_u vs z of VXD overlaps for layer 3
 
TH2F * h_DeltaResUz_Lyr2 = nullptr
 2D histogram of DeltaRes_u vs z of VXD overlaps for layer 2
 
TH2F * h_DeltaResUz_Lyr1 = nullptr
 2D histogram of DeltaRes_u vs z of VXD overlaps for layer 1
 
TH2F * h_DeltaResVz_Lyr6 = nullptr
 2D histogram of DeltaRes_v vs z of VXD overlaps for layer 6
 
TH2F * h_DeltaResVz_Lyr5 = nullptr
 2D histogram of DeltaRes_v vs z of VXD overlaps for layer 5
 
TH2F * h_DeltaResVz_Lyr4 = nullptr
 2D histogram of DeltaRes_v vs z of VXD overlaps for layer 4
 
TH2F * h_DeltaResVz_Lyr3 = nullptr
 2D histogram of DeltaRes_v vs z of VXD overlaps for layer 3
 
TH2F * h_DeltaResVz_Lyr2 = nullptr
 2D histogram of DeltaRes_v vs z of VXD overlaps for layer 2
 
TH2F * h_DeltaResVz_Lyr1 = nullptr
 2D histogram of DeltaRes_v vs z of VXD overlaps for layer 1
 
TH2F * h_DeltaResVPhi_Lyr6 = nullptr
 2D histogram of DeltaRes_v vs phi of VXD overlaps for layer 6
 
TH2F * h_DeltaResVPhi_Lyr5 = nullptr
 2D histogram of DeltaRes_v vs phi of VXD overlaps for layer 5
 
TH2F * h_DeltaResVPhi_Lyr4 = nullptr
 2D histogram of DeltaRes_v vs phi of VXD overlaps for layer 4
 
TH2F * h_DeltaResVPhi_Lyr3 = nullptr
 2D histogram of DeltaRes_v vs phi of VXD overlaps for layer 3
 
TH2F * h_DeltaResVPhi_Lyr2 = nullptr
 2D histogram of DeltaRes_v vs phi of VXD overlaps for layer 2
 
TH2F * h_DeltaResVPhi_Lyr1 = nullptr
 2D histogram of DeltaRes_v vs phi of VXD overlaps for layer 1
 
TH1F * h_SVDstrips_Mult = nullptr
 Histogram of SVD strips multiplicity.
 
TH1F * h_U_Cl1Cl2_DeltaRes [5] = {nullptr}
 Histogram of SVD differences of u-coordinate residuals grouped by clusters sizes.
 
TH1F * h_V_Cl1Cl2_DeltaRes [5] = {nullptr}
 Histogram of SVD differences of v-coordinate residuals grouped by clusters sizes.
 
TH2F * h_Lyr6 [17][6] = {{nullptr}}
 Sensor hit-map for layer 6 from reconstructed u and v coordinates.
 
TH2F * h_Lyr5 [13][5] = {{nullptr}}
 Sensor hit-map for layer 5 from reconstructed u and v coordinates.
 
TH2F * h_Lyr4 [11][4] = {{nullptr}}
 Sensor hit-map for layer 4 from reconstructed u and v coordinates.
 
TH2F * h_Lyr3 [8][3] = {{nullptr}}
 Sensor hit-map for layer 3 from reconstructed u and v coordinates.
 
TH2F * h_Lyr2 [13][3] = {{nullptr}}
 Sensor hit-map for layer 2 from reconstructed u and v coordinates.
 
TH2F * h_Lyr1 [9][3] = {{nullptr}}
 Sensor hit-map for layer 1 from reconstructed u and v coordinates.
 
TTree * t_PXD = nullptr
 Tree containing global information on PXD overlaps.
 
TTree * t_SVD_U = nullptr
 Tree containing global information on SVD u-coordinate overlaps.
 
TTree * t_SVD_V = nullptr
 Tree containing global information on SVD v-coordinate overlaps.
 
float deltaResU_PXD = 0
 tree t_PXD branch deltaResU/F
 
float intResU_PXD = 0
 tree t_PXD branch intResU_PXD/F
 
float intResV_PXD = 0
 tree t_PXD branch intResV/PXD/F
 
float intU_PXD = 0
 tree t_PXD branch intU_PXD/F
 
float intV_PXD = 0
 tree t_PXD branch intV_PXD/F
 
float intPhi_PXD = 0
 tree t_PXD branch intPhi_PXD/F
 
float intZ_PXD = 0
 tree t_PXD branch intZ_PXD/F
 
float extResU_PXD = 0
 tree t_PXD branch extResU_PXD/F
 
float extResV_PXD = 0
 tree t_PXD branch extResV_PXD/F
 
float extU_PXD = 0
 tree t_PXD branch extU_PXD/F
 
float extV_PXD = 0
 tree t_PXD branch extV_PXD/F
 
float extPhi_PXD = 0
 tree t_PXD branch extPhi/PXD/F
 
float extZ_PXD = 0
 tree t_PXD branch extZ_PXD/F
 
unsigned int intLayer_PXD = 0
 tree t_PXD branch intLayer_PXD/i
 
unsigned int intLadder_PXD = 0
 tree t_PXD branch intLadder_PXD/i
 
unsigned int intSensor_PXD = 0
 tree t_PXD branch intSensor_PXD/i
 
unsigned int extLayer_PXD = 0
 tree t_PXD branch extLayer_PXD/i
 
unsigned int extLadder_PXD = 0
 tree t_PXD branch extLadder_PXD/i
 
unsigned int extSensor_PXD = 0
 tree t_PXD branch extSensor_PXD/i
 
float svdDeltaRes_U = 0
 U difference between external and internal residual.
 
float svdClCharge_U_int = 0
 U internal cluster charge.
 
float svdClSNR_U_int = 0
 U internal cluster SNR.
 
float svdClTime_U_int = 0
 U internal cluster time.
 
float svdRes_U_int = 0
 U internal residual computed by genfit.
 
float svdClIntStrPos_U_int = 0
 U internal cluster interstrip position.
 
float svdClPos_U_int = 0
 U internal cluster position.
 
float svdClPosErr_U_int = 0
 U internal cluster position error.
 
float svdTruePos_U_int = -99
 U internal true position.
 
float svdClPhi_U_int = 0
 U internal cluster global phi.
 
float svdClZ_U_int = 0
 U internal cluster global Z.
 
float svdTrkd0 = 0
 d0 of the track
 
float svdTrkz0 = 0
 z0 of the track
 
float svdTrkpT = 0
 pT of the track
 
float svdTrkpCM = 0
 pCM of the track
 
float svdTrkTraversedLength_U_int = 0
 U internal traversed length of the track in the sensor.
 
float svdTrkPos_U_int = 0
 U internal track position.
 
float svdTrkPosOS_U_int = 0
 U internal track position on the other side.
 
float svdTrkPosErr_U_int = 0
 U internal track position error.
 
float svdTrkPosErrOS_U_int = 0
 U internal track position error on the other side.
 
float svdTrkQoP_U_int = 0
 U internal track q/p.
 
float svdTrkPrime_U_int = 0
 U internal tan of incident angle projected on u,w.
 
float svdTrkPrimeOS_U_int = 0
 U internal tan of incident angle projected on v/u,w (other side)
 
float svdTrkPosUnbiased_U_int = 0
 U internal unbiased track position.
 
float svdTrkPosErrUnbiased_U_int = 0
 U internal unbiased track position error.
 
float svdTrkQoPUnbiased_U_int = 0
 U internal unbiased track q/p.
 
float svdTrkPrimeUnbiased_U_int = 0
 U internal unbiased tan of incident angle projected on u,w.
 
float svdClCharge_U_ext = 0
 U external cluster charge.
 
float svdClSNR_U_ext = 0
 U external cluster SNR.
 
float svdClTime_U_ext = 0
 U external cluster time.
 
float svdRes_U_ext = 0
 U external residual computed by genfit.
 
float svdClIntStrPos_U_ext = 0
 U external cluster interstrip position.
 
float svdClPos_U_ext = 0
 U external cluster position.
 
float svdClPosErr_U_ext = 0
 U external cluster position error.
 
float svdTruePos_U_ext = -99
 U external true position.
 
float svdClPhi_U_ext = 0
 U external cluster global phi.
 
float svdClZ_U_ext = 0
 U external cluster global Z.
 
float svdTrkTraversedLength_U_ext = 0
 U external traversed length of the track in the sensor.
 
float svdTrkPos_U_ext = 0
 U external track position.
 
float svdTrkPosOS_U_ext = 0
 U external track position on the other side.
 
float svdTrkPosErr_U_ext = 0
 U external track position error.
 
float svdTrkPosErrOS_U_ext = 0
 U external track position error on the other side.
 
float svdTrkQoP_U_ext = 0
 U external track q/p.
 
float svdTrkPrime_U_ext = 0
 U external tan of incident angle projected on u,w.
 
float svdTrkPrimeOS_U_ext = 0
 U external tan of incident angle projected on v/u,w (other side)
 
float svdTrkPosUnbiased_U_ext = 0
 U external unbiased track position.
 
float svdTrkPosErrUnbiased_U_ext = 0
 U external unbiased track position error.
 
float svdTrkQoPUnbiased_U_ext = 0
 U external unbiased track q/p.
 
float svdTrkPrimeUnbiased_U_ext = 0
 U external unbiased tan of incident angle projected on u,w.
 
int svdTrkPXDHits = 0
 number of PXD hits on the track
 
int svdTrkSVDHits = 0
 number of PXD hits on the track
 
int svdTrkCDCHits = 0
 number of PXD hits on the track
 
unsigned int svdLayer_U_int = 0
 U internal layer.
 
unsigned int svdLadder_U_int = 0
 U internal ladder.
 
unsigned int svdSensor_U_int = 0
 U internal sensor.
 
unsigned int svdSize_U_int = 0
 U internal size.
 
unsigned int svdLayer_U_ext = 0
 U external layer.
 
unsigned int svdLadder_U_ext = 0
 U external ladder.
 
unsigned int svdSensor_U_ext = 0
 U external sensor.
 
unsigned int svdSize_U_ext = 0
 U external size.
 
std::vector< float > svdStripCharge_U_int
 U internal charge of the strips of the cluster.
 
std::vector< float > svdStrip6Samples_U_int
 U internal 6 samples of the strips of the cluster.
 
std::vector< float > svdStripTime_U_int
 U internal time of the strips of the cluster.
 
std::vector< float > svdStripPosition_U_int
 U internal position of the strips of the cluster.
 
std::vector< float > svdStripCharge_U_ext
 U external charge of the strips of the cluster.
 
std::vector< float > svdStrip6Samples_U_ext
 U external 6 samples of the strips of the cluster.
 
std::vector< float > svdStripTime_U_ext
 U external time of the strips of the cluster.
 
std::vector< float > svdStripPosition_U_ext
 U external position of the strips of the cluster.
 
float svdDeltaRes_V = 0
 V difference between external and internal residual.
 
float svdClCharge_V_int = 0
 V internal cluster charge.
 
float svdClSNR_V_int = 0
 V internal cluster SNR.
 
float svdClTime_V_int = 0
 V internal cluster time.
 
float svdRes_V_int = 0
 V internal residual computed by genfit.
 
float svdClIntStrPos_V_int = 0
 V internal cluster interstrip position.
 
float svdClPos_V_int = 0
 V internal cluster position.
 
float svdClPosErr_V_int = 0
 V internal cluster position error.
 
float svdTruePos_V_int = -99
 V internal true position.
 
float svdClPhi_V_int = 0
 V internal cluster global phi.
 
float svdClZ_V_int = 0
 V internal cluster global Z.
 
float svdTrkTraversedLength_V_int = 0
 V internal traversed length of the track in the sensor.
 
float svdTrkPos_V_int = 0
 V internal track position.
 
float svdTrkPosOS_V_int = 0
 V internal track position on the other side.
 
float svdTrkPosErr_V_int = 0
 V internal track position error.
 
float svdTrkPosErrOS_V_int = 0
 V internal track position error on the other side.
 
float svdTrkQoP_V_int = 0
 V internal track q/p.
 
float svdTrkPrime_V_int = 0
 V internal tan of incident angle projected on u,w.
 
float svdTrkPrimeOS_V_int = 0
 V internal tan of incident angle projected on v/u,w (other side)
 
float svdTrkPosUnbiased_V_int = 0
 V internal unbiased track position.
 
float svdTrkPosErrUnbiased_V_int = 0
 V internal unbiased track position error.
 
float svdTrkQoPUnbiased_V_int = 0
 V internal unbiased track q/p.
 
float svdTrkPrimeUnbiased_V_int = 0
 V internal unbiased tan of incident angle projected on u,w.
 
float svdClCharge_V_ext = 0
 V external cluster charge.
 
float svdClSNR_V_ext = 0
 V external cluster SNR.
 
float svdClTime_V_ext = 0
 V external cluster time.
 
float svdRes_V_ext = 0
 V external residual computed by genfit.
 
float svdClIntStrPos_V_ext = 0
 V external cluster interstrip position.
 
float svdClPos_V_ext = 0
 V external cluster position.
 
float svdClPosErr_V_ext = 0
 V external cluster position error.
 
float svdTruePos_V_ext = -99
 V external true position.
 
float svdClPhi_V_ext = 0
 V external cluster global phi.
 
float svdClZ_V_ext = 0
 V external cluster global Z.
 
float svdTrkTraversedLength_V_ext = 0
 V external traversed length of the track in the sensor.
 
float svdTrkPos_V_ext = 0
 V external track position.
 
float svdTrkPosOS_V_ext = 0
 V external track position on the other side.
 
float svdTrkPosErr_V_ext = 0
 V external track position error.
 
float svdTrkPosErrOS_V_ext = 0
 V external track position error on the other side.
 
float svdTrkQoP_V_ext = 0
 V external track q/p.
 
float svdTrkPrime_V_ext = 0
 V external tan of incident angle projected on u,w.
 
float svdTrkPrimeOS_V_ext = 0
 V external tan of incident angle projected on v/u,w (other side)
 
float svdTrkPosUnbiased_V_ext = 0
 V external unbiased track position.
 
float svdTrkPosErrUnbiased_V_ext = 0
 V external unbiased track position error.
 
float svdTrkQoPUnbiased_V_ext = 0
 V external unbiased track q/p.
 
float svdTrkPrimeUnbiased_V_ext = 0
 V external unbiased tan of incident angle projected on u,w.
 
unsigned int svdLayer_V_int = 0
 V internal layer.
 
unsigned int svdLadder_V_int = 0
 V internal ladder.
 
unsigned int svdSensor_V_int = 0
 V internal sensor.
 
unsigned int svdSize_V_int = 0
 V internal size.
 
unsigned int svdLayer_V_ext = 0
 V external layer.
 
unsigned int svdLadder_V_ext = 0
 V external ladder.
 
unsigned int svdSensor_V_ext = 0
 V external sensor.
 
unsigned int svdSize_V_ext = 0
 V external size.
 
std::vector< float > svdStripCharge_V_int
 V internal charge of the strips of the cluster.
 
std::vector< float > svdStrip6Samples_V_int
 V internal 6 samples of the strips of the cluster.
 
std::vector< float > svdStripTime_V_int
 V internal time of the strips of the cluster.
 
std::vector< float > svdStripPosition_V_int
 V internal position of the strips of the cluster.
 
std::vector< float > svdStripCharge_V_ext
 V external charge of the strips of the cluster.
 
std::vector< float > svdStrip6Samples_V_ext
 V external 6 samples of the strips of the cluster.
 
std::vector< float > svdStripTime_V_ext
 V external time of the strips of the cluster.
 
std::vector< float > svdStripPosition_V_ext
 V external position of the strips of the cluster.
 
std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 

Detailed Description

The module studies VXD hits from overlapping sensors of a same VXD layer.

In particular, it computes residuals differences sensitive to possible detector misalignments.

Overlapping residuals

Definition at line 31 of file OverlapResidualsModule.h.

Member Typedef Documentation

◆ EAfterConditionPath

Forward the EAfterConditionPath definition from the ModuleCondition.

Definition at line 88 of file Module.h.

Member Enumeration Documentation

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 77 of file Module.h.

77 {
78 c_Input = 1,
79 c_Output = 2,
85 };
@ c_HistogramManager
This module is used to manage histograms accumulated by other modules.
Definition: Module.h:81
@ c_Input
This module is an input module (reads data).
Definition: Module.h:78
@ c_DontCollectStatistics
No statistics is collected for this module.
Definition: Module.h:84
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
Definition: Module.h:80
@ c_InternalSerializer
This module is an internal serializer/deserializer for parallel processing.
Definition: Module.h:82
@ c_Output
This module is an output module (writes data).
Definition: Module.h:79
@ c_TerminateInAllProcesses
When using parallel processing, call this module's terminate() function in all processes().
Definition: Module.h:83

Constructor & Destructor Documentation

◆ OverlapResidualsModule()

Constructor.

Definition at line 44 of file OverlapResidualsModule.cc.

44 : HistoModule()
45{
46 //Set module properties
47 setDescription("The module studies consecutive hits in overlapping sensors of a same VXD layer, and the differences of their residuals, to monitor the detector alignment.");
48 //Parameter to take only specific RecoTracks as input
49 addParam("recoTracksStoreArrayName", m_recoTracksStoreArrayName, "StoreArray name of the input and output RecoTracks.",
51 //Parameter to produce TTrees storing global information on VXD overlaps
52 addParam("ExpertLevel", m_ExpertLevel,
53 "If set, enables the production of TTrees containing low level information on PXD and SVD overlaps", false);
54}
HistoModule()
Constructor.
Definition: HistoModule.h:32
void setDescription(const std::string &description)
Sets the description of the module.
Definition: Module.cc:214
bool m_ExpertLevel
Expert level switch.
std::string m_recoTracksStoreArrayName
StoreArray name of the input and output RecoTracks.
void addParam(const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
Definition: Module.h:560

Member Function Documentation

◆ beginRun()

virtual void beginRun ( void  )
inlineoverridevirtualinherited

Function to process begin_run record.

Reimplemented from Module.

Reimplemented in CalibrationCollectorModule, ARICHDQMModule, ARICHRateCalModule, B2BIIMCParticlesMonitorModule, AnalysisPhase1StudyModule, BeamabortStudyModule, BgoStudyModule, ClawStudyModule, ClawsStudyModule, CsiStudy_v2Module, CsIStudyModule, DosiStudyModule, FANGSStudyModule, He3tubeStudyModule, MicrotpcStudyModule, PindiodeStudyModule, QcsmonitorStudyModule, CDCCRTestModule, cdcDQM7Module, CDCDQMModule, MonitorDataModule, TrackAnaModule, IPDQMModule, PhysicsObjectsDQMModule, PhysicsObjectsMiraBelleBhabhaModule, PhysicsObjectsMiraBelleDst2Module, PhysicsObjectsMiraBelleDstModule, PhysicsObjectsMiraBelleHadronModule, PhysicsObjectsMiraBelleModule, ECLBackgroundModule, ECLDQMModule, ECLDQMConnectedRegionsModule, ECLDQMEXTENDEDModule, ECLDQMOutOfTimeDigitsModule, SoftwareTriggerHLTDQMModule, StatisticsTimingHLTDQMModule, KLMDQMModule, KLMDQM2Module, PXDRawDQMChipsModule, CDCDedxDQMModule, CDCDedxValidationModule, EventT0DQMModule, SVDDQMHitTimeModule, TOPDQMModule, TOPGainEfficiencyCalculatorModule, TOPLaserHitSelectorModule, TOPInterimFENtupleModule, TOPTBCComparatorModule, DQMHistoModuleBase, CDCTriggerNeuroDQMModule, CDCTriggerNeuroDQMOnlineModule, TRGCDCT2DDQMModule, TRGCDCT3DDQMModule, TRGCDCTSFDQMModule, TRGECLDQMModule, TRGECLEventTimingDQMModule, TRGGDLModule, TRGEFFDQMModule, TRGGDLDQMModule, TRGGRLDQMModule, TRGTOPDQMModule, TRGRAWDATAModule, DAQMonitorModule, DelayDQMModule, V0ObjectsDQMModule, ECLDQMInjectionModule, PXDDAQDQMModule, PXDDQMClustersModule, PXDDQMCorrModule, PXDDQMEfficiencyModule, PXDDQMEfficiencySelftrackModule, PXDDQMExpressRecoModule, PXDGatedDHCDQMModule, PXDGatedModeDQMModule, PXDInjectionDQMModule, PXDRawDQMCorrModule, PXDRawDQMModule, PXDROIDQMModule, PXDTrackClusterDQMModule, TTDDQMModule, DetectorOccupanciesDQMModule, SVDDQMClustersOnTrackModule, SVDDQMDoseModule, SVDDQMExpressRecoModule, SVDDQMInjectionModule, SVDUnpackerDQMModule, TrackingAbortDQMModule, VXDDQMExpressRecoModule, and vxdDigitMaskingModule.

Definition at line 40 of file HistoModule.h.

40{};

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 179 of file Module.cc.

180{
182 newModule->m_moduleParamList.setParameters(getParamList());
183 newModule->setName(getName());
184 newModule->m_package = m_package;
185 newModule->m_propertyFlags = m_propertyFlags;
186 newModule->m_logConfig = m_logConfig;
187 newModule->m_conditions = m_conditions;
188
189 return newModule;
190}
std::shared_ptr< Module > registerModule(const std::string &moduleName, std::string sharedLibPath="") noexcept(false)
Creates an instance of a module and registers it to the ModuleManager.
static ModuleManager & Instance()
Exception is thrown if the requested module could not be created by the ModuleManager.
const ModuleParamList & getParamList() const
Return module param list.
Definition: Module.h:363
const std::string & getName() const
Returns the name of the module.
Definition: Module.h:187
const std::string & getType() const
Returns the type of the module (i.e.
Definition: Module.cc:41
unsigned int m_propertyFlags
The properties of the module as bitwise or (with |) of EModulePropFlags.
Definition: Module.h:512
LogConfig m_logConfig
The log system configuration of the module.
Definition: Module.h:514
std::vector< ModuleCondition > m_conditions
Module condition, only non-null if set.
Definition: Module.h:521
std::string m_package
Package this module is found in (may be empty).
Definition: Module.h:510
std::shared_ptr< Module > ModulePtr
Defines a pointer to a module object as a boost shared pointer.
Definition: Module.h:43

◆ def_beginRun()

virtual void def_beginRun ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 426 of file Module.h.

426{ beginRun(); }
virtual void beginRun()
Called when entering a new run.
Definition: Module.h:147

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 439 of file Module.h.

439{ endRun(); }
virtual void endRun()
This method is called if the current run ends.
Definition: Module.h:166

◆ def_event()

virtual void def_event ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 432 of file Module.h.

432{ event(); }
virtual void event()
This method is the core of the module.
Definition: Module.h:157

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 420 of file Module.h.

420{ initialize(); }
virtual void initialize()
Initialize the Module.
Definition: Module.h:109

◆ def_terminate()

virtual void def_terminate ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 445 of file Module.h.

445{ terminate(); }
virtual void terminate()
This method is called at the end of the event processing.
Definition: Module.h:176

◆ defineHisto()

void defineHisto ( )
overridevirtual

Histogram definitions such as TH1(), TH2(), TNtuple(), TTree()....

are supposed to be placed in this function

Reimplemented from HistoModule.

Definition at line 64 of file OverlapResidualsModule.cc.

65{
66 //Create directory to store monitoring histograms
67 TDirectory* oldDir = gDirectory;
68 TDirectory* ResDir = oldDir->mkdir("Monitoring_VXDOverlaps");
69 ResDir->cd();
70 //Define histograms of residuals differences
71 h_U_DeltaRes = new TH1F("h_U_DeltaRes", "Histrogram of residual difference #Delta res_{u} for overlapping hits", 100, -1000, 1000);
72 h_U_DeltaRes->GetXaxis()->SetTitle("#Delta res_{u} (#mum)");
73 h_U_DeltaRes->GetYaxis()->SetTitle("counts");
74 h_V_DeltaRes = new TH1F("h_V_DeltaRes", "Histrogram of residual difference #Delta res_{v} for overlapping hits", 100, -1000, 1000);
75 h_V_DeltaRes->GetXaxis()->SetTitle("#Delta res_{v} (#mum)");
76 h_V_DeltaRes->GetYaxis()->SetTitle("counts");
77 h_U_DeltaRes_PXD = new TH1F("h_U_DeltaRes_PXD", "Histrogram of residual difference #Delta res_{u} for overlapping PXD hits", 100,
78 -1000, 1000);
79 h_U_DeltaRes_PXD->GetXaxis()->SetTitle("#Delta res_{u} (#mum)");
80 h_U_DeltaRes_PXD->GetYaxis()->SetTitle("counts");
81 h_U_DeltaRes_PXD_Lyr1 = new TH1F("h_U_DeltaRes_PXD_Lyr1",
82 "Layer1: histrogram of residual difference #Delta res_{u} for overlapping PXD hits", 100, -1000, 1000);
83 h_U_DeltaRes_PXD_Lyr1->GetXaxis()->SetTitle("#Delta res_{u} (#mum)");
84 h_U_DeltaRes_PXD_Lyr1->GetYaxis()->SetTitle("counts");
85 h_U_DeltaRes_PXD_Lyr2 = new TH1F("h_U_DeltaRes_PXD_Lyr2",
86 "Layer 2: hstrogram of residual difference #Delta res_{u} for overlapping PXD hits", 100, -1000, 1000);
87 h_U_DeltaRes_PXD_Lyr2->GetXaxis()->SetTitle("#Delta res_{u} (#mum)");
88 h_U_DeltaRes_PXD_Lyr2->GetYaxis()->SetTitle("counts");
89 h_V_DeltaRes_PXD = new TH1F("h_V_DeltaRes_PXD", "Histrogram of residual difference #Delta res_{v} for overlapping PXD hits", 100,
90 -1000, 1000);
91 h_V_DeltaRes_PXD->GetXaxis()->SetTitle("#Delta res_{v} (#mum)");
92 h_V_DeltaRes_PXD->GetYaxis()->SetTitle("counts");
93 h_V_DeltaRes_PXD_Lyr1 = new TH1F("h_V_DeltaRes_PXD_Lyr1",
94 "Layer 1: histrogram of residual difference #Delta res_{v} for overlapping PXD hits", 100, -1000, 1000);
95 h_V_DeltaRes_PXD_Lyr1->GetXaxis()->SetTitle("#Delta res_{v} (#mum)");
96 h_V_DeltaRes_PXD_Lyr1->GetYaxis()->SetTitle("counts");
97 h_V_DeltaRes_PXD_Lyr2 = new TH1F("h_V_DeltaRes_PXD_Lyr2",
98 "Layer 2: histrogram of residual difference #Delta res_{v} for overlapping PXD hits", 100, -1000, 1000);
99 h_V_DeltaRes_PXD_Lyr2->GetXaxis()->SetTitle("#Delta res_{v} (#mum)");
100 h_V_DeltaRes_PXD_Lyr2->GetYaxis()->SetTitle("counts");
101 h_U_DeltaRes_SVD = new TH1F("h_U_DeltaRes_SVD", "Histrogram of residual difference #Delta res_{u} for overlapping SVD hits", 100,
102 -1000, 1000);
103 h_U_DeltaRes_SVD->GetXaxis()->SetTitle("#Delta res_{u} (#mum)");
104 h_U_DeltaRes_SVD->GetYaxis()->SetTitle("counts");
105 h_U_DeltaRes_SVD_Lyr3 = new TH1F("h_U_DeltaRes_SVD_Lyr3",
106 "Layer 3: histrogram of residual difference #Delta res_{u} for overlapping SVD hits", 100, -1000, 1000);
107 h_U_DeltaRes_SVD_Lyr3->GetXaxis()->SetTitle("#Delta res_{u} (#mum)");
108 h_U_DeltaRes_SVD_Lyr3->GetYaxis()->SetTitle("counts");
109 h_U_DeltaRes_SVD_Lyr4 = new TH1F("h_U_DeltaRes_SVD_Lyr4",
110 "Layer 4: histrogram of residual difference #Delta res_{u} for overlapping SVD hits", 100, -1000, 1000);
111 h_U_DeltaRes_SVD_Lyr4->GetXaxis()->SetTitle("#Delta res_{u} (#mum)");
112 h_U_DeltaRes_SVD_Lyr4->GetYaxis()->SetTitle("counts");
113 h_U_DeltaRes_SVD_Lyr5 = new TH1F("h_U_DeltaRes_SVD_Lyr5",
114 "Layer 5: histrogram of residual difference #Delta res_{u} for overlapping SVD hits", 100, -1000, 1000);
115 h_U_DeltaRes_SVD_Lyr5->GetXaxis()->SetTitle("#Delta res_{u} (#mum)");
116 h_U_DeltaRes_SVD_Lyr5->GetYaxis()->SetTitle("counts");
117 h_U_DeltaRes_SVD_Lyr6 = new TH1F("h_U_DeltaRes_SVD_Lyr6",
118 "Layer 6: histrogram of residual difference #Delta res_{u} for overlapping SVD hits", 100, -1000, 1000);
119 h_U_DeltaRes_SVD_Lyr6->GetXaxis()->SetTitle("#Delta res_{u} (#mum)");
120 h_U_DeltaRes_SVD_Lyr6->GetYaxis()->SetTitle("counts");
121 h_V_DeltaRes_SVD = new TH1F("h_V_DeltaRes_SVD", "Histrogram of residual difference #Delta res_{v} for overlapping SVD hits", 100,
122 -1000, 1000);
123 h_V_DeltaRes_SVD->GetXaxis()->SetTitle("#Delta res_{v} (#mum)");
124 h_V_DeltaRes_SVD->GetYaxis()->SetTitle("counts");
125 h_V_DeltaRes_SVD_Lyr3 = new TH1F("h_V_DeltaRes_SVD_Lyr3",
126 "Layer 3: histrogram of residual difference #Delta res_{v} for overlapping SVD hits", 100, -1000, 1000);
127 h_V_DeltaRes_SVD_Lyr3->GetXaxis()->SetTitle("#Delta res_{v} (#mum)");
128 h_V_DeltaRes_SVD_Lyr3->GetYaxis()->SetTitle("counts");
129 h_V_DeltaRes_SVD_Lyr4 = new TH1F("h_V_DeltaRes_SVD_Lyr4",
130 "Layer 4: histrogram of residual difference #Delta res_{v} for overlapping SVD hits", 100, -1000, 1000);
131 h_V_DeltaRes_SVD_Lyr4->GetXaxis()->SetTitle("#Delta res_{v} (#mum)");
132 h_V_DeltaRes_SVD_Lyr4->GetYaxis()->SetTitle("counts");
133 h_V_DeltaRes_SVD_Lyr5 = new TH1F("h_V_DeltaRes_SVD_Lyr5",
134 "Layer 5: histrogram of residual difference #Delta res_{v} for overlapping SVD hits", 100, -1000, 1000);
135 h_V_DeltaRes_SVD_Lyr5->GetXaxis()->SetTitle("#Delta res_{v} (#mum)");
136 h_V_DeltaRes_SVD_Lyr5->GetYaxis()->SetTitle("counts");
137 h_V_DeltaRes_SVD_Lyr6 = new TH1F("h_V_DeltaRes_SVD_Lyr6",
138 "Layer 6: histrogram of residual difference #Delta res_{v} for overlapping SVD hits", 100, -1000, 1000);
139 h_V_DeltaRes_SVD_Lyr6->GetXaxis()->SetTitle("#Delta res_{v} (#mum)");
140 h_V_DeltaRes_SVD_Lyr6->GetYaxis()->SetTitle("counts");
141 h_SVDstrips_Mult = new TH1F("h_SVDstrips_Mult", "SVD strips multiplicity for SVD clusters in overlapping sensors", 15, 0.5, 15.5);
142 h_SVDstrips_Mult->GetXaxis()->SetTitle("N. of SVD strips contributing to the cluster");
143 h_SVDstrips_Mult->GetYaxis()->SetTitle("counts");
144 //Define 2D histograms: difference of u-residuals vs phi of VXD overlaps for each layer (1 to 6)
145 h_DeltaResUPhi_Lyr1 = new TH2F("h_DeltaResUPhi_Lyr1", "Layer 1: #Delta res_{u} vs #phi", 200, -3.4, 3.4, 100, -200, 200);
146 h_DeltaResUPhi_Lyr1->GetXaxis()->SetTitle("#phi(rad)");
147 h_DeltaResUPhi_Lyr1->GetYaxis()->SetTitle("#Delta res_{u} (#mum)");
148 h_DeltaResUPhi_Lyr2 = new TH2F("h_DeltaResUPhi_Lyr2", "Layer 2: #Delta res_{u} vs #phi", 200, -3.4, 3.4, 100, -200, 200);
149 h_DeltaResUPhi_Lyr2->GetXaxis()->SetTitle("#phi(rad)");
150 h_DeltaResUPhi_Lyr2->GetYaxis()->SetTitle("#Delta res_{u} (#mum)");
151 h_DeltaResUPhi_Lyr3 = new TH2F("h_DeltaResUPhi_Lyr3", "Layer 3: #Delta res_{u} vs #phi", 200, -3.4, 3.4, 100, -1000, 1000);
152 h_DeltaResUPhi_Lyr3->GetXaxis()->SetTitle("#phi(rad)");
153 h_DeltaResUPhi_Lyr3->GetYaxis()->SetTitle("#Delta res_{u} (#mum)");
154 h_DeltaResUPhi_Lyr4 = new TH2F("h_DeltaResUPhi_Lyr4", "Layer 4: #Delta res_{u} vs #phi", 200, -3.4, 3.4, 100, -1000, 1000);
155 h_DeltaResUPhi_Lyr4->GetXaxis()->SetTitle("#phi(rad)");
156 h_DeltaResUPhi_Lyr4->GetYaxis()->SetTitle("#Delta res_{u} (#mum)");
157 h_DeltaResUPhi_Lyr5 = new TH2F("h_DeltaResUPhi_Lyr5", "Layer 5: #Delta res_{u} vs #phi", 200, -3.4, 3.4, 100, -1000, 1000);
158 h_DeltaResUPhi_Lyr5->GetXaxis()->SetTitle("#phi(rad)");
159 h_DeltaResUPhi_Lyr5->GetYaxis()->SetTitle("#Delta res_{u} (#mum)");
160 h_DeltaResUPhi_Lyr6 = new TH2F("h_DeltaResUPhi_Lyr6", "Layer 6: #Delta res_{u} vs #phi", 200, -3.4, 3.4, 100, -1000, 1000);
161 h_DeltaResUPhi_Lyr6->GetXaxis()->SetTitle("#phi(rad)");
162 h_DeltaResUPhi_Lyr6->GetYaxis()->SetTitle("#Delta res_{u} (#mum)");
163 //Define 2D histograms: difference of u-residuals vs z of VXD overlaps for each layer (1 to 6)
164 h_DeltaResUz_Lyr1 = new TH2F("h_DeltaResUz_Lyr1", "Layer 1: #Delta res_{u} vs z", 100, -4, 8, 100, -200, 200);
165 h_DeltaResUz_Lyr1->GetXaxis()->SetTitle("z (cm)");
166 h_DeltaResUz_Lyr1->GetYaxis()->SetTitle("#Delta res_{u} (#mum)");
167 h_DeltaResUz_Lyr2 = new TH2F("h_DeltaResUz_Lyr2", "Layer 2: #Delta res_{u} vs z", 100, -10, 15, 100, -200, 200);
168 h_DeltaResUz_Lyr2->GetXaxis()->SetTitle("z (cm)");
169 h_DeltaResUz_Lyr2->GetYaxis()->SetTitle("#Delta res_{u} (#mum)");
170 h_DeltaResUz_Lyr3 = new TH2F("h_DeltaResUz_Lyr3", "Layer 3: #Delta res_{u} vs z", 250, -15, 20, 100, -1000, 1000);
171 h_DeltaResUz_Lyr3->GetXaxis()->SetTitle("z (cm)");
172 h_DeltaResUz_Lyr3->GetYaxis()->SetTitle("#Delta res_{u} (#mum)");
173 h_DeltaResUz_Lyr4 = new TH2F("h_DeltaResUz_Lyr4", "Layer 4: #Delta res_{u} vs z", 250, -20, 25, 100, -1000, 1000);
174 h_DeltaResUz_Lyr4->GetXaxis()->SetTitle("z (cm)");
175 h_DeltaResUz_Lyr4->GetYaxis()->SetTitle("#Delta res_{u} (#mum)");
176 h_DeltaResUz_Lyr5 = new TH2F("h_DeltaResUz_Lyr5", "Layer 5: #Delta res_{u} vs z", 250, -25, 35, 100, -1000, 1000);
177 h_DeltaResUz_Lyr5->GetXaxis()->SetTitle("z (cm)");
178 h_DeltaResUz_Lyr5->GetYaxis()->SetTitle("#Delta res_{u} (#mum)");
179 h_DeltaResUz_Lyr6 = new TH2F("h_DeltaResUz_Lyr6", "Layer 6: #Delta res_{u} vs z", 250, -30, 45, 100, -1000, 1000);
180 h_DeltaResUz_Lyr6->GetXaxis()->SetTitle("z (cm)");
181 h_DeltaResUz_Lyr6->GetYaxis()->SetTitle("#Delta res_{u} (#mum)");
182 //Define 2D histograms: difference of u-residuals vs phi of VXD overlaps for each layer (1 to 6)
183 h_DeltaResVPhi_Lyr1 = new TH2F("h_DeltaResVPhi_Lyr1", "Layer 1: #Delta res_{v} vs #phi", 200, -3.4, 3.4, 100, -200, 200);
184 h_DeltaResVPhi_Lyr1->GetXaxis()->SetTitle("#phi(rad)");
185 h_DeltaResVPhi_Lyr1->GetYaxis()->SetTitle("#Delta res_{v} (#mum)");
186 h_DeltaResVPhi_Lyr2 = new TH2F("h_DeltaResVPhi_Lyr2", "Layer 2: #Delta res_{v} vs #phi", 200, -3.4, 3.4, 100, -200, 200);
187 h_DeltaResVPhi_Lyr2->GetXaxis()->SetTitle("#phi(rad)");
188 h_DeltaResVPhi_Lyr2->GetYaxis()->SetTitle("#Delta res_{v} (#mum)");
189 h_DeltaResVPhi_Lyr3 = new TH2F("h_DeltaResVPhi_Lyr3", "Layer 3: #Delta res_{v} vs #phi", 200, -3.4, 3.4, 100, -1000, 1000);
190 h_DeltaResVPhi_Lyr3->GetXaxis()->SetTitle("#phi(rad)");
191 h_DeltaResVPhi_Lyr3->GetYaxis()->SetTitle("#Delta res_{v} (#mum)");
192 h_DeltaResVPhi_Lyr4 = new TH2F("h_DeltaResVPhi_Lyr4", "Layer 4: #Delta res_{v} vs #phi", 200, -3.4, 3.4, 100, -1000, 1000);
193 h_DeltaResVPhi_Lyr4->GetXaxis()->SetTitle("#phi(rad)");
194 h_DeltaResVPhi_Lyr4->GetYaxis()->SetTitle("#Delta res_{v} (#mum)");
195 h_DeltaResVPhi_Lyr5 = new TH2F("h_DeltaResVPhi_Lyr5", "Layer 5: #Delta res_{v} vs #phi", 200, -3.4, 3.4, 100, -1000, 1000);
196 h_DeltaResVPhi_Lyr5->GetXaxis()->SetTitle("#phi(rad)");
197 h_DeltaResVPhi_Lyr5->GetYaxis()->SetTitle("#Delta res_{v} (#mum)");
198 h_DeltaResVPhi_Lyr6 = new TH2F("h_DeltaResVPhi_Lyr6", "Layer 6: #Delta res_{v} vs #phi", 200, -3.4, 3.4, 100, -1000, 1000);
199 h_DeltaResVPhi_Lyr6->GetXaxis()->SetTitle("#phi(rad)");
200 h_DeltaResVPhi_Lyr6->GetYaxis()->SetTitle("#Delta res_{v} (#mum)");
201 //Define 2D histograms: difference of v-residuals vs z of VXD overlaps for each layer (1 to 6)
202 h_DeltaResVz_Lyr1 = new TH2F("h_DeltaResVz_Lyr1", "Layer 1: #Delta res_{v} vs z", 100, -4, 8, 100, -200, 200);
203 h_DeltaResVz_Lyr1->GetXaxis()->SetTitle("z (cm)");
204 h_DeltaResVz_Lyr1->GetYaxis()->SetTitle("#Delta res_{v} (#mum)");
205 h_DeltaResVz_Lyr2 = new TH2F("h_DeltaResVz_Lyr2", "Layer 2: #Delta res_{v} vs z", 100, -10, 15, 100, -200, 200);
206 h_DeltaResVz_Lyr2->GetXaxis()->SetTitle("z (cm)");
207 h_DeltaResVz_Lyr2->GetYaxis()->SetTitle("#Delta res_{v} (#mum)");
208 h_DeltaResVz_Lyr3 = new TH2F("h_DeltaResVz_Lyr3", "Layer 3: #Delta res_{v} vs z", 250, -15, 20, 100, -1000, 1000);
209 h_DeltaResVz_Lyr3->GetXaxis()->SetTitle("z (cm)");
210 h_DeltaResVz_Lyr3->GetYaxis()->SetTitle("#Delta res_{v} (#mum)");
211 h_DeltaResVz_Lyr4 = new TH2F("h_DeltaResVz_Lyr4", "Layer 4: #Delta res_{v} vs z", 250, -20, 25, 100, -1000, 1000);
212 h_DeltaResVz_Lyr4->GetXaxis()->SetTitle("z (cm)");
213 h_DeltaResVz_Lyr4->GetYaxis()->SetTitle("#Delta res_{v} (#mum)");
214 h_DeltaResVz_Lyr5 = new TH2F("h_DeltaResVz_Lyr5", "Layer 5: #Delta res_{v} vs z", 250, -25, 35, 100, -1000, 1000);
215 h_DeltaResVz_Lyr5->GetXaxis()->SetTitle("z (cm)");
216 h_DeltaResVz_Lyr5->GetYaxis()->SetTitle("#Delta res_{v} (#mum)");
217 h_DeltaResVz_Lyr6 = new TH2F("h_DeltaResVz_Lyr6", "Layer 6: #Delta res_{v} vs z", 250, -30, 45, 100, -1000, 1000);
218 h_DeltaResVz_Lyr6->GetXaxis()->SetTitle("z (cm)");
219 h_DeltaResVz_Lyr6->GetYaxis()->SetTitle("#Delta res_{v} (#mum)");
220 //Restricting to SVD clusters sizes
221 for (int i = 1; i < 5; i++) {
222 //The name is the product of cluster sizes for 2 consecutive hits (maximum size considered is 2)
223 TString h_name_U = "h_U_Cl1Cl2_" + std::to_string(i);
224 TString h_name_V = "h_V_Cl1Cl2_" + std::to_string(i);
225 TString title_U = "#Delta res_{u}: SVDClusterSize_1 x SVDClusterSize_2 = " + std::to_string(i);
226 TString title_V = "#Delta res_{v}: SVDClusterSize_1 x SVDClusterSize_2 = " + std::to_string(i);
227 h_U_Cl1Cl2_DeltaRes[i] = new TH1F(h_name_U, title_U, 100, -1000, 1000);
228 h_U_Cl1Cl2_DeltaRes[i]->GetXaxis()->SetTitle("#Delta res_{u} (#mum)");
229 h_U_Cl1Cl2_DeltaRes[i]->GetYaxis()->SetTitle("counts");
230 h_V_Cl1Cl2_DeltaRes[i] = new TH1F(h_name_V, title_V, 100, -1000, 1000);
231 h_V_Cl1Cl2_DeltaRes[i]->GetXaxis()->SetTitle("#Delta res_{v} (#mum)");
232 h_V_Cl1Cl2_DeltaRes[i]->GetYaxis()->SetTitle("counts");
233 }
234
235 //Special case of ExpertLevel option enabled
236 if (m_ExpertLevel) {
237 //Create directory to store PXD and SVD hitmaps for overlapping hits
238 TDirectory* HMDir = oldDir->mkdir("HitMaps_VXDOverlaps");
239 HMDir->cd();
240 //Define 2D sensor hit-maps for reconstructed hits
241 for (int i = 1; i <= 5; i++) {
242 for (int j = 1; j <= 16; j++) {
243 TString h_name = "h_6" + std::to_string(j) + std::to_string(i);
244 TString title = "Layer:Ladder:Sensor = 6:" + std::to_string(j) + ":" + std::to_string(i);
245 h_Lyr6[j][i] = new TH2F(h_name, title, 100, -2.88, 2.88, 100, -6.14, 6.14);
246 h_Lyr6[j][i]->GetXaxis()->SetTitle("u (cm)");
247 h_Lyr6[j][i]->GetYaxis()->SetTitle("v (cm)");
248 }
249 }
250 for (int i = 1; i <= 4; i++) {
251 for (int j = 1; j <= 12; j++) {
252 TString h_name = "h_5" + std::to_string(j) + std::to_string(i);
253 TString title = "Layer:Ladder:Sensor = 5:" + std::to_string(j) + ":" + std::to_string(i);
254 h_Lyr5[j][i] = new TH2F(h_name, title, 100, -2.88, 2.88, 100, -6.14, 6.14);
255 h_Lyr5[j][i]->GetXaxis()->SetTitle("u (cm)");
256 h_Lyr5[j][i]->GetYaxis()->SetTitle("v (cm)");
257 }
258 }
259 for (int i = 1; i <= 3; i++) {
260 for (int j = 1; j <= 10; j++) {
261 TString h_name = "h_4" + std::to_string(j) + std::to_string(i);
262 TString title = "Layer:Ladder:Sensor = 4:" + std::to_string(j) + ":" + std::to_string(i);
263 h_Lyr4[j][i] = new TH2F(h_name, title, 100, -2.88, 2.88, 100, -6.14, 6.14);
264 h_Lyr4[j][i]->GetXaxis()->SetTitle("u (cm)");
265 h_Lyr4[j][i]->GetYaxis()->SetTitle("v (cm)");
266 }
267 }
268 for (int i = 1; i <= 2; i++) {
269 for (int j = 1; j <= 7; j++) {
270 TString h_name = "h_3" + std::to_string(j) + std::to_string(i);
271 TString title = "Layer:Ladder:Sensor = 3:" + std::to_string(j) + ":" + std::to_string(i);
272 h_Lyr3[j][i] = new TH2F(h_name, title, 100, -1.92, 1.92, 100, -6.14, 6.14);
273 h_Lyr3[j][i]->GetXaxis()->SetTitle("u (cm)");
274 h_Lyr3[j][i]->GetYaxis()->SetTitle("v (cm)");
275 }
276 }
277 for (int i = 1; i <= 2; i++) {
278 for (int j = 1; j <= 12; j++) {
279 TString h_name = "h_2" + std::to_string(j) + std::to_string(i);
280 TString title = "Layer:Ladder:Sensor = 2:" + std::to_string(j) + ":" + std::to_string(i);
281 h_Lyr2[j][i] = new TH2F(h_name, title, 100, -0.625, 0.625, 100, -3.072, 3.072);
282 h_Lyr2[j][i]->GetXaxis()->SetTitle("u (cm)");
283 h_Lyr2[j][i]->GetYaxis()->SetTitle("v (cm)");
284 }
285 }
286 for (int i = 1; i <= 2; i++) {
287 for (int j = 1; j <= 8; j++) {
288 TString h_name = "h_1" + std::to_string(j) + std::to_string(i);
289 TString title = "Layer:Ladder:Sensor = 1:" + std::to_string(j) + ":" + std::to_string(i);
290 h_Lyr1[j][i] = new TH2F(h_name, title, 100, -0.625, 0.625, 100, -2.24, 2.24);
291 h_Lyr1[j][i]->GetXaxis()->SetTitle("u (cm)");
292 h_Lyr1[j][i]->GetYaxis()->SetTitle("v (cm)");
293 }
294 }
295 //Create directory to store PXD and SVD trees
296 TDirectory* TreeDir = oldDir->mkdir("Trees_VXDOverlaps");
297 TreeDir->cd();
298 //Tree for PXD
299 t_PXD = new TTree("t_PXD", "Tree for PXD overlaps");
300 t_PXD->Branch("deltaResU_PXD", &deltaResU_PXD, "deltaResU_PXD/F");
301 t_PXD->Branch("intResU_PXD", &intResU_PXD, "intResU_PXD/F");
302 t_PXD->Branch("intResV_PXD", &intResV_PXD, "intResV_PXD/F");
303 t_PXD->Branch("intU_PXD", &intU_PXD, "intU_PXD/F");
304 t_PXD->Branch("intV_PXD", &intV_PXD, "intV_PXD/F");
305 t_PXD->Branch("intPhi_PXD", &intPhi_PXD, "intPhi_PXD/F");
306 t_PXD->Branch("intZ_PXD", &intZ_PXD, "intZ_PXD/F");
307 t_PXD->Branch("intLayer_PXD", &intLayer_PXD, "intLayer_PXD/i");
308 t_PXD->Branch("intLadder_PXD", &intLadder_PXD, "intLadder_PXD/i");
309 t_PXD->Branch("intSensor_PXD", &intSensor_PXD, "intSensor_PXD/i");
310 t_PXD->Branch("extResU_PXD", &extResU_PXD, "extResU_PXD/F");
311 t_PXD->Branch("extResV_PXD", &extResV_PXD, "extResV_PXD/F");
312 t_PXD->Branch("extU_PXD", &extU_PXD, "extU_PXD/F");
313 t_PXD->Branch("extV_PXD", &extV_PXD, "extV_PXD/F");
314 t_PXD->Branch("extPhi_PXD", &extPhi_PXD, "extPhi_PXD/F");
315 t_PXD->Branch("extZ_PXD", &extZ_PXD, "extZ_PXD/F");
316 t_PXD->Branch("extLayer_PXD", &extLayer_PXD, "extLayer_PXD/i");
317 t_PXD->Branch("extLadder_PXD", &extLadder_PXD, "extLadder_PXD/i");
318 t_PXD->Branch("extSensor_PXD", &extSensor_PXD, "extSensor_PXD/i");
319 //Tree for SVD u overlapping clusters
320 t_SVD_U = new TTree("t_SVD_U", "Tree for SVD u-overlaps");
321 t_SVD_U->Branch("svdDeltaRes", &svdDeltaRes_U, "svdDeltaRes/F");
322 t_SVD_U->Branch("svdTrkPXDHits", &svdTrkPXDHits, "svdTrkPXDHits/i");
323 t_SVD_U->Branch("svdTrkSVDHits", &svdTrkSVDHits, "svdTrkSVDHits/i");
324 t_SVD_U->Branch("svdTrkCDCHits", &svdTrkCDCHits, "svdTrkCDCHits/i");
325 t_SVD_U->Branch("svdTrkd0", &svdTrkd0, "svdTrkd0/F");
326 t_SVD_U->Branch("svdTrkz0", &svdTrkz0, "svdTrkz0/F");
327 t_SVD_U->Branch("svdTrkpT", &svdTrkpT, "svdTrkpT/F");
328 t_SVD_U->Branch("svdTrkpCM", &svdTrkpCM, "svdTrkpCM/F");
329 // Internal ladder variables
330 t_SVD_U->Branch("svdClSNR_int", &svdClSNR_U_int, "svdClSNR_int/F");
331 t_SVD_U->Branch("svdClCharge_int", &svdClCharge_U_int, "svdClCharge_int/F");
332 t_SVD_U->Branch("svdStripCharge_int", &svdStripCharge_U_int);
333 t_SVD_U->Branch("svdStrip6Samples_int", &svdStrip6Samples_U_int);
334 t_SVD_U->Branch("svdClTime_int", &svdClTime_U_int, "svdClTime_int/F");
335 t_SVD_U->Branch("svdStripTime_int", &svdStripTime_U_int);
336 t_SVD_U->Branch("svdStripPosition_int", &svdStripPosition_U_int);
337 t_SVD_U->Branch("svdRes_int", &svdRes_U_int, "svdRes_int/F");
338 t_SVD_U->Branch("svdClIntStrPos_int", &svdClIntStrPos_U_int, "svdClIntStrPos_int/F");
339 t_SVD_U->Branch("svdClPos_int", &svdClPos_U_int, "svdClPos_int/F");
340 t_SVD_U->Branch("svdClPosErr_int", &svdClPosErr_U_int, "svdClPosErr_int/F");
341 t_SVD_U->Branch("svdTruePos_int", &svdTruePos_U_int, "svdTruePos_int/F");
342 t_SVD_U->Branch("svdClPhi_int", &svdClPhi_U_int, "svdClPhi_int/F");
343 t_SVD_U->Branch("svdClZ_int", &svdClZ_U_int, "svdClZ_int/F");
344 t_SVD_U->Branch("svdTrkTraversedLength_int", &svdTrkTraversedLength_U_int, "svdTrkTraversedLength_int/F");
345 t_SVD_U->Branch("svdTrkPos_int", &svdTrkPos_U_int, "svdTrkPos_int/F");
346 t_SVD_U->Branch("svdTrkPosOS_int", &svdTrkPosOS_U_int, "svdTrkPosOS_int/F");
347 t_SVD_U->Branch("svdTrkPosErr_int", &svdTrkPosErr_U_int, "svdTrkPosErr_int/F");
348 t_SVD_U->Branch("svdTrkPosErrOS_int", &svdTrkPosErrOS_U_int, "svdTrkPosErrOS_int/F");
349 t_SVD_U->Branch("svdTrkQoP_int", &svdTrkQoP_U_int, "svdTrkQoP_int/F");
350 t_SVD_U->Branch("svdTrkPrime_int", &svdTrkPrime_U_int, "svdTrkPrime_int/F");
351 t_SVD_U->Branch("svdTrkPrimeOS_int", &svdTrkPrimeOS_U_int, "svdTrkPrimeOS_int/F");
352 t_SVD_U->Branch("svdTrkPosUnbiased_int", &svdTrkPosUnbiased_U_int, "svdTrkPosUnbiased_int/F");
353 t_SVD_U->Branch("svdTrkPosErrUnbiased_int", &svdTrkPosErrUnbiased_U_int, "svdTrkPosErrUnbiased_int/F");
354 t_SVD_U->Branch("svdTrkQoPUnbiased_int", &svdTrkQoPUnbiased_U_int, "svdTrkQoPUnbiased_int/F");
355 t_SVD_U->Branch("svdTrkPrimeUnbiased_int", &svdTrkPrimeUnbiased_U_int, "svdTrkPrimeUnbiased_int/F");
356 t_SVD_U->Branch("svdLayer_int", &svdLayer_U_int, "svdLayer_int/i");
357 t_SVD_U->Branch("svdLadder_int", &svdLadder_U_int, "svdLadder_int/i");
358 t_SVD_U->Branch("svdSensor_int", &svdSensor_U_int, "svdSensor_int/i");
359 t_SVD_U->Branch("svdSize_int", &svdSize_U_int, "svdSize_int/i");
360 // External ladder variables
361 t_SVD_U->Branch("svdClSNR_ext", &svdClSNR_U_ext, "svdClSNR_ext/F");
362 t_SVD_U->Branch("svdClCharge_ext", &svdClCharge_U_ext, "svdClCharge_ext/F");
363 t_SVD_U->Branch("svdStripCharge_ext", &svdStripCharge_U_ext);
364 t_SVD_U->Branch("svdStrip6Samples_ext", &svdStrip6Samples_U_ext);
365 t_SVD_U->Branch("svdClTime_ext", &svdClTime_U_ext, "svdClTime_ext/F");
366 t_SVD_U->Branch("svdStripTime_ext", &svdStripTime_U_ext);
367 t_SVD_U->Branch("svdStripPosition_ext", &svdStripPosition_U_ext);
368 t_SVD_U->Branch("svdRes_ext", &svdRes_U_ext, "svdRes_ext/F");
369 t_SVD_U->Branch("svdClIntStrPos_ext", &svdClIntStrPos_U_ext, "svdClIntStrPos_ext/F");
370 t_SVD_U->Branch("svdClPos_ext", &svdClPos_U_ext, "svdClPos_ext/F");
371 t_SVD_U->Branch("svdClPosErr_ext", &svdClPosErr_U_ext, "svdClPosErr_ext/F");
372 t_SVD_U->Branch("svdTruePos_ext", &svdTruePos_U_ext, "svdTruePos_ext/F");
373 t_SVD_U->Branch("svdClPhi_ext", &svdClPhi_U_ext, "svdClPhi_ext/F");
374 t_SVD_U->Branch("svdClZ_ext", &svdClZ_U_ext, "svdClZ_ext/F");
375 t_SVD_U->Branch("svdTrkTraversedLength_ext", &svdTrkTraversedLength_U_ext, "svdTrkTraversedLength_ext/F");
376 t_SVD_U->Branch("svdTrkPos_ext", &svdTrkPos_U_ext, "svdTrkPos_ext/F");
377 t_SVD_U->Branch("svdTrkPosOS_ext", &svdTrkPosOS_U_ext, "svdTrkPosOS_ext/F");
378 t_SVD_U->Branch("svdTrkPosErr_ext", &svdTrkPosErr_U_ext, "svdTrkPosErr_ext/F");
379 t_SVD_U->Branch("svdTrkPosErrOS_ext", &svdTrkPosErrOS_U_ext, "svdTrkPosErrOS_ext/F");
380 t_SVD_U->Branch("svdTrkQoP_ext", &svdTrkQoP_U_ext, "svdTrkQoP_ext/F");
381 t_SVD_U->Branch("svdTrkPrime_ext", &svdTrkPrime_U_ext, "svdTrkPrime_ext/F");
382 t_SVD_U->Branch("svdTrkPrimeOS_ext", &svdTrkPrimeOS_U_ext, "svdTrkPrimeOS_ext/F");
383 t_SVD_U->Branch("svdTrkPosUnbiased_ext", &svdTrkPosUnbiased_U_ext, "svdTrkPosUnbiased_ext/F");
384 t_SVD_U->Branch("svdTrkPosErrUnbiased_ext", &svdTrkPosErrUnbiased_U_ext, "svdTrkPosErrUnbiased_ext/F");
385 t_SVD_U->Branch("svdTrkQoPUnbiased_ext", &svdTrkQoPUnbiased_U_ext, "svdTrkQoPUnbiased_ext/F");
386 t_SVD_U->Branch("svdTrkPrimeUnbiased_ext", &svdTrkPrimeUnbiased_U_ext, "svdTrkPrimeUnbiased_ext/F");
387 t_SVD_U->Branch("svdLayer_ext", &svdLayer_U_ext, "svdLayer_ext/i");
388 t_SVD_U->Branch("svdLadder_ext", &svdLadder_U_ext, "svdLadder_ext/i");
389 t_SVD_U->Branch("svdSensor_ext", &svdSensor_U_ext, "svdSensor_ext/i");
390 t_SVD_U->Branch("svdSize_ext", &svdSize_U_ext, "svdSize_ext/i");
391 //Tree for SVD v overlapping clusters
392 t_SVD_V = new TTree("t_SVD_V", "Tree for SVD v-overlaps");
393 t_SVD_V->Branch("svdDeltaRes", &svdDeltaRes_V, "svdDeltaRes/F");
394 t_SVD_V->Branch("svdTrkPXDHits", &svdTrkPXDHits, "svdTrkPXDHits/i");
395 t_SVD_V->Branch("svdTrkSVDHits", &svdTrkSVDHits, "svdTrkSVDHits/i");
396 t_SVD_V->Branch("svdTrkCDCHits", &svdTrkCDCHits, "svdTrkCDCHits/i");
397 t_SVD_V->Branch("svdTrkd0", &svdTrkd0, "svdTrkd0/F");
398 t_SVD_V->Branch("svdTrkz0", &svdTrkz0, "svdTrkz0/F");
399 t_SVD_V->Branch("svdTrkpT", &svdTrkpT, "svdTrkpT/F");
400 t_SVD_V->Branch("svdTrkpCM", &svdTrkpCM, "svdTrkpCM/F");
401 // Internal ladder variables
402 t_SVD_V->Branch("svdClSNR_int", &svdClSNR_V_int, "svdClSNR_int/F");
403 t_SVD_V->Branch("svdClCharge_int", &svdClCharge_V_int, "svdClCharge_int/F");
404 t_SVD_V->Branch("svdStripCharge_int", &svdStripCharge_V_int);
405 t_SVD_V->Branch("svdStrip6Samples_int", &svdStrip6Samples_V_int);
406 t_SVD_V->Branch("svdClTime_int", &svdClTime_V_int, "svdClTime_int/F");
407 t_SVD_V->Branch("svdStripTime_int", &svdStripTime_V_int);
408 t_SVD_V->Branch("svdStripPosition_int", &svdStripPosition_V_int);
409 t_SVD_V->Branch("svdRes_int", &svdRes_V_int, "svdRes_int/F");
410 t_SVD_V->Branch("svdClIntStrPos_int", &svdClIntStrPos_V_int, "svdClIntStrPos_int/F");
411 t_SVD_V->Branch("svdClPos_int", &svdClPos_V_int, "svdClPos_int/F");
412 t_SVD_V->Branch("svdClPosErr_int", &svdClPosErr_V_int, "svdClPosErr_int/F");
413 t_SVD_V->Branch("svdTruePos_int", &svdTruePos_V_int, "svdTruePos_int/F");
414 t_SVD_V->Branch("svdClPhi_int", &svdClPhi_V_int, "svdClPhi_int/F");
415 t_SVD_V->Branch("svdClZ_int", &svdClZ_V_int, "svdClZ_int/F");
416 t_SVD_V->Branch("svdTrkTraversedLength_int", &svdTrkTraversedLength_V_int, "svdTrkTraversedLength_int/F");
417 t_SVD_V->Branch("svdTrkPos_int", &svdTrkPos_V_int, "svdTrkPos_int/F");
418 t_SVD_V->Branch("svdTrkPosOS_int", &svdTrkPosOS_V_int, "svdTrkPosOS_int/F");
419 t_SVD_V->Branch("svdTrkPosErr_int", &svdTrkPosErr_V_int, "svdTrkPosErr_int/F");
420 t_SVD_V->Branch("svdTrkPosErrOS_int", &svdTrkPosErrOS_V_int, "svdTrkPosErrOS_int/F");
421 t_SVD_V->Branch("svdTrkQoP_int", &svdTrkQoP_V_int, "svdTrkQoP_int/F");
422 t_SVD_V->Branch("svdTrkPrime_int", &svdTrkPrime_V_int, "svdTrkPrime_int/F");
423 t_SVD_V->Branch("svdTrkPrimeOS_int", &svdTrkPrimeOS_V_int, "svdTrkPrimeOS_int/F");
424 t_SVD_V->Branch("svdTrkPosUnbiased_int", &svdTrkPosUnbiased_V_int, "svdTrkPosUnbiased_int/F");
425 t_SVD_V->Branch("svdTrkPosErrUnbiased_int", &svdTrkPosErrUnbiased_V_int, "svdTrkPosErrUnbiased_int/F");
426 t_SVD_V->Branch("svdTrkQoPUnbiased_int", &svdTrkQoPUnbiased_V_int, "svdTrkQoPUnbiased_int/F");
427 t_SVD_V->Branch("svdTrkPrimeUnbiased_int", &svdTrkPrimeUnbiased_V_int, "svdTrkPrimeUnbiased_int/F");
428 t_SVD_V->Branch("svdLayer_int", &svdLayer_V_int, "svdLayer_int/i");
429 t_SVD_V->Branch("svdLadder_int", &svdLadder_V_int, "svdLadder_int/i");
430 t_SVD_V->Branch("svdSensor_int", &svdSensor_V_int, "svdSensor_int/i");
431 t_SVD_V->Branch("svdSize_int", &svdSize_V_int, "svdSize_int/i");
432 // External ladder variables
433 t_SVD_V->Branch("svdClSNR_ext", &svdClSNR_V_ext, "svdClSNR_ext/F");
434 t_SVD_V->Branch("svdClCharge_ext", &svdClCharge_V_ext, "svdClCharge_ext/F");
435 t_SVD_V->Branch("svdStripCharge_ext", &svdStripCharge_V_ext);
436 t_SVD_V->Branch("svdStrip6Samples_ext", &svdStrip6Samples_V_ext);
437 t_SVD_V->Branch("svdClTime_ext", &svdClTime_V_ext, "svdClTime_ext/F");
438 t_SVD_V->Branch("svdStripTime_ext", &svdStripTime_V_ext);
439 t_SVD_V->Branch("svdStripPosition_ext", &svdStripPosition_V_ext);
440 t_SVD_V->Branch("svdRes_ext", &svdRes_V_ext, "svdRes_ext/F");
441 t_SVD_V->Branch("svdClIntStrPos_ext", &svdClIntStrPos_V_ext, "svdClIntStrPos_ext/F");
442 t_SVD_V->Branch("svdClPos_ext", &svdClPos_V_ext, "svdClPos_ext/F");
443 t_SVD_V->Branch("svdClPosErr_ext", &svdClPosErr_V_ext, "svdClPosErr_ext/F");
444 t_SVD_V->Branch("svdTruePos_ext", &svdTruePos_V_ext, "svdTruePos_ext/F");
445 t_SVD_V->Branch("svdClPhi_ext", &svdClPhi_V_ext, "svdClPhi_ext/F");
446 t_SVD_V->Branch("svdClZ_ext", &svdClZ_V_ext, "svdClZ_ext/F");
447 t_SVD_V->Branch("svdTrkTraversedLength_ext", &svdTrkTraversedLength_V_ext, "svdTrkTraversedLength_ext/F");
448 t_SVD_V->Branch("svdTrkPos_ext", &svdTrkPos_V_ext, "svdTrkPos_ext/F");
449 t_SVD_V->Branch("svdTrkPosOS_ext", &svdTrkPosOS_V_ext, "svdTrkPosOS_ext/F");
450 t_SVD_V->Branch("svdTrkPosErr_ext", &svdTrkPosErr_V_ext, "svdTrkPosErr_ext/F");
451 t_SVD_V->Branch("svdTrkPosErrOS_ext", &svdTrkPosErrOS_V_ext, "svdTrkPosErrOS_ext/F");
452 t_SVD_V->Branch("svdTrkQoP_ext", &svdTrkQoP_V_ext, "svdTrkQoP_ext/F");
453 t_SVD_V->Branch("svdTrkPrime_ext", &svdTrkPrime_V_ext, "svdTrkPrime_ext/F");
454 t_SVD_V->Branch("svdTrkPrimeOS_ext", &svdTrkPrimeOS_V_ext, "svdTrkPrimeOS_ext/F");
455 t_SVD_V->Branch("svdTrkPosUnbiased_ext", &svdTrkPosUnbiased_V_ext, "svdTrkPosUnbiased_ext/F");
456 t_SVD_V->Branch("svdTrkPosErrUnbiased_ext", &svdTrkPosErrUnbiased_V_ext, "svdTrkPosErrUnbiased_ext/F");
457 t_SVD_V->Branch("svdTrkQoPUnbiased_ext", &svdTrkQoPUnbiased_V_ext, "svdTrkQoPUnbiased_ext/F");
458 t_SVD_V->Branch("svdTrkPrimeUnbiased_ext", &svdTrkPrimeUnbiased_V_ext, "svdTrkPrimeUnbiased_ext/F");
459 t_SVD_V->Branch("svdLayer_ext", &svdLayer_V_ext, "svdLayer_ext/i");
460 t_SVD_V->Branch("svdLadder_ext", &svdLadder_V_ext, "svdLadder_ext/i");
461 t_SVD_V->Branch("svdSensor_ext", &svdSensor_V_ext, "svdSensor_ext/i");
462 t_SVD_V->Branch("svdSize_ext", &svdSize_V_ext, "svdSize_ext/i");
463 }
464 //Go back to the default output directory
465 oldDir->cd();
466}
float svdTrkQoP_V_int
V internal track q/p.
float svdTrkPosUnbiased_U_int
U internal unbiased track position.
TH2F * h_DeltaResVPhi_Lyr6
2D histogram of DeltaRes_v vs phi of VXD overlaps for layer 6
float svdTrkQoP_U_int
U internal track q/p.
TH1F * h_V_DeltaRes_SVD
Histogram of SVD v-coordinate differences of residuals.
float svdRes_U_int
U internal residual computed by genfit.
float svdTrkPosErr_U_int
U internal track position error.
std::vector< float > svdStrip6Samples_V_ext
V external 6 samples of the strips of the cluster.
std::vector< float > svdStripPosition_U_ext
U external position of the strips of the cluster.
TH2F * h_DeltaResVz_Lyr1
2D histogram of DeltaRes_v vs z of VXD overlaps for layer 1
float svdTrkQoPUnbiased_V_ext
V external unbiased track q/p.
TH2F * h_DeltaResUz_Lyr3
2D histogram of DeltaRes_u vs z of VXD overlaps for layer 3
float svdTrkPos_U_ext
U external track position.
float svdTruePos_V_int
V internal true position.
float svdClPhi_V_ext
V external cluster global phi.
float extResV_PXD
tree t_PXD branch extResV_PXD/F
float svdTrkPosUnbiased_V_ext
V external unbiased track position.
TH1F * h_U_DeltaRes_SVD_Lyr4
Histogram of SVD layer-4 u-coordinate differences of residuals.
std::vector< float > svdStripCharge_U_ext
U external charge of the strips of the cluster.
unsigned int svdLayer_U_ext
U external layer.
float svdTrkPrimeUnbiased_U_int
U internal unbiased tan of incident angle projected on u,w.
float extResU_PXD
tree t_PXD branch extResU_PXD/F
TH2F * h_DeltaResUPhi_Lyr2
2D histogram of DeltaRes_u vs phi of VXD overlaps for layer 2
TH2F * h_DeltaResUPhi_Lyr5
2D histogram of DeltaRes_u vs phi of VXD overlaps for layer 5
TH2F * h_DeltaResUPhi_Lyr3
2D histogram of DeltaRes_u vs phi of VXD overlaps for layer 3
float svdTrkPos_V_int
V internal track position.
TH1F * h_U_DeltaRes_PXD_Lyr1
Histogram of PXD layer-1 u-coordinate differences of residuals.
float svdTrkTraversedLength_V_int
V internal traversed length of the track in the sensor.
TH2F * h_DeltaResUz_Lyr2
2D histogram of DeltaRes_u vs z of VXD overlaps for layer 2
float svdTrkPosOS_V_ext
V external track position on the other side.
float svdClTime_V_ext
V external cluster time.
float svdRes_V_ext
V external residual computed by genfit.
float svdTrkPosOS_U_ext
U external track position on the other side.
float svdTrkPosErrUnbiased_V_int
V internal unbiased track position error.
float svdTrkPrimeOS_U_int
U internal tan of incident angle projected on v/u,w (other side)
std::vector< float > svdStripTime_V_ext
V external time of the strips of the cluster.
TH2F * h_DeltaResUPhi_Lyr1
2D Histogram of DeltaRes_u vs phi of VXD overlaps for layer 1
unsigned int svdLadder_U_ext
U external ladder.
TH2F * h_DeltaResVz_Lyr4
2D histogram of DeltaRes_v vs z of VXD overlaps for layer 4
int svdTrkPXDHits
number of PXD hits on the track
TH1F * h_U_DeltaRes_PXD
Histogram of PXD u-coordinate differences of residuals.
unsigned int extLayer_PXD
tree t_PXD branch extLayer_PXD/i
TH2F * h_DeltaResVPhi_Lyr5
2D histogram of DeltaRes_v vs phi of VXD overlaps for layer 5
float svdTrkQoP_V_ext
V external track q/p.
float svdClIntStrPos_V_ext
V external cluster interstrip position.
std::vector< float > svdStrip6Samples_U_ext
U external 6 samples of the strips of the cluster.
float svdClSNR_V_int
V internal cluster SNR.
float svdTrkPrimeUnbiased_V_ext
V external unbiased tan of incident angle projected on u,w.
unsigned int svdLadder_V_ext
V external ladder.
TH2F * h_Lyr1[9][3]
Sensor hit-map for layer 1 from reconstructed u and v coordinates.
float svdClSNR_U_ext
U external cluster SNR.
unsigned int svdLadder_U_int
U internal ladder.
float svdClSNR_V_ext
V external cluster SNR.
unsigned int svdLayer_V_ext
V external layer.
float svdTrkQoPUnbiased_U_int
U internal unbiased track q/p.
float svdTrkPrimeUnbiased_U_ext
U external unbiased tan of incident angle projected on u,w.
TH2F * h_DeltaResVPhi_Lyr3
2D histogram of DeltaRes_v vs phi of VXD overlaps for layer 3
TH2F * h_DeltaResVPhi_Lyr4
2D histogram of DeltaRes_v vs phi of VXD overlaps for layer 4
TH1F * h_V_DeltaRes_PXD_Lyr1
Histogram of PXD layer-1 v-coordinate differences of residuals.
float extU_PXD
tree t_PXD branch extU_PXD/F
float svdTrkTraversedLength_U_ext
U external traversed length of the track in the sensor.
float extPhi_PXD
tree t_PXD branch extPhi/PXD/F
float svdClZ_U_int
U internal cluster global Z.
float svdTruePos_U_int
U internal true position.
TH2F * h_DeltaResVz_Lyr3
2D histogram of DeltaRes_v vs z of VXD overlaps for layer 3
float svdRes_U_ext
U external residual computed by genfit.
unsigned int extLadder_PXD
tree t_PXD branch extLadder_PXD/i
unsigned int svdSensor_V_int
V internal sensor.
float svdTruePos_V_ext
V external true position.
float svdClPos_U_int
U internal cluster position.
TH1F * h_U_DeltaRes_SVD_Lyr6
Histogram of SVD layer-6 u-coordinate differences of residuals.
TTree * t_SVD_V
Tree containing global information on SVD v-coordinate overlaps.
TH1F * h_V_DeltaRes_PXD
Histogram of PXD v-coordinate differences of residuals.
unsigned int intLayer_PXD
tree t_PXD branch intLayer_PXD/i
float svdClPosErr_U_ext
U external cluster position error.
TTree * t_SVD_U
Tree containing global information on SVD u-coordinate overlaps.
std::vector< float > svdStripCharge_V_int
V internal charge of the strips of the cluster.
float svdClCharge_U_int
U internal cluster charge.
float svdClCharge_U_ext
U external cluster charge.
std::vector< float > svdStrip6Samples_V_int
V internal 6 samples of the strips of the cluster.
TH2F * h_DeltaResUPhi_Lyr6
2D histogram of DeltaRes_u vs phi of VXD overlaps for layer 6
float svdClTime_U_int
U internal cluster time.
TH2F * h_DeltaResUz_Lyr5
2D histogram of DeltaRes_u vs z of VXD overlaps for layer 5
float svdTrkPosUnbiased_V_int
V internal unbiased track position.
float svdClIntStrPos_U_int
U internal cluster interstrip position.
float svdTrkQoPUnbiased_V_int
V internal unbiased track q/p.
float svdClTime_U_ext
U external cluster time.
std::vector< float > svdStripCharge_U_int
U internal charge of the strips of the cluster.
unsigned int svdLadder_V_int
V internal ladder.
unsigned int svdSize_V_int
V internal size.
TH2F * h_DeltaResVz_Lyr5
2D histogram of DeltaRes_v vs z of VXD overlaps for layer 5
unsigned int svdLayer_V_int
V internal layer.
float svdTrkPosErr_V_ext
V external track position error.
float svdTrkPrime_U_ext
U external tan of incident angle projected on u,w.
float svdDeltaRes_V
V difference between external and internal residual.
TH1F * h_U_Cl1Cl2_DeltaRes[5]
Histogram of SVD differences of u-coordinate residuals grouped by clusters sizes.
float svdTrkPosErrUnbiased_U_ext
U external unbiased track position error.
TH2F * h_DeltaResVz_Lyr6
2D histogram of DeltaRes_v vs z of VXD overlaps for layer 6
float extV_PXD
tree t_PXD branch extV_PXD/F
float svdTrkPosOS_U_int
U internal track position on the other side.
float svdTrkQoPUnbiased_U_ext
U external unbiased track q/p.
TH2F * h_Lyr4[11][4]
Sensor hit-map for layer 4 from reconstructed u and v coordinates.
TH1F * h_V_DeltaRes_SVD_Lyr6
Histogram of SVD layer-6 v-coordinate differences of residuals.
unsigned int svdSensor_V_ext
V external sensor.
int svdTrkCDCHits
number of PXD hits on the track
float svdClPosErr_V_int
V internal cluster position error.
TH1F * h_V_DeltaRes_SVD_Lyr3
Histogram of SVD layer-3 v-coordinate differences of residuals.
TH1F * h_V_Cl1Cl2_DeltaRes[5]
Histogram of SVD differences of v-coordinate residuals grouped by clusters sizes.
float svdTrkPosErr_U_ext
U external track position error.
float svdTrkPrime_U_int
U internal tan of incident angle projected on u,w.
float svdRes_V_int
V internal residual computed by genfit.
float svdTrkPrimeOS_V_ext
V external tan of incident angle projected on v/u,w (other side)
TH1F * h_V_DeltaRes_PXD_Lyr2
Histogram of PXD layer-2 v-coordinate differences of residuals.
TH1F * h_U_DeltaRes_SVD_Lyr5
Histogram of SVD layer-5 u-coordinate differences of residuals.
float svdTrkPosErr_V_int
V internal track position error.
TH1F * h_V_DeltaRes_SVD_Lyr5
Histogram of SVD layer-5 v-coordinate differences of residuals.
float svdClPosErr_V_ext
V external cluster position error.
float deltaResU_PXD
tree t_PXD branch deltaResU/F
TH2F * h_Lyr2[13][3]
Sensor hit-map for layer 2 from reconstructed u and v coordinates.
float svdDeltaRes_U
U difference between external and internal residual.
float intU_PXD
tree t_PXD branch intU_PXD/F
unsigned int extSensor_PXD
tree t_PXD branch extSensor_PXD/i
std::vector< float > svdStripPosition_V_ext
V external position of the strips of the cluster.
float svdClIntStrPos_V_int
V internal cluster interstrip position.
float svdTrkPosErrUnbiased_U_int
U internal unbiased track position error.
TH1F * h_V_DeltaRes_SVD_Lyr4
Histogram of SVD layer-4 v-coordinate differences of residuals.
float svdTrkPosErrUnbiased_V_ext
V external unbiased track position error.
std::vector< float > svdStripCharge_V_ext
V external charge of the strips of the cluster.
std::vector< float > svdStripTime_U_ext
U external time of the strips of the cluster.
TH2F * h_DeltaResUPhi_Lyr4
2D histogram of DeltaRes_u vs phi of VXD overlaps for layer 4
float intZ_PXD
tree t_PXD branch intZ_PXD/F
float svdClPos_V_ext
V external cluster position.
float svdTrkPosErrOS_V_int
V internal track position error on the other side.
std::vector< float > svdStripPosition_U_int
U internal position of the strips of the cluster.
unsigned int svdSensor_U_int
U internal sensor.
std::vector< float > svdStrip6Samples_U_int
U internal 6 samples of the strips of the cluster.
float svdClPosErr_U_int
U internal cluster position error.
float svdClIntStrPos_U_ext
U external cluster interstrip position.
float svdClTime_V_int
V internal cluster time.
TH2F * h_DeltaResVPhi_Lyr2
2D histogram of DeltaRes_v vs phi of VXD overlaps for layer 2
TH1F * h_U_DeltaRes
Histogram of VXD ( PXD + SVD ) differences of u-coordinate residuals.
float svdTrkPrime_V_ext
V external tan of incident angle projected on u,w.
float svdTrkTraversedLength_U_int
U internal traversed length of the track in the sensor.
TH2F * h_DeltaResUz_Lyr4
2D histogram of DeltaRes_u vs z of VXD overlaps for layer 4
TH2F * h_Lyr5[13][5]
Sensor hit-map for layer 5 from reconstructed u and v coordinates.
TH1F * h_SVDstrips_Mult
Histogram of SVD strips multiplicity.
TH2F * h_DeltaResUz_Lyr6
2D histogram of DeltaRes_u vs z of VXD overlaps for layer 6
float extZ_PXD
tree t_PXD branch extZ_PXD/F
TH2F * h_Lyr3[8][3]
Sensor hit-map for layer 3 from reconstructed u and v coordinates.
float svdClZ_V_int
V internal cluster global Z.
float svdTrkPrime_V_int
V internal tan of incident angle projected on u,w.
float svdTrkTraversedLength_V_ext
V external traversed length of the track in the sensor.
float svdClCharge_V_ext
V external cluster charge.
unsigned int svdSize_U_int
U internal size.
TH2F * h_DeltaResVPhi_Lyr1
2D histogram of DeltaRes_v vs phi of VXD overlaps for layer 1
std::vector< float > svdStripTime_V_int
V internal time of the strips of the cluster.
float svdClPhi_U_int
U internal cluster global phi.
TH2F * h_DeltaResUz_Lyr1
2D histogram of DeltaRes_u vs z of VXD overlaps for layer 1
float svdClSNR_U_int
U internal cluster SNR.
unsigned int svdLayer_U_int
U internal layer.
float svdClCharge_V_int
V internal cluster charge.
unsigned int svdSensor_U_ext
U external sensor.
float intV_PXD
tree t_PXD branch intV_PXD/F
TH2F * h_Lyr6[17][6]
Sensor hit-map for layer 6 from reconstructed u and v coordinates.
std::vector< float > svdStripPosition_V_int
V internal position of the strips of the cluster.
float svdTrkPrimeOS_U_ext
U external tan of incident angle projected on v/u,w (other side)
unsigned int intSensor_PXD
tree t_PXD branch intSensor_PXD/i
std::vector< float > svdStripTime_U_int
U internal time of the strips of the cluster.
float svdTrkPrimeUnbiased_V_int
V internal unbiased tan of incident angle projected on u,w.
TH2F * h_DeltaResVz_Lyr2
2D histogram of DeltaRes_v vs z of VXD overlaps for layer 2
unsigned int intLadder_PXD
tree t_PXD branch intLadder_PXD/i
float svdClPos_V_int
V internal cluster position.
float svdTrkPos_V_ext
V external track position.
float svdClZ_U_ext
U external cluster global Z.
int svdTrkSVDHits
number of PXD hits on the track
float intPhi_PXD
tree t_PXD branch intPhi_PXD/F
float svdTrkPrimeOS_V_int
V internal tan of incident angle projected on v/u,w (other side)
float svdTrkPosErrOS_U_ext
U external track position error on the other side.
TTree * t_PXD
Tree containing global information on PXD overlaps.
float svdTrkPosErrOS_U_int
U internal track position error on the other side.
float svdTrkQoP_U_ext
U external track q/p.
float svdClZ_V_ext
V external cluster global Z.
float svdClPhi_V_int
V internal cluster global phi.
TH1F * h_V_DeltaRes
Histogram of VXD ( PXD + SVD ) differences of v-coordinate residuals.
float svdTrkPosOS_V_int
V internal track position on the other side.
unsigned int svdSize_V_ext
V external size.
float intResV_PXD
tree t_PXD branch intResV/PXD/F
TH1F * h_U_DeltaRes_SVD_Lyr3
Histogram of SVD layer-3 u-coordinate differences of residuals.
TH1F * h_U_DeltaRes_PXD_Lyr2
Histogram of PXD layer-2 u-coordinate differences of residuals.
float svdClPhi_U_ext
U external cluster global phi.
TH1F * h_U_DeltaRes_SVD
Histogram of SVD u-coordinate differences of residuals.
float svdClPos_U_ext
U external cluster position.
float svdTruePos_U_ext
U external true position.
float svdTrkPosErrOS_V_ext
V external track position error on the other side.
float svdTrkPosUnbiased_U_ext
U external unbiased track position.
float svdTrkPos_U_int
U internal track position.
unsigned int svdSize_U_ext
U external size.
float intResU_PXD
tree t_PXD branch intResU_PXD/F

◆ endRun()

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 96 of file Module.cc.

97{
98 if (m_conditions.empty()) return false;
99
100 //okay, a condition was set for this Module...
101 if (!m_hasReturnValue) {
102 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
103 }
104
105 for (const auto& condition : m_conditions) {
106 if (condition.evaluate(m_returnValue)) {
107 return true;
108 }
109 }
110 return false;
111}
int m_returnValue
The return value.
Definition: Module.h:519
bool m_hasReturnValue
True, if the return value is set.
Definition: Module.h:518

◆ event()

void event ( void  )
overridevirtual

Compute the difference of coordinate residuals between two hits in overlapping sensors of a same VXD layer.

Reimplemented from HistoModule.

Definition at line 468 of file OverlapResidualsModule.cc.

469{
470 bool isMC = Environment::Instance().isMC();
471
474 for (const auto& trk : recoTracks) {
475 if (! trk.wasFitSuccessful()) {
476 continue;
477 }
478 const std::vector<PXDCluster* > pxdClusters = trk.getPXDHitList();
479 const std::vector<SVDCluster* > svdClusters = trk.getSVDHitList();
480 B2DEBUG(29, "FITTED TRACK: NUMBER OF PXD HITS = " << pxdClusters.size() << " NUMBER OF SVD HITS = " << svdClusters.size());
481 //LOOKING FOR 2 CONSECUTIVE PXD HITS IN OVERLAPPING MODULES OF A SAME LAYER
482 for (unsigned int i = 0; i < pxdClusters.size(); i++) {
483 const PXDCluster* pxd_1 = pxdClusters[i];
484 const RecoHitInformation* infoPXD_1 = trk.getRecoHitInformation(pxd_1);
485 if (!infoPXD_1) {
486 continue;
487 }
488 const auto* hitTrackPoint_1 = trk.getCreatedTrackPoint(infoPXD_1);
489 const auto* fittedResult_1 = hitTrackPoint_1->getFitterInfo();
490 if (!fittedResult_1) {
491 continue;
492 }
493 const VxdID pxd_id_1 = pxd_1->getSensorID();
494 const unsigned short pxd_Layer_1 = pxd_id_1.getLayerNumber();
495 const unsigned short pxd_Ladder_1 = pxd_id_1.getLadderNumber();
496 const unsigned short pxd_Sensor_1 = pxd_id_1.getSensorNumber();
497 for (unsigned int l = i + 1; l < pxdClusters.size(); l++) {
498 const PXDCluster* pxd_2 = pxdClusters[l];
499 const RecoHitInformation* infoPXD_2 = trk.getRecoHitInformation(pxd_2);
500 if (!infoPXD_2) {
501 continue;
502 }
503 const auto* hitTrackPoint_2 = trk.getCreatedTrackPoint(infoPXD_2);
504 const auto* fittedResult_2 = hitTrackPoint_2->getFitterInfo();
505 if (!fittedResult_2) {
506 continue;
507 }
508 const VxdID pxd_id_2 = pxd_2->getSensorID();
509 const unsigned short pxd_Layer_2 = pxd_id_2.getLayerNumber();
510 const unsigned short pxd_Ladder_2 = pxd_id_2.getLadderNumber();
511 const unsigned short pxd_Sensor_2 = pxd_id_2.getSensorNumber();
512 if (pxd_Layer_1 == pxd_Layer_2 && ((pxd_Ladder_2 - pxd_Ladder_1) == -1.0 || (pxd_Ladder_2 - pxd_Ladder_1) == 7.0
513 || (pxd_Ladder_2 - pxd_Ladder_1) == 11.0)) {
514 B2DEBUG(29, " ============= 2 hits in a PXD overlap ============= ");
515 const TVectorD resUnBias_PXD_1 = fittedResult_1->getResidual(0, false).getState();
516 const TVectorD resUnBias_PXD_2 = fittedResult_2->getResidual(0, false).getState();
517 const float res_U_1 = resUnBias_PXD_1.GetMatrixArray()[0] * Unit::convertValueToUnit(1.0, "um");
518 const float res_V_1 = resUnBias_PXD_1.GetMatrixArray()[1] * Unit::convertValueToUnit(1.0, "um");
519 const double res_U_2 = resUnBias_PXD_2.GetMatrixArray()[0] * Unit::convertValueToUnit(1.0, "um");
520 const double res_V_2 = resUnBias_PXD_2.GetMatrixArray()[1] * Unit::convertValueToUnit(1.0, "um");
521 const float over_U_PXD = res_U_2 - res_U_1;
522 const float over_V_PXD = res_V_2 - res_V_1;
523 const ROOT::Math::XYZVector pxdLocal_1(pxd_1->getU(), pxd_1->getV(), 0.);
524 const ROOT::Math::XYZVector pxdLocal_2(pxd_2->getU(), pxd_2->getV(), 0.);
525 const VXD::SensorInfoBase& pxdSensor_1 = geo.getSensorInfo(pxd_id_1);
526 const VXD::SensorInfoBase& pxdSensor_2 = geo.getSensorInfo(pxd_id_2);
527 const ROOT::Math::XYZVector& pxdGlobal_1 = pxdSensor_1.pointToGlobal(pxdLocal_1);
528 const ROOT::Math::XYZVector& pxdGlobal_2 = pxdSensor_2.pointToGlobal(pxdLocal_2);
529 double pxdPhi_1 = atan2(pxdGlobal_1.Y(), pxdGlobal_1.X()); // maybe use pxdGlobal_1.Phi() instead
530 double pxdPhi_2 = atan2(pxdGlobal_2.Y(), pxdGlobal_2.X()); // maybe use pxdGlobal_2.Phi() instead
531 double pxdZ_1 = pxdGlobal_1.Z();
532 double pxdZ_2 = pxdGlobal_2.Z();
533 B2DEBUG(29, "PXD: difference of residuals " << over_U_PXD << " " << over_V_PXD);
534 //Fill PXD tree for overlaps if required by the user
535 if (m_ExpertLevel) {
536 deltaResU_PXD = over_U_PXD;
537 intResU_PXD = res_U_1;
538 intResV_PXD = res_V_1;
539 intU_PXD = pxd_1->getU();
540 intV_PXD = pxd_1->getV();
541 intPhi_PXD = pxdPhi_1;
542 intZ_PXD = pxdZ_1;
543 intLayer_PXD = pxd_Layer_1;
544 intLadder_PXD = pxd_Ladder_1;
545 intSensor_PXD = pxd_Sensor_1;
546 extResU_PXD = res_U_2;
547 extResV_PXD = res_V_2;
548 extU_PXD = pxd_2->getU();
549 extV_PXD = pxd_2->getV();
550 extPhi_PXD = pxdPhi_2;
551 extZ_PXD = pxdZ_2;
552 extLayer_PXD = pxd_Layer_2;
553 extLadder_PXD = pxd_Ladder_2;
554 extSensor_PXD = pxd_Sensor_2;
555 t_PXD->Fill();
556 }
557 //Fill histograms of residuals differences with PXD clusters
558 h_U_DeltaRes->Fill(over_U_PXD);
559 h_V_DeltaRes->Fill(over_V_PXD);
560 h_U_DeltaRes_PXD->Fill(over_U_PXD);
561 h_V_DeltaRes_PXD->Fill(over_V_PXD);
562 //Fill sensor hit-maps and 2D histograms with PXD clusters
563 if (pxd_Layer_1 == 1 && pxd_Layer_2 == 1) {
564 if (m_ExpertLevel) {
565 h_Lyr1[pxd_Ladder_1][pxd_Sensor_1]->Fill(pxd_1->getU(), pxd_1->getV());
566 h_Lyr1[pxd_Ladder_2][pxd_Sensor_2]->Fill(pxd_2->getU(), pxd_2->getV());
567 }
568 h_U_DeltaRes_PXD_Lyr1->Fill(over_U_PXD);
569 h_V_DeltaRes_PXD_Lyr1->Fill(over_V_PXD);
570 h_DeltaResUPhi_Lyr1->Fill(pxdPhi_1, over_U_PXD);
571 h_DeltaResUPhi_Lyr1->Fill(pxdPhi_2, over_U_PXD);
572 h_DeltaResVPhi_Lyr1->Fill(pxdPhi_1, over_V_PXD);
573 h_DeltaResVPhi_Lyr1->Fill(pxdPhi_2, over_V_PXD);
574 h_DeltaResVz_Lyr1->Fill(pxdZ_1, over_V_PXD);
575 h_DeltaResVz_Lyr1->Fill(pxdZ_2, over_V_PXD);
576 h_DeltaResUz_Lyr1->Fill(pxdZ_1, over_U_PXD);
577 h_DeltaResUz_Lyr1->Fill(pxdZ_2, over_U_PXD);
578 }
579 if (pxd_Layer_1 == 2 && pxd_Layer_2 == 2) {
580 if (m_ExpertLevel) {
581 h_Lyr2[pxd_Ladder_1][pxd_Sensor_1]->Fill(pxd_1->getU(), pxd_1->getV());
582 h_Lyr2[pxd_Ladder_2][pxd_Sensor_2]->Fill(pxd_2->getU(), pxd_2->getV());
583 }
584 h_U_DeltaRes_PXD_Lyr2->Fill(over_U_PXD);
585 h_V_DeltaRes_PXD_Lyr2->Fill(over_V_PXD);
586 h_DeltaResUPhi_Lyr2->Fill(pxdPhi_1, over_U_PXD);
587 h_DeltaResUPhi_Lyr2->Fill(pxdPhi_2, over_U_PXD);
588 h_DeltaResVPhi_Lyr2->Fill(pxdPhi_1, over_V_PXD);
589 h_DeltaResVPhi_Lyr2->Fill(pxdPhi_2, over_V_PXD);
590 h_DeltaResVz_Lyr2->Fill(pxdZ_1, over_V_PXD);
591 h_DeltaResVz_Lyr2->Fill(pxdZ_2, over_V_PXD);
592 h_DeltaResUz_Lyr2->Fill(pxdZ_1, over_U_PXD);
593 h_DeltaResUz_Lyr2->Fill(pxdZ_2, over_U_PXD);
594 }
595 }
596 }
597
598 }
599
600 //LOOKING FOR 2 CONSECUTIVE SVD HITS IN OVERLAPPING MODULES OF A SAME LAYER
601 RelationVector<Track> theTK = DataStore::getRelationsWithObj<Track>(&trk);
602
603 const TrackFitResult* tfr = theTK[0]->getTrackFitResultWithClosestMass(Const::pion);
604 if (tfr) {
605 svdTrkd0 = tfr->getD0();
606 svdTrkz0 = tfr->getZ0();
607 svdTrkpT = tfr->getMomentum().Rho();
608 ROOT::Math::PxPyPzEVector pStar = tfr->get4Momentum();
609 ROOT::Math::BoostZ boost(3. / 11);
610 pStar = boost(pStar);
611 svdTrkpCM = pStar.P();
612 }
613
614 svdTrkPXDHits = (trk.getPXDHitList()).size();
615 svdTrkSVDHits = (trk.getSVDHitList()).size();
616 svdTrkCDCHits = (trk.getCDCHitList()).size();
617
618 for (unsigned int i = 0; i < svdClusters.size(); i++) {
619 const SVDCluster* svd_1 = svdClusters[i];
620
621 //get true hits, used only if isMC
622 RelationVector<SVDTrueHit> trueHit_1 = DataStore::getRelationsWithObj<SVDTrueHit>(svd_1);
623
624 const RecoHitInformation* infoSVD_1 = trk.getRecoHitInformation(svd_1);
625 if (!infoSVD_1) {
626 continue;
627 }
628 const auto* hitTrackPoint_1 = trk.getCreatedTrackPoint(infoSVD_1);
629 const auto* fittedResult_1 = hitTrackPoint_1->getFitterInfo();
630 if (!fittedResult_1) {
631 continue;
632 }
633 const VxdID svd_id_1 = svd_1->getSensorID();
634 const unsigned short svd_Layer_1 = svd_id_1.getLayerNumber();
635 const unsigned short svd_Ladder_1 = svd_id_1.getLadderNumber();
636 const unsigned short svd_Sensor_1 = svd_id_1.getSensorNumber();
637 for (unsigned int l = i + 1; l < svdClusters.size(); l++) {
638 const SVDCluster* svd_2 = svdClusters[l];
639
640 //get true hits, used only if isMC
641 RelationVector<SVDTrueHit> trueHit_2 = DataStore::getRelationsWithObj<SVDTrueHit>(svd_2);
642
643 const RecoHitInformation* infoSVD_2 = trk.getRecoHitInformation(svd_2);
644 if (!infoSVD_2) {
645 continue;
646 }
647 const auto* hitTrackPoint_2 = trk.getCreatedTrackPoint(infoSVD_2);
648 const auto* fittedResult_2 = hitTrackPoint_2->getFitterInfo();
649 if (!fittedResult_2) {
650 continue;
651 }
652 const VxdID svd_id_2 = svd_2->getSensorID();
653 const unsigned short svd_Layer_2 = svd_id_2.getLayerNumber();
654 const unsigned short svd_Ladder_2 = svd_id_2.getLadderNumber();
655 const unsigned short svd_Sensor_2 = svd_id_2.getSensorNumber();
656 if (svd_Layer_1 == svd_Layer_2 && ((svd_Ladder_2 - svd_Ladder_1) == 1.0 || (svd_Ladder_2 - svd_Ladder_1) == -6.0
657 || (svd_Ladder_2 - svd_Ladder_1) == -9.0 || (svd_Ladder_2 - svd_Ladder_1) == -11.0 || (svd_Ladder_2 - svd_Ladder_1) == -15.0)) {
658 B2DEBUG(29, " ============= 2 hits in a SVD overlap ============= ");
659 const TVectorD resUnBias_SVD_1 = fittedResult_1->getResidual(0, false).getState();
660 const TVectorD resUnBias_SVD_2 = fittedResult_2->getResidual(0, false).getState();
661 genfit::MeasuredStateOnPlane state_unbiased_1 = fittedResult_1->getFittedState(false);
662 genfit::MeasuredStateOnPlane state_unbiased_2 = fittedResult_2->getFittedState(false);
663 const TVectorD& svd_predIntersect_unbiased_1 = state_unbiased_1.getState();
664 const TVectorD& svd_predIntersect_unbiased_2 = state_unbiased_2.getState();
665 const TMatrixDSym& covMatrix_unbiased_1 = state_unbiased_1.getCov();
666 const TMatrixDSym& covMatrix_unbiased_2 = state_unbiased_2.getCov();
667 genfit::MeasuredStateOnPlane state_1 = trk.getMeasuredStateOnPlaneFromRecoHit(infoSVD_1);
668 genfit::MeasuredStateOnPlane state_2 = trk.getMeasuredStateOnPlaneFromRecoHit(infoSVD_2);
669 const TVectorD& svd_predIntersect_1 = state_1.getState();
670 const TVectorD& svd_predIntersect_2 = state_2.getState();
671 const TMatrixDSym& covMatrix_1 = state_1.getCov();
672 const TMatrixDSym& covMatrix_2 = state_2.getCov();
673 //Restricting to consecutive SVD u-clusters
674 if (svd_1->isUCluster() == true && svd_2->isUCluster() == true) {
675 const int strips_1 = svd_1->getSize();
676 h_SVDstrips_Mult->Fill(strips_1);
677 const int strips_2 = svd_2->getSize();
678 h_SVDstrips_Mult->Fill(strips_2);
679 const double res_U_1 = resUnBias_SVD_1.GetMatrixArray()[0] * Unit::convertValueToUnit(1.0, "um");
680 const double res_U_2 = resUnBias_SVD_2.GetMatrixArray()[0] * Unit::convertValueToUnit(1.0, "um");
681 const float over_U_SVD = res_U_2 - res_U_1;
682 const ROOT::Math::XYZVector svdLocal_1(svd_1->getPosition(), svd_predIntersect_1[4], 0.);
683 const ROOT::Math::XYZVector svdLocal_2(svd_2->getPosition(), svd_predIntersect_2[4], 0.);
684 const VXD::SensorInfoBase& svdSensor_1 = geo.getSensorInfo(svd_id_1);
685 const VXD::SensorInfoBase& svdSensor_2 = geo.getSensorInfo(svd_id_2);
686 const ROOT::Math::XYZVector& svdGlobal_1 = svdSensor_1.pointToGlobal(svdLocal_1);
687 const ROOT::Math::XYZVector& svdGlobal_2 = svdSensor_2.pointToGlobal(svdLocal_2);
688 double svdPhi_1 = atan2(svdGlobal_1.Y(), svdGlobal_1.X()); // maybe use svdGlobal_1.Phi() instead
689 double svdPhi_2 = atan2(svdGlobal_2.Y(), svdGlobal_2.X()); // maybe use svdGlobal_2.Phi() instead
690 double svdZ_1 = svdGlobal_1.Z();
691 double svdZ_2 = svdGlobal_2.Z();
692 B2DEBUG(29, "SVD: difference of u-residuals =========> " << over_U_SVD);
693 //Fill SVD tree for u-overlaps if required by the user
694 if (m_ExpertLevel) {
695 svdDeltaRes_U = over_U_SVD;
696 svdRes_U_int = res_U_1;
697 svdClTime_U_int = svd_1->getClsTime();
698 svdClSNR_U_int = svd_1->getSNR();
699 svdClCharge_U_int = svd_1->getCharge();
701 if (isMC && trueHit_1.size() > 0)
702 svdTruePos_U_int = trueHit_1[0]->getU();
703 else
704 svdTruePos_U_int = -99;
705 svdClPhi_U_int = svdPhi_1;
706 svdClZ_U_int = svdZ_1;
707 svdTrkPos_U_int = svd_predIntersect_1[3];
708 svdTrkPosOS_U_int = svd_predIntersect_1[4];
709 svdTrkPosErr_U_int = sqrt(covMatrix_1[3][3]);
710 svdTrkPosErrOS_U_int = sqrt(covMatrix_1[4][4]);
711 svdTrkQoP_U_int = svd_predIntersect_1[0];
712 svdTrkPrime_U_int = svd_predIntersect_1[1];
713 svdTrkPrimeOS_U_int = svd_predIntersect_1[2];
716 svdTrkPosUnbiased_U_int = svd_predIntersect_unbiased_1[3];
718 svdTrkPosErrUnbiased_U_int = sqrt(covMatrix_unbiased_1[3][3]);
719 svdTrkQoPUnbiased_U_int = svd_predIntersect_unbiased_1[0];
720 svdTrkPrimeUnbiased_U_int = svd_predIntersect_unbiased_1[1];
721 svdLayer_U_int = svd_Layer_1;
722 svdLadder_U_int = svd_Ladder_1;
723 svdSensor_U_int = svd_Sensor_1;
724 svdSize_U_int = strips_1;
725
726 float pitch = 50e-4;
727 float halfLength = 1.92;
728 if (svdLayer_U_int > 3) {
729 pitch = 75e-4;
730 halfLength = 2.88;
731 }
732 svdClIntStrPos_U_int = fmod(svdClPos_U_int + halfLength, pitch) / pitch;
733
734 svdStripCharge_U_int.clear();
736 svdStripTime_U_int.clear();
738 //retrieve relations and set strip charges and times
739 RelationVector<SVDRecoDigit> theRecoDigits_1 = DataStore::getRelationsWithObj<SVDRecoDigit>(svd_1);
740 if ((theRecoDigits_1.size() != svdSize_U_int) && (svdSize_U_int != 128)) //virtual cluster
741 B2ERROR(" Inconsistency with cluster size! # recoDigits = " << theRecoDigits_1.size() << " != " << svdSize_U_int <<
742 " cluster size");
743
744 //skip clusters created because of missing APV
745 if (svdSize_U_int < 128)
746 for (unsigned int d = 0; d < svdSize_U_int; d++) {
747 svdStripCharge_U_int.push_back(theRecoDigits_1[d]->getCharge());
748 SVDShaperDigit* ShaperDigit_1 = theRecoDigits_1[d]->getRelated<SVDShaperDigit>();
749 std::array<float, 6> Samples_1 = ShaperDigit_1->getSamples();
750 std::copy(std::begin(Samples_1), std::end(Samples_1), std::back_inserter(svdStrip6Samples_U_int));
751 svdStripTime_U_int.push_back(theRecoDigits_1[d]->getTime());
752 double misalignedStripPos = svdSensor_1.getUCellPosition(theRecoDigits_1[d]->getCellID());
753 //aligned strip pos = misaligned strip - ( misaligned cluster - aligned cluster)
754 svdStripPosition_U_int.push_back(misalignedStripPos - svd_1->getPosition() + svdClPos_U_int);
755 }
756
757 svdRes_U_ext = res_U_2;
758 svdClTime_U_ext = svd_2->getClsTime();
759 svdClSNR_U_ext = svd_2->getSNR();
760 svdClCharge_U_ext = svd_2->getCharge();
762 if (isMC && trueHit_2.size() > 0)
763 svdTruePos_U_ext = trueHit_2[0]->getU();
764 else
765 svdTruePos_U_ext = -99;
766 svdClPhi_U_ext = svdPhi_2;
767 svdClZ_U_ext = svdZ_2;
768 svdTrkPos_U_ext = svd_predIntersect_2[3];
769 svdTrkPosOS_U_ext = svd_predIntersect_2[4];
770 svdTrkPosErr_U_ext = sqrt(covMatrix_2[3][3]);
771 svdTrkPosErrOS_U_ext = sqrt(covMatrix_2[4][4]);
772 svdTrkQoP_U_ext = svd_predIntersect_2[0];
773 svdTrkPrime_U_ext = svd_predIntersect_2[1];
774 svdTrkPrimeOS_U_ext = svd_predIntersect_2[2];
777 svdTrkPosUnbiased_U_ext = svd_predIntersect_unbiased_2[3];
779 svdTrkPosErrUnbiased_U_ext = sqrt(covMatrix_unbiased_2[3][3]);
780 svdTrkQoPUnbiased_U_ext = svd_predIntersect_unbiased_2[0];
781 svdTrkPrimeUnbiased_U_ext = svd_predIntersect_unbiased_2[1];
782 svdLayer_U_ext = svd_Layer_2;
783 svdLadder_U_ext = svd_Ladder_2;
784 svdSensor_U_ext = svd_Sensor_2;
785 svdSize_U_ext = strips_2;
786
787 svdClIntStrPos_U_ext = fmod(svdClPos_U_ext + halfLength, pitch) / pitch;
788
789 svdStripCharge_U_ext.clear();
791 svdStripTime_U_ext.clear();
793 //retrieve relations and set strip charges and times
794 RelationVector<SVDRecoDigit> theRecoDigits_2 = DataStore::getRelationsWithObj<SVDRecoDigit>(svd_2);
795 if ((theRecoDigits_2.size() != svdSize_U_ext) && (svdSize_U_ext != 128)) //virtual cluster
796 B2ERROR(" Inconsistency with cluster size! # recoDigits = " << theRecoDigits_2.size() << " != " << svdSize_U_ext <<
797 " cluster size");
798 //skip clusters created because of missing APV
799 if (svdSize_U_ext < 128)
800 for (unsigned int d = 0; d < svdSize_U_ext; d++) {
801 svdStripCharge_U_ext.push_back(theRecoDigits_2[d]->getCharge());
802 SVDShaperDigit* ShaperDigit_2 = theRecoDigits_2[d]->getRelated<SVDShaperDigit>();
803 std::array<float, 6> Samples_2 = ShaperDigit_2->getSamples();
804 std::copy(std::begin(Samples_2), std::end(Samples_2), std::back_inserter(svdStrip6Samples_U_ext));
805 svdStripTime_U_ext.push_back(theRecoDigits_2[d]->getTime());
806 double misalignedStripPos = svdSensor_2.getUCellPosition(theRecoDigits_2[d]->getCellID());
807 //aligned strip pos = misaligned strip - ( misaligned cluster - aligned cluster)
808 svdStripPosition_U_ext.push_back(misalignedStripPos - svd_2->getPosition() + svdClPos_U_ext);
809 }
810 t_SVD_U->Fill();
811 }
812 //Fill histograms of residuals differences with SVD u clusters
813 h_U_DeltaRes->Fill(over_U_SVD);
814 h_U_DeltaRes_SVD->Fill(over_U_SVD);
815 if (svd_1->getSize() < 3 && svd_2->getSize() < 3) { //Consider only clusters with 3 or less strips involved
816 h_U_Cl1Cl2_DeltaRes[svd_1->getSize() * svd_2->getSize()]->Fill(over_U_SVD);
817 }
818 //Fill sensor hit-maps and 2D histograms with SVD u clusters
819 if (svd_Layer_1 == 3 && svd_Layer_2 == 3) {
820 if (m_ExpertLevel) {
821 h_Lyr3[svd_Ladder_1][svd_Sensor_1]->Fill(svd_1->getPosition(), 0.);
822 h_Lyr3[svd_Ladder_2][svd_Sensor_2]->Fill(svd_2->getPosition(), 0.);
823 }
824 h_U_DeltaRes_SVD_Lyr3->Fill(over_U_SVD);
825 h_DeltaResUPhi_Lyr3->Fill(svdPhi_1, over_U_SVD);
826 h_DeltaResUPhi_Lyr3->Fill(svdPhi_2, over_U_SVD);
827 h_DeltaResUz_Lyr3->Fill(svdZ_1, over_U_SVD);
828 h_DeltaResUz_Lyr3->Fill(svdZ_2, over_U_SVD);
829 }
830 if (svd_Layer_1 == 4 && svd_Layer_2 == 4) {
831 if (m_ExpertLevel) {
832 h_Lyr4[svd_Ladder_1][svd_Sensor_1]->Fill(svd_1->getPosition(), 0.);
833 h_Lyr4[svd_Ladder_2][svd_Sensor_2]->Fill(svd_2->getPosition(), 0.);
834 }
835 h_U_DeltaRes_SVD_Lyr4->Fill(over_U_SVD);
836 h_DeltaResUPhi_Lyr4->Fill(svdPhi_1, over_U_SVD);
837 h_DeltaResUPhi_Lyr4->Fill(svdPhi_2, over_U_SVD);
838 h_DeltaResUz_Lyr4->Fill(svdZ_1, over_U_SVD);
839 h_DeltaResUz_Lyr4->Fill(svdZ_2, over_U_SVD);
840 }
841 if (svd_Layer_1 == 5 && svd_Layer_2 == 5) {
842 if (m_ExpertLevel) {
843 h_Lyr5[svd_Ladder_1][svd_Sensor_1]->Fill(svd_1->getPosition(), 0.);
844 h_Lyr5[svd_Ladder_2][svd_Sensor_1]->Fill(svd_1->getPosition(), 0.);
845 }
846 h_U_DeltaRes_SVD_Lyr5->Fill(over_U_SVD);
847 h_DeltaResUPhi_Lyr5->Fill(svdPhi_1, over_U_SVD);
848 h_DeltaResUPhi_Lyr5->Fill(svdPhi_2, over_U_SVD);
849 h_DeltaResUz_Lyr5->Fill(svdZ_1, over_U_SVD);
850 h_DeltaResUz_Lyr5->Fill(svdZ_2, over_U_SVD);
851 }
852 if (svd_Layer_1 == 6 && svd_Layer_2 == 6) {
853 if (m_ExpertLevel) {
854 h_Lyr6[svd_Ladder_1][svd_Sensor_1]->Fill(svd_1->getPosition(), 0.);
855 h_Lyr6[svd_Ladder_2][svd_Sensor_2]->Fill(svd_2->getPosition(), 0.);
856 }
857 h_U_DeltaRes_SVD_Lyr6->Fill(over_U_SVD);
858 h_DeltaResUPhi_Lyr6->Fill(svdPhi_1, over_U_SVD);
859 h_DeltaResUPhi_Lyr6->Fill(svdPhi_2, over_U_SVD);
860 h_DeltaResUz_Lyr6->Fill(svdZ_1, over_U_SVD);
861 h_DeltaResUz_Lyr6->Fill(svdZ_2, over_U_SVD);
862 }
863 }
864 //Restricting to consecutive SVD v-clusters
865 if (svd_1->isUCluster() != true && svd_2->isUCluster() != true) {
866 const int strips_1 = svd_1->getSize();
867 h_SVDstrips_Mult->Fill(strips_1);
868 const int strips_2 = svd_2->getSize();
869 h_SVDstrips_Mult->Fill(strips_2);
870 const double res_V_1 = resUnBias_SVD_1.GetMatrixArray()[0] * Unit::convertValueToUnit(1.0, "um");
871 const double res_V_2 = resUnBias_SVD_2.GetMatrixArray()[0] * Unit::convertValueToUnit(1.0, "um");
872 const float over_V_SVD = res_V_2 - res_V_1;
873 const ROOT::Math::XYZVector svdLocal_1(svd_predIntersect_1[3], svd_1->getPosition(), 0.);
874 const ROOT::Math::XYZVector svdLocal_2(svd_predIntersect_2[3], svd_2->getPosition(), 0.);
875 const VXD::SensorInfoBase& svdSensor_1 = geo.getSensorInfo(svd_id_1);
876 const VXD::SensorInfoBase& svdSensor_2 = geo.getSensorInfo(svd_id_2);
877 const ROOT::Math::XYZVector& svdGlobal_1 = svdSensor_1.pointToGlobal(svdLocal_1);
878 const ROOT::Math::XYZVector& svdGlobal_2 = svdSensor_2.pointToGlobal(svdLocal_2);
879 double svdPhi_1 = atan2(svdGlobal_1.Y(), svdGlobal_1.X()); // maybe use svdGlobal_1.Phi() instead
880 double svdPhi_2 = atan2(svdGlobal_2.Y(), svdGlobal_2.X()); // maybe use svdGlobal_2.Phi() instead
881 double svdZ_1 = svdGlobal_1.Z();
882 double svdZ_2 = svdGlobal_2.Z();
883 B2DEBUG(29, "SVD: difference of v-residuals =========> " << over_V_SVD);
884 //Fill SVD tree for v-overlaps if required by the user
885 if (m_ExpertLevel) {
886 svdDeltaRes_V = over_V_SVD;
887 svdRes_V_int = res_V_1;
888 svdClTime_V_int = svd_1->getClsTime();
889 svdClSNR_V_int = svd_1->getSNR();
890 svdClCharge_V_int = svd_1->getCharge();
892 if (isMC && trueHit_1.size() > 0)
893 svdTruePos_V_int = trueHit_1[0]->getV();
894 else
895 svdTruePos_V_int = -99;
896 svdClPhi_V_int = svdPhi_1;
897 svdClZ_V_int = svdZ_1;
898 svdTrkPos_V_int = svd_predIntersect_1[4];
899 svdTrkPosOS_V_int = svd_predIntersect_1[3];
900 svdTrkPosErr_V_int = sqrt(covMatrix_1[4][4]);
901 svdTrkPosErrOS_V_int = sqrt(covMatrix_1[3][3]);
902 svdTrkQoP_V_int = svd_predIntersect_1[0];
903 svdTrkPrime_V_int = svd_predIntersect_1[2];
904 svdTrkPrimeOS_V_int = svd_predIntersect_1[1];
907 svdTrkPosUnbiased_V_int = svd_predIntersect_unbiased_1[4];
909 svdTrkPosErrUnbiased_V_int = sqrt(covMatrix_unbiased_1[4][4]);
910 svdTrkQoPUnbiased_V_int = svd_predIntersect_unbiased_1[0];
911 svdTrkPrimeUnbiased_V_int = svd_predIntersect_unbiased_1[2];
912 svdLayer_V_int = svd_Layer_1;
913 svdLadder_V_int = svd_Ladder_1;
914 svdSensor_V_int = svd_Sensor_1;
915 svdSize_V_int = strips_1;
916
917 float pitch = 160e-4;
918 float halfLength = 6.144;
919 if (svdLayer_V_int > 3) {
920 pitch = 240e-4;
921 }
922 svdClIntStrPos_V_int = fmod(svdClPos_V_int + halfLength, pitch) / pitch;
923
924 svdStripCharge_V_int.clear();
926 svdStripTime_V_int.clear();
928 //retrieve relations and set strip charges and times
929 RelationVector<SVDRecoDigit> theRecoDigits_1 = DataStore::getRelationsWithObj<SVDRecoDigit>(svd_1);
930 if ((theRecoDigits_1.size() != svdSize_V_int) && (svdSize_V_int != 128)) //virtual cluster
931 B2ERROR(" Inconsistency with cluster size! # recoDigits = " << theRecoDigits_1.size() << " != " << svdSize_V_int <<
932 " cluster size");
933 //skip clusters created because of missing APV
934 if (svdSize_V_int < 128)
935 for (unsigned int d = 0; d < svdSize_V_int; d++) {
936 svdStripCharge_V_int.push_back(theRecoDigits_1[d]->getCharge());
937 SVDShaperDigit* ShaperDigit_1 = theRecoDigits_1[d]->getRelated<SVDShaperDigit>();
938 std::array<float, 6> Samples_1 = ShaperDigit_1->getSamples();
939 std::copy(std::begin(Samples_1), std::end(Samples_1), std::back_inserter(svdStrip6Samples_V_int));
940 svdStripTime_V_int.push_back(theRecoDigits_1[d]->getTime());
941 double misalignedStripPos = svdSensor_1.getVCellPosition(theRecoDigits_1[d]->getCellID());
942 //aligned strip pos = misaligned strip - ( misaligned cluster - aligned cluster)
943 svdStripPosition_V_int.push_back(misalignedStripPos - svd_1->getPosition() + svdClPos_V_int);
944 }
945
946 svdRes_V_ext = res_V_2;
947 svdClTime_V_ext = svd_2->getClsTime();
948 svdClSNR_V_ext = svd_2->getSNR();
949 svdClCharge_V_ext = svd_2->getCharge();
951 if (isMC && trueHit_2.size() > 0)
952 svdTruePos_V_ext = trueHit_2[0]->getV();
953 else
954 svdTruePos_V_ext = -99;
955 svdClPhi_V_ext = svdPhi_2;
956 svdClZ_V_ext = svdZ_2;
957 svdTrkPos_V_ext = svd_predIntersect_2[4];
958 svdTrkPosOS_V_ext = svd_predIntersect_2[3];
959 svdTrkPosErr_V_ext = sqrt(covMatrix_2[4][4]);
960 svdTrkPosErrOS_V_ext = sqrt(covMatrix_1[3][3]);
961 svdTrkQoP_V_ext = svd_predIntersect_2[0];
962 svdTrkPrime_V_ext = svd_predIntersect_2[2];
963 svdTrkPrimeOS_V_ext = svd_predIntersect_2[1];
966 svdTrkPosUnbiased_V_ext = svd_predIntersect_unbiased_2[4];
968 svdTrkPosErrUnbiased_V_ext = sqrt(covMatrix_unbiased_2[4][4]);
969 svdTrkQoPUnbiased_V_ext = svd_predIntersect_unbiased_2[0];
970 svdTrkPrimeUnbiased_V_ext = svd_predIntersect_unbiased_2[2];
971 svdLayer_V_ext = svd_Layer_2;
972 svdLadder_V_ext = svd_Ladder_2;
973 svdSensor_V_ext = svd_Sensor_2;
974 svdSize_V_ext = strips_2;
975
976 svdClIntStrPos_V_ext = fmod(svdClPos_V_ext + halfLength, pitch) / pitch;
977
978 svdStripCharge_V_ext.clear();
980 svdStripTime_V_ext.clear();
982 //retrieve relations and set strip charges and times
983 RelationVector<SVDRecoDigit> theRecoDigits_2 = DataStore::getRelationsWithObj<SVDRecoDigit>(svd_2);
984 if ((theRecoDigits_2.size() != svdSize_V_ext) && (svdSize_V_ext != 128)) //virtual cluster
985 B2ERROR(" Inconsistency with cluster size! # recoDigits = " << theRecoDigits_2.size() << " != " << svdSize_V_ext <<
986 " cluster size");
987 //skip clusters created because of missing APV
988 if (svdSize_V_ext < 128)
989 for (unsigned int d = 0; d < svdSize_V_ext; d++) {
990 svdStripCharge_V_ext.push_back(theRecoDigits_2[d]->getCharge());
991 SVDShaperDigit* ShaperDigit_2 = theRecoDigits_2[d]->getRelated<SVDShaperDigit>();
992 std::array<float, 6> Samples_2 = ShaperDigit_2->getSamples();
993 std::copy(std::begin(Samples_2), std::end(Samples_2), std::back_inserter(svdStrip6Samples_V_ext));
994 svdStripTime_V_ext.push_back(theRecoDigits_2[d]->getTime());
995 double misalignedStripPos = svdSensor_2.getVCellPosition(theRecoDigits_2[d]->getCellID());
996 //aligned strip pos = misaligned strip - ( misaligned cluster - aligned cluster)
997 svdStripPosition_V_ext.push_back(misalignedStripPos - svd_2->getPosition() + svdClPos_V_ext);
998 }
999
1000 t_SVD_V->Fill();
1001 }
1002 //Fill histograms of residuals differences with SVD v clusters
1003 h_V_DeltaRes->Fill(over_V_SVD);
1004 h_V_DeltaRes_SVD->Fill(over_V_SVD);
1005 if (svd_1->getSize() < 3 && svd_2->getSize() < 3) { //Consider only clusters with 3 or less strips involved
1006 h_V_Cl1Cl2_DeltaRes[svd_1->getSize() * svd_2->getSize()]->Fill(over_V_SVD);
1007 }
1008 //Fill sensor hit-maps and 2D histograms with SVD v clusters
1009 if (svd_Layer_1 == 3 && svd_Layer_2 == 3) {
1010 if (m_ExpertLevel) {
1011 h_Lyr3[svd_Ladder_1][svd_Sensor_1]->Fill(0., svd_1->getPosition());
1012 h_Lyr3[svd_Ladder_2][svd_Sensor_2]->Fill(0., svd_2->getPosition());
1013 }
1014 h_V_DeltaRes_SVD_Lyr3->Fill(over_V_SVD);
1015 h_DeltaResVPhi_Lyr3->Fill(svdPhi_1, over_V_SVD);
1016 h_DeltaResVPhi_Lyr3->Fill(svdPhi_2, over_V_SVD);
1017 h_DeltaResVz_Lyr3->Fill(svdZ_1, over_V_SVD);
1018 h_DeltaResVz_Lyr3->Fill(svdZ_2, over_V_SVD);
1019 }
1020 if (svd_Layer_1 == 4 && svd_Layer_2 == 4) {
1021 if (m_ExpertLevel) {
1022 h_Lyr4[svd_Ladder_1][svd_Sensor_1]->Fill(0., svd_1->getPosition());
1023 h_Lyr4[svd_Ladder_2][svd_Sensor_2]->Fill(0., svd_2->getPosition());
1024 }
1025 h_V_DeltaRes_SVD_Lyr4->Fill(over_V_SVD);
1026 h_DeltaResVPhi_Lyr4->Fill(svdPhi_1, over_V_SVD);
1027 h_DeltaResVPhi_Lyr4->Fill(svdPhi_2, over_V_SVD);
1028 h_DeltaResVz_Lyr4->Fill(svdZ_1, over_V_SVD);
1029 h_DeltaResVz_Lyr4->Fill(svdZ_2, over_V_SVD);
1030 }
1031 if (svd_Layer_1 == 5 && svd_Layer_2 == 5) {
1032 if (m_ExpertLevel) {
1033 h_Lyr5[svd_Ladder_1][svd_Sensor_1]->Fill(0., svd_1->getPosition());
1034 h_Lyr6[svd_Ladder_2][svd_Sensor_2]->Fill(0., svd_2->getPosition());
1035 }
1036 h_V_DeltaRes_SVD_Lyr5->Fill(over_V_SVD);
1037 h_DeltaResVPhi_Lyr5->Fill(svdPhi_1, over_V_SVD);
1038 h_DeltaResVPhi_Lyr5->Fill(svdPhi_2, over_V_SVD);
1039 h_DeltaResVz_Lyr5->Fill(svdZ_1, over_V_SVD);
1040 h_DeltaResVz_Lyr5->Fill(svdZ_2, over_V_SVD);
1041 }
1042 if (svd_Layer_1 == 6 && svd_Layer_2 == 6) {
1043 if (m_ExpertLevel) {
1044 h_Lyr6[svd_Ladder_1][svd_Sensor_1]->Fill(0., svd_1->getPosition());
1045 h_Lyr6[svd_Ladder_2][svd_Sensor_2]->Fill(0., svd_2->getPosition());
1046 }
1047 h_V_DeltaRes_SVD_Lyr6->Fill(over_V_SVD);
1048 h_DeltaResVPhi_Lyr6->Fill(svdPhi_1, over_V_SVD);
1049 h_DeltaResVPhi_Lyr6->Fill(svdPhi_2, over_V_SVD);
1050 h_DeltaResVz_Lyr6->Fill(svdZ_1, over_V_SVD);
1051 h_DeltaResVz_Lyr6->Fill(svdZ_2, over_V_SVD);
1052 }
1053 }
1054 }
1055 }
1056 }
1057 }
1058}
static const ChargedStable pion
charged pion particle
Definition: Const.h:661
bool isMC() const
Do we have generated, not real data?
Definition: Environment.cc:54
static Environment & Instance()
Static method to get a reference to the Environment instance.
Definition: Environment.cc:28
The PXD Cluster class This class stores all information about reconstructed PXD clusters The position...
Definition: PXDCluster.h:30
float getV() const
Get v coordinate of hit position.
Definition: PXDCluster.h:136
VxdID getSensorID() const
Get the sensor ID.
Definition: PXDCluster.h:126
float getU() const
Get u coordinate of hit position.
Definition: PXDCluster.h:131
This class stores additional information to every CDC/SVD/PXD hit stored in a RecoTrack.
Class for type safe access to objects that are referred to in relations.
size_t size() const
Get number of relations.
The SVD Cluster class This class stores all information about reconstructed SVD clusters.
Definition: SVDCluster.h:29
float getClsTime() const
Get average of waveform maximum times of cluster strip signals.
Definition: SVDCluster.h:134
float getSNR() const
Get cluster SNR.
Definition: SVDCluster.h:159
unsigned short getSize() const
Get cluster size.
Definition: SVDCluster.h:154
float getCharge() const
Get collected charge.
Definition: SVDCluster.h:144
VxdID getSensorID() const
Get the sensor ID.
Definition: SVDCluster.h:102
bool isUCluster() const
Get the direction of strips.
Definition: SVDCluster.h:110
float getPosition(double v=0) const
Get the coordinate of reconstructed hit.
Definition: SVDCluster.h:117
float getPositionSigma() const
Get the error of the reconstructed hit coordinate.
Definition: SVDCluster.h:129
The SVD ShaperDigit class.
APVFloatSamples getSamples() const
Get array of samples.
Accessor to arrays stored in the data store.
Definition: StoreArray.h:113
Values of the result of a track fit with a given particle hypothesis.
ROOT::Math::PxPyPzEVector get4Momentum() const
Getter for the 4Momentum at the closest approach of the track in the r/phi projection.
double getD0() const
Getter for d0.
double getZ0() const
Getter for z0.
ROOT::Math::XYZVector getMomentum() const
Getter for vector of momentum at closest approach of track in r/phi projection.
Class to faciliate easy access to sensor information of the VXD like coordinate transformations or pi...
Definition: GeoCache.h:39
const SensorInfoBase & getSensorInfo(Belle2::VxdID id) const
Return a referecne to the SensorInfo of a given SensorID.
Definition: GeoCache.cc:67
static GeoCache & getInstance()
Return a reference to the singleton instance.
Definition: GeoCache.cc:214
Base class to provide Sensor Information for PXD and SVD.
double getVCellPosition(int vID) const
Return the position of a specific strip/pixel in v direction.
double getUCellPosition(int uID, int vID=-1) const
Return the position of a specific strip/pixel in u direction.
ROOT::Math::XYZVector pointToGlobal(const ROOT::Math::XYZVector &local, bool reco=false) const
Convert a point from local to global coordinates.
double getThickness() const
Return the thickness of the sensor.
Class to uniquely identify a any structure of the PXD and SVD.
Definition: VxdID.h:33
baseType getSensorNumber() const
Get the sensor id.
Definition: VxdID.h:100
baseType getLadderNumber() const
Get the ladder id.
Definition: VxdID.h:98
baseType getLayerNumber() const
Get the layer id.
Definition: VxdID.h:96
static double convertValueToUnit(double value, const std::string &unitString)
Converts a floating point value from the standard framework unit to the given unit.
Definition: UnitConst.cc:139
double sqrt(double a)
sqrt for double
Definition: beamHelpers.h:28

◆ exposePythonAPI()

void exposePythonAPI ( )
staticinherited

Exposes methods of the Module class to Python.

Definition at line 325 of file Module.cc.

326{
327 // to avoid confusion between std::arg and boost::python::arg we want a shorthand namespace as well
328 namespace bp = boost::python;
329
330 docstring_options options(true, true, false); //userdef, py sigs, c++ sigs
331
332 void (Module::*setReturnValueInt)(int) = &Module::setReturnValue;
333
334 enum_<Module::EAfterConditionPath>("AfterConditionPath",
335 R"(Determines execution behaviour after a conditional path has been executed:
336
337.. attribute:: END
338
339 End processing of this path after the conditional path. (this is the default for if_value() etc.)
340
341.. attribute:: CONTINUE
342
343 After the conditional path, resume execution after this module.)")
344 .value("END", Module::EAfterConditionPath::c_End)
345 .value("CONTINUE", Module::EAfterConditionPath::c_Continue)
346 ;
347
348 /* Do not change the names of >, <, ... we use them to serialize conditional pathes */
349 enum_<Belle2::ModuleCondition::EConditionOperators>("ConditionOperator")
356 ;
357
358 enum_<Module::EModulePropFlags>("ModulePropFlags",
359 R"(Flags to indicate certain low-level features of modules, see :func:`Module.set_property_flags()`, :func:`Module.has_properties()`. Most useful flags are:
360
361.. attribute:: PARALLELPROCESSINGCERTIFIED
362
363 This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)
364
365.. attribute:: HISTOGRAMMANAGER
366
367 This module is used to manage histograms accumulated by other modules
368
369.. attribute:: TERMINATEINALLPROCESSES
370
371 When using parallel processing, call this module's terminate() function in all processes. This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.
372)")
373 .value("INPUT", Module::EModulePropFlags::c_Input)
374 .value("OUTPUT", Module::EModulePropFlags::c_Output)
375 .value("PARALLELPROCESSINGCERTIFIED", Module::EModulePropFlags::c_ParallelProcessingCertified)
376 .value("HISTOGRAMMANAGER", Module::EModulePropFlags::c_HistogramManager)
377 .value("INTERNALSERIALIZER", Module::EModulePropFlags::c_InternalSerializer)
378 .value("TERMINATEINALLPROCESSES", Module::EModulePropFlags::c_TerminateInAllProcesses)
379 ;
380
381 //Python class definition
382 class_<Module, PyModule> module("Module", R"(
383Base class for Modules.
384
385A module is the smallest building block of the framework.
386A typical event processing chain consists of a Path containing
387modules. By inheriting from this base class, various types of
388modules can be created. To use a module, please refer to
389:func:`Path.add_module()`. A list of modules is available by running
390``basf2 -m`` or ``basf2 -m package``, detailed information on parameters is
391given by e.g. ``basf2 -m RootInput``.
392
393The 'Module Development' section in the manual provides detailed information
394on how to create modules, setting parameters, or using return values/conditions:
395https://xwiki.desy.de/xwiki/rest/p/f4fa4/#HModuleDevelopment
396
397)");
398 module
399 .def("__str__", &Module::getPathString)
400 .def("name", &Module::getName, return_value_policy<copy_const_reference>(),
401 "Returns the name of the module. Can be changed via :func:`set_name() <Module.set_name()>`, use :func:`type() <Module.type()>` for identifying a particular module class.")
402 .def("type", &Module::getType, return_value_policy<copy_const_reference>(),
403 "Returns the type of the module (i.e. class name minus 'Module')")
404 .def("set_name", &Module::setName, args("name"), R"(
405Set custom name, e.g. to distinguish multiple modules of the same type.
406
407>>> path.add_module('EventInfoSetter')
408>>> ro = path.add_module('RootOutput', branchNames=['EventMetaData'])
409>>> ro.set_name('RootOutput_metadata_only')
410>>> print(path)
411[EventInfoSetter -> RootOutput_metadata_only]
412
413)")
414 .def("description", &Module::getDescription, return_value_policy<copy_const_reference>(),
415 "Returns the description of this module.")
416 .def("package", &Module::getPackage, return_value_policy<copy_const_reference>(),
417 "Returns the package this module belongs to.")
418 .def("available_params", &_getParamInfoListPython,
419 "Return list of all module parameters as `ModuleParamInfo` instances")
420 .def("has_properties", &Module::hasProperties, (bp::arg("properties")),
421 R"DOCSTRING(Allows to check if the module has the given properties out of `ModulePropFlags` set.
422
423>>> if module.has_properties(ModulePropFlags.PARALLELPROCESSINGCERTIFIED):
424>>> ...
425
426Parameters:
427 properties (int): bitmask of `ModulePropFlags` to check for.
428)DOCSTRING")
429 .def("set_property_flags", &Module::setPropertyFlags, args("property_mask"),
430 "Set module properties in the form of an OR combination of `ModulePropFlags`.");
431 {
432 // python signature is too crowded, make ourselves
433 docstring_options subOptions(true, false, false); //userdef, py sigs, c++ sigs
434 module
435 .def("if_value", &Module::if_value,
436 (bp::arg("expression"), bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
437 R"DOCSTRING(if_value(expression, condition_path, after_condition_path=AfterConditionPath.END)
438
439Sets a conditional sub path which will be executed after this
440module if the return value set in the module passes the given ``expression``.
441
442Modules can define a return value (int or bool) using ``setReturnValue()``,
443which can be used in the steering file to split the Path based on this value, for example
444
445>>> module_with_condition.if_value("<1", another_path)
446
447In case the return value of the ``module_with_condition`` for a given event is
448less than 1, the execution will be diverted into ``another_path`` for this event.
449
450You could for example set a special return value if an error occurs, and divert
451the execution into a path containing :b2:mod:`RootOutput` if it is found;
452saving only the data producing/produced by the error.
453
454After a conditional path has executed, basf2 will by default stop processing
455the path for this event. This behaviour can be changed by setting the
456``after_condition_path`` argument.
457
458Parameters:
459 expression (str): Expression to determine if the conditional path should be executed.
460 This should be one of the comparison operators ``<``, ``>``, ``<=``,
461 ``>=``, ``==``, or ``!=`` followed by a numerical value for the return value
462 condition_path (Path): path to execute in case the expression is fulfilled
463 after_condition_path (AfterConditionPath): What to do once the ``condition_path`` has been executed.
464)DOCSTRING")
465 .def("if_false", &Module::if_false,
466 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
467 R"DOC(if_false(condition_path, after_condition_path=AfterConditionPath.END)
468
469Sets a conditional sub path which will be executed after this module if
470the return value of the module evaluates to False. This is equivalent to
471calling `if_value` with ``expression=\"<1\"``)DOC")
472 .def("if_true", &Module::if_true,
473 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
474 R"DOC(if_true(condition_path, after_condition_path=AfterConditionPath.END)
475
476Sets a conditional sub path which will be executed after this module if
477the return value of the module evaluates to True. It is equivalent to
478calling `if_value` with ``expression=\">=1\"``)DOC");
479 }
480 module
481 .def("has_condition", &Module::hasCondition,
482 "Return true if a conditional path has been set for this module "
483 "using `if_value`, `if_true` or `if_false`")
484 .def("get_all_condition_paths", &_getAllConditionPathsPython,
485 "Return a list of all conditional paths set for this module using "
486 "`if_value`, `if_true` or `if_false`")
487 .def("get_all_conditions", &_getAllConditionsPython,
488 "Return a list of all conditional path expressions set for this module using "
489 "`if_value`, `if_true` or `if_false`")
490 .add_property("logging", make_function(&Module::getLogConfig, return_value_policy<reference_existing_object>()),
@ c_GE
Greater or equal than: ">=".
@ c_SE
Smaller or equal than: "<=".
@ c_GT
Greater than: ">"
@ c_NE
Not equal: "!=".
@ c_EQ
Equal: "=" or "=="
@ c_ST
Smaller than: "<"
Base class for Modules.
Definition: Module.h:72
LogConfig & getLogConfig()
Returns the log system configuration.
Definition: Module.h:225
void if_value(const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
Add a condition to the module.
Definition: Module.cc:79
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
Definition: Module.cc:208
void if_true(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to set the condition of the module.
Definition: Module.cc:90
void setReturnValue(int value)
Sets the return value for this module as integer.
Definition: Module.cc:220
void setLogConfig(const LogConfig &logConfig)
Set the log system configuration.
Definition: Module.h:230
const std::string & getDescription() const
Returns the description of the module.
Definition: Module.h:202
void if_false(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to add a condition to the module.
Definition: Module.cc:85
bool hasCondition() const
Returns true if at least one condition was set for the module.
Definition: Module.h:311
const std::string & getPackage() const
Returns the package this module is in.
Definition: Module.h:197
void setName(const std::string &name)
Set the name of the module.
Definition: Module.h:214
bool hasProperties(unsigned int propertyFlags) const
Returns true if all specified property flags are available in this module.
Definition: Module.cc:160
std::string getPathString() const override
return the module name.
Definition: Module.cc:192

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 133 of file Module.cc.

134{
135 if (m_conditions.empty()) return EAfterConditionPath::c_End;
136
137 //okay, a condition was set for this Module...
138 if (!m_hasReturnValue) {
139 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
140 }
141
142 for (const auto& condition : m_conditions) {
143 if (condition.evaluate(m_returnValue)) {
144 return condition.getAfterConditionPath();
145 }
146 }
147
148 return EAfterConditionPath::c_End;
149}

◆ getAllConditionPaths()

std::vector< std::shared_ptr< Path > > getAllConditionPaths ( ) const
inherited

Return all condition paths currently set (no matter if the condition is true or not).

Definition at line 150 of file Module.cc.

151{
152 std::vector<std::shared_ptr<Path>> allConditionPaths;
153 for (const auto& condition : m_conditions) {
154 allConditionPaths.push_back(condition.getPath());
155 }
156
157 return allConditionPaths;
158}

◆ getAllConditions()

const std::vector< ModuleCondition > & getAllConditions ( ) const
inlineinherited

Return all set conditions for this module.

Definition at line 324 of file Module.h.

325 {
326 return m_conditions;
327 }

◆ getCondition()

const ModuleCondition * getCondition ( ) const
inlineinherited

Return a pointer to the first condition (or nullptr, if none was set)

Definition at line 314 of file Module.h.

315 {
316 if (m_conditions.empty()) {
317 return nullptr;
318 } else {
319 return &m_conditions.front();
320 }
321 }

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 113 of file Module.cc.

114{
115 PathPtr p;
116 if (m_conditions.empty()) return p;
117
118 //okay, a condition was set for this Module...
119 if (!m_hasReturnValue) {
120 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
121 }
122
123 for (const auto& condition : m_conditions) {
124 if (condition.evaluate(m_returnValue)) {
125 return condition.getPath();
126 }
127 }
128
129 // if none of the conditions were true, return a null pointer.
130 return p;
131}
std::shared_ptr< Path > PathPtr
Defines a pointer to a path object as a boost shared pointer.
Definition: Path.h:35

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Returns the description of the module.

Definition at line 202 of file Module.h.

202{return m_description;}
std::string m_description
The description of the module.
Definition: Module.h:511

◆ getFileNames()

virtual std::vector< std::string > getFileNames ( bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Reimplemented in RootInputModule, StorageRootOutputModule, and RootOutputModule.

Definition at line 134 of file Module.h.

135 {
136 return std::vector<std::string>();
137 }

◆ getLogConfig()

LogConfig & getLogConfig ( )
inlineinherited

Returns the log system configuration.

Definition at line 225 of file Module.h.

225{return m_logConfig;}

◆ getModules()

std::list< ModulePtr > getModules ( ) const
inlineoverrideprivatevirtualinherited

no submodules, return empty list

Implements PathElement.

Definition at line 506 of file Module.h.

506{ return std::list<ModulePtr>(); }

◆ getName()

const std::string & getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 187 of file Module.h.

187{return m_name;}
std::string m_name
The name of the module, saved as a string (user-modifiable)
Definition: Module.h:508

◆ getPackage()

const std::string & getPackage ( ) const
inlineinherited

Returns the package this module is in.

Definition at line 197 of file Module.h.

197{return m_package;}

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 279 of file Module.cc.

280{
282}
std::shared_ptr< boost::python::list > getParamInfoListPython() const
Returns a python list of all parameters.
ModuleParamList m_moduleParamList
List storing and managing all parameter of the module.
Definition: Module.h:516

◆ getParamList()

const ModuleParamList & getParamList ( ) const
inlineinherited

Return module param list.

Definition at line 363 of file Module.h.

363{ return m_moduleParamList; }

◆ getPathString()

std::string getPathString ( ) const
overrideprivatevirtualinherited

return the module name.

Implements PathElement.

Definition at line 192 of file Module.cc.

193{
194
195 std::string output = getName();
196
197 for (const auto& condition : m_conditions) {
198 output += condition.getString();
199 }
200
201 return output;
202}

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 381 of file Module.h.

381{ return m_returnValue; }

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 41 of file Module.cc.

42{
43 if (m_type.empty())
44 B2FATAL("Module type not set for " << getName());
45 return m_type;
46}
std::string m_type
The type of the module, saved as a string.
Definition: Module.h:509

◆ hasCondition()

bool hasCondition ( ) const
inlineinherited

Returns true if at least one condition was set for the module.

Definition at line 311 of file Module.h.

311{ return not m_conditions.empty(); };

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 160 of file Module.cc.

161{
162 return (propertyFlags & m_propertyFlags) == propertyFlags;
163}

◆ hasReturnValue()

bool hasReturnValue ( ) const
inlineinherited

Return true if this module has a valid return value set.

Definition at line 378 of file Module.h.

378{ return m_hasReturnValue; }

◆ hasUnsetForcedParams()

bool hasUnsetForcedParams ( ) const
inherited

Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.

Definition at line 166 of file Module.cc.

167{
169 std::string allMissing = "";
170 for (const auto& s : missing)
171 allMissing += s + " ";
172 if (!missing.empty())
173 B2ERROR("The following required parameters of Module '" << getName() << "' were not specified: " << allMissing <<
174 "\nPlease add them to your steering file.");
175 return !missing.empty();
176}
std::vector< std::string > getUnsetForcedParams() const
Returns list of unset parameters (if they are required to have a value.

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 85 of file Module.cc.

86{
87 if_value("<1", path, afterConditionPath);
88}

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 90 of file Module.cc.

91{
92 if_value(">=1", path, afterConditionPath);
93}

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://xwiki.desy.de/xwiki/rest/p/a94f2 or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 79 of file Module.cc.

80{
81 m_conditions.emplace_back(expression, path, afterConditionPath);
82}

◆ initialize()

void initialize ( void  )
overridevirtual

Register input and output data.

Reimplemented from HistoModule.

Definition at line 56 of file OverlapResidualsModule.cc.

57{
59 recoTracks.isOptional();
60 //Register histograms (calls back defineHisto)
61 REG_HISTOGRAM
62}

◆ setAbortLevel()

void setAbortLevel ( int  abortLevel)
inherited

Configure the abort log level.

Definition at line 67 of file Module.cc.

68{
69 m_logConfig.setAbortLevel(static_cast<LogConfig::ELogLevel>(abortLevel));
70}
ELogLevel
Definition of the supported log levels.
Definition: LogConfig.h:26
void setAbortLevel(ELogLevel abortLevel)
Configure the abort level.
Definition: LogConfig.h:112

◆ setDebugLevel()

void setDebugLevel ( int  debugLevel)
inherited

Configure the debug messaging level.

Definition at line 61 of file Module.cc.

62{
63 m_logConfig.setDebugLevel(debugLevel);
64}
void setDebugLevel(int debugLevel)
Configure the debug messaging level.
Definition: LogConfig.h:98

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 214 of file Module.cc.

215{
216 m_description = description;
217}

◆ setLogConfig()

void setLogConfig ( const LogConfig logConfig)
inlineinherited

Set the log system configuration.

Definition at line 230 of file Module.h.

230{m_logConfig = logConfig;}

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 73 of file Module.cc.

74{
75 m_logConfig.setLogInfo(static_cast<LogConfig::ELogLevel>(logLevel), logInfo);
76}
void setLogInfo(ELogLevel logLevel, unsigned int logInfo)
Configure the printed log information for the given level.
Definition: LogConfig.h:127

◆ setLogLevel()

void setLogLevel ( int  logLevel)
inherited

Configure the log level.

Definition at line 55 of file Module.cc.

56{
57 m_logConfig.setLogLevel(static_cast<LogConfig::ELogLevel>(logLevel));
58}
void setLogLevel(ELogLevel logLevel)
Configure the log level.
Definition: LogConfig.cc:25

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 214 of file Module.h.

214{ m_name = name; };

◆ setParamList()

void setParamList ( const ModuleParamList params)
inlineprotectedinherited

Replace existing parameter list.

Definition at line 501 of file Module.h.

501{ m_moduleParamList = params; }

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 234 of file Module.cc.

235{
236 LogSystem& logSystem = LogSystem::Instance();
237 logSystem.updateModule(&(getLogConfig()), getName());
238 try {
240 } catch (std::runtime_error& e) {
241 throw std::runtime_error("Cannot set parameter '" + name + "' for module '"
242 + m_name + "': " + e.what());
243 }
244
245 logSystem.updateModule(nullptr);
246}
Class for logging debug, info and error messages.
Definition: LogSystem.h:46
void updateModule(const LogConfig *moduleLogConfig=nullptr, const std::string &moduleName="")
Sets the log configuration to the given module log configuration and sets the module name This method...
Definition: LogSystem.h:191
static LogSystem & Instance()
Static method to get a reference to the LogSystem instance.
Definition: LogSystem.cc:31
void setParamPython(const std::string &name, const PythonObject &pyObj)
Implements a method for setting boost::python objects.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 249 of file Module.cc.

250{
251
252 LogSystem& logSystem = LogSystem::Instance();
253 logSystem.updateModule(&(getLogConfig()), getName());
254
255 boost::python::list dictKeys = dictionary.keys();
256 int nKey = boost::python::len(dictKeys);
257
258 //Loop over all keys in the dictionary
259 for (int iKey = 0; iKey < nKey; ++iKey) {
260 boost::python::object currKey = dictKeys[iKey];
261 boost::python::extract<std::string> keyProxy(currKey);
262
263 if (keyProxy.check()) {
264 const boost::python::object& currValue = dictionary[currKey];
265 setParamPython(keyProxy, currValue);
266 } else {
267 B2ERROR("Setting the module parameters from a python dictionary: invalid key in dictionary!");
268 }
269 }
270
271 logSystem.updateModule(nullptr);
272}
void setParamPython(const std::string &name, const boost::python::object &pyObj)
Implements a method for setting boost::python objects.
Definition: Module.cc:234

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 208 of file Module.cc.

209{
210 m_propertyFlags = propertyFlags;
211}

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 227 of file Module.cc.

228{
229 m_hasReturnValue = true;
230 m_returnValue = value;
231}

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 220 of file Module.cc.

221{
222 m_hasReturnValue = true;
223 m_returnValue = value;
224}

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 48 of file Module.cc.

49{
50 if (!m_type.empty())
51 B2FATAL("Trying to change module type from " << m_type << " is not allowed, the value is assumed to be fixed.");
52 m_type = type;
53}

◆ terminate()

Member Data Documentation

◆ deltaResU_PXD

float deltaResU_PXD = 0
private

tree t_PXD branch deltaResU/F

Definition at line 161 of file OverlapResidualsModule.h.

◆ extLadder_PXD

unsigned int extLadder_PXD = 0
private

tree t_PXD branch extLadder_PXD/i

Definition at line 178 of file OverlapResidualsModule.h.

◆ extLayer_PXD

unsigned int extLayer_PXD = 0
private

tree t_PXD branch extLayer_PXD/i

Definition at line 177 of file OverlapResidualsModule.h.

◆ extPhi_PXD

float extPhi_PXD = 0
private

tree t_PXD branch extPhi/PXD/F

Definition at line 172 of file OverlapResidualsModule.h.

◆ extResU_PXD

float extResU_PXD = 0
private

tree t_PXD branch extResU_PXD/F

Definition at line 168 of file OverlapResidualsModule.h.

◆ extResV_PXD

float extResV_PXD = 0
private

tree t_PXD branch extResV_PXD/F

Definition at line 169 of file OverlapResidualsModule.h.

◆ extSensor_PXD

unsigned int extSensor_PXD = 0
private

tree t_PXD branch extSensor_PXD/i

Definition at line 179 of file OverlapResidualsModule.h.

◆ extU_PXD

float extU_PXD = 0
private

tree t_PXD branch extU_PXD/F

Definition at line 170 of file OverlapResidualsModule.h.

◆ extV_PXD

float extV_PXD = 0
private

tree t_PXD branch extV_PXD/F

Definition at line 171 of file OverlapResidualsModule.h.

◆ extZ_PXD

float extZ_PXD = 0
private

tree t_PXD branch extZ_PXD/F

Definition at line 173 of file OverlapResidualsModule.h.

◆ h_DeltaResUPhi_Lyr1

TH2F* h_DeltaResUPhi_Lyr1 = nullptr
private

2D Histogram of DeltaRes_u vs phi of VXD overlaps for layer 1

Definition at line 99 of file OverlapResidualsModule.h.

◆ h_DeltaResUPhi_Lyr2

TH2F* h_DeltaResUPhi_Lyr2 = nullptr
private

2D histogram of DeltaRes_u vs phi of VXD overlaps for layer 2

Definition at line 97 of file OverlapResidualsModule.h.

◆ h_DeltaResUPhi_Lyr3

TH2F* h_DeltaResUPhi_Lyr3 = nullptr
private

2D histogram of DeltaRes_u vs phi of VXD overlaps for layer 3

Definition at line 95 of file OverlapResidualsModule.h.

◆ h_DeltaResUPhi_Lyr4

TH2F* h_DeltaResUPhi_Lyr4 = nullptr
private

2D histogram of DeltaRes_u vs phi of VXD overlaps for layer 4

Definition at line 93 of file OverlapResidualsModule.h.

◆ h_DeltaResUPhi_Lyr5

TH2F* h_DeltaResUPhi_Lyr5 = nullptr
private

2D histogram of DeltaRes_u vs phi of VXD overlaps for layer 5

Definition at line 91 of file OverlapResidualsModule.h.

◆ h_DeltaResUPhi_Lyr6

TH2F* h_DeltaResUPhi_Lyr6 = nullptr
private

2D histogram of DeltaRes_u vs phi of VXD overlaps for layer 6

Definition at line 89 of file OverlapResidualsModule.h.

◆ h_DeltaResUz_Lyr1

TH2F* h_DeltaResUz_Lyr1 = nullptr
private

2D histogram of DeltaRes_u vs z of VXD overlaps for layer 1

Definition at line 111 of file OverlapResidualsModule.h.

◆ h_DeltaResUz_Lyr2

TH2F* h_DeltaResUz_Lyr2 = nullptr
private

2D histogram of DeltaRes_u vs z of VXD overlaps for layer 2

Definition at line 109 of file OverlapResidualsModule.h.

◆ h_DeltaResUz_Lyr3

TH2F* h_DeltaResUz_Lyr3 = nullptr
private

2D histogram of DeltaRes_u vs z of VXD overlaps for layer 3

Definition at line 107 of file OverlapResidualsModule.h.

◆ h_DeltaResUz_Lyr4

TH2F* h_DeltaResUz_Lyr4 = nullptr
private

2D histogram of DeltaRes_u vs z of VXD overlaps for layer 4

Definition at line 105 of file OverlapResidualsModule.h.

◆ h_DeltaResUz_Lyr5

TH2F* h_DeltaResUz_Lyr5 = nullptr
private

2D histogram of DeltaRes_u vs z of VXD overlaps for layer 5

Definition at line 103 of file OverlapResidualsModule.h.

◆ h_DeltaResUz_Lyr6

TH2F* h_DeltaResUz_Lyr6 = nullptr
private

2D histogram of DeltaRes_u vs z of VXD overlaps for layer 6

Definition at line 101 of file OverlapResidualsModule.h.

◆ h_DeltaResVPhi_Lyr1

TH2F* h_DeltaResVPhi_Lyr1 = nullptr
private

2D histogram of DeltaRes_v vs phi of VXD overlaps for layer 1

Definition at line 135 of file OverlapResidualsModule.h.

◆ h_DeltaResVPhi_Lyr2

TH2F* h_DeltaResVPhi_Lyr2 = nullptr
private

2D histogram of DeltaRes_v vs phi of VXD overlaps for layer 2

Definition at line 133 of file OverlapResidualsModule.h.

◆ h_DeltaResVPhi_Lyr3

TH2F* h_DeltaResVPhi_Lyr3 = nullptr
private

2D histogram of DeltaRes_v vs phi of VXD overlaps for layer 3

Definition at line 131 of file OverlapResidualsModule.h.

◆ h_DeltaResVPhi_Lyr4

TH2F* h_DeltaResVPhi_Lyr4 = nullptr
private

2D histogram of DeltaRes_v vs phi of VXD overlaps for layer 4

Definition at line 129 of file OverlapResidualsModule.h.

◆ h_DeltaResVPhi_Lyr5

TH2F* h_DeltaResVPhi_Lyr5 = nullptr
private

2D histogram of DeltaRes_v vs phi of VXD overlaps for layer 5

Definition at line 127 of file OverlapResidualsModule.h.

◆ h_DeltaResVPhi_Lyr6

TH2F* h_DeltaResVPhi_Lyr6 = nullptr
private

2D histogram of DeltaRes_v vs phi of VXD overlaps for layer 6

Definition at line 125 of file OverlapResidualsModule.h.

◆ h_DeltaResVz_Lyr1

TH2F* h_DeltaResVz_Lyr1 = nullptr
private

2D histogram of DeltaRes_v vs z of VXD overlaps for layer 1

Definition at line 123 of file OverlapResidualsModule.h.

◆ h_DeltaResVz_Lyr2

TH2F* h_DeltaResVz_Lyr2 = nullptr
private

2D histogram of DeltaRes_v vs z of VXD overlaps for layer 2

Definition at line 121 of file OverlapResidualsModule.h.

◆ h_DeltaResVz_Lyr3

TH2F* h_DeltaResVz_Lyr3 = nullptr
private

2D histogram of DeltaRes_v vs z of VXD overlaps for layer 3

Definition at line 119 of file OverlapResidualsModule.h.

◆ h_DeltaResVz_Lyr4

TH2F* h_DeltaResVz_Lyr4 = nullptr
private

2D histogram of DeltaRes_v vs z of VXD overlaps for layer 4

Definition at line 117 of file OverlapResidualsModule.h.

◆ h_DeltaResVz_Lyr5

TH2F* h_DeltaResVz_Lyr5 = nullptr
private

2D histogram of DeltaRes_v vs z of VXD overlaps for layer 5

Definition at line 115 of file OverlapResidualsModule.h.

◆ h_DeltaResVz_Lyr6

TH2F* h_DeltaResVz_Lyr6 = nullptr
private

2D histogram of DeltaRes_v vs z of VXD overlaps for layer 6

Definition at line 113 of file OverlapResidualsModule.h.

◆ h_Lyr1

TH2F* h_Lyr1[9][3] = {{nullptr}}
private

Sensor hit-map for layer 1 from reconstructed u and v coordinates.

Definition at line 153 of file OverlapResidualsModule.h.

◆ h_Lyr2

TH2F* h_Lyr2[13][3] = {{nullptr}}
private

Sensor hit-map for layer 2 from reconstructed u and v coordinates.

Definition at line 151 of file OverlapResidualsModule.h.

◆ h_Lyr3

TH2F* h_Lyr3[8][3] = {{nullptr}}
private

Sensor hit-map for layer 3 from reconstructed u and v coordinates.

Definition at line 149 of file OverlapResidualsModule.h.

◆ h_Lyr4

TH2F* h_Lyr4[11][4] = {{nullptr}}
private

Sensor hit-map for layer 4 from reconstructed u and v coordinates.

Definition at line 147 of file OverlapResidualsModule.h.

◆ h_Lyr5

TH2F* h_Lyr5[13][5] = {{nullptr}}
private

Sensor hit-map for layer 5 from reconstructed u and v coordinates.

Definition at line 145 of file OverlapResidualsModule.h.

◆ h_Lyr6

TH2F* h_Lyr6[17][6] = {{nullptr}}
private

Sensor hit-map for layer 6 from reconstructed u and v coordinates.

Definition at line 143 of file OverlapResidualsModule.h.

◆ h_SVDstrips_Mult

TH1F* h_SVDstrips_Mult = nullptr
private

Histogram of SVD strips multiplicity.

Definition at line 137 of file OverlapResidualsModule.h.

◆ h_U_Cl1Cl2_DeltaRes

TH1F* h_U_Cl1Cl2_DeltaRes[5] = {nullptr}
private

Histogram of SVD differences of u-coordinate residuals grouped by clusters sizes.

Definition at line 139 of file OverlapResidualsModule.h.

◆ h_U_DeltaRes

TH1F* h_U_DeltaRes = nullptr
private

Histogram of VXD ( PXD + SVD ) differences of u-coordinate residuals.

Definition at line 53 of file OverlapResidualsModule.h.

◆ h_U_DeltaRes_PXD

TH1F* h_U_DeltaRes_PXD = nullptr
private

Histogram of PXD u-coordinate differences of residuals.

Definition at line 57 of file OverlapResidualsModule.h.

◆ h_U_DeltaRes_PXD_Lyr1

TH1F* h_U_DeltaRes_PXD_Lyr1 = nullptr
private

Histogram of PXD layer-1 u-coordinate differences of residuals.

Definition at line 59 of file OverlapResidualsModule.h.

◆ h_U_DeltaRes_PXD_Lyr2

TH1F* h_U_DeltaRes_PXD_Lyr2 = nullptr
private

Histogram of PXD layer-2 u-coordinate differences of residuals.

Definition at line 61 of file OverlapResidualsModule.h.

◆ h_U_DeltaRes_SVD

TH1F* h_U_DeltaRes_SVD = nullptr
private

Histogram of SVD u-coordinate differences of residuals.

Definition at line 69 of file OverlapResidualsModule.h.

◆ h_U_DeltaRes_SVD_Lyr3

TH1F* h_U_DeltaRes_SVD_Lyr3 = nullptr
private

Histogram of SVD layer-3 u-coordinate differences of residuals.

Definition at line 71 of file OverlapResidualsModule.h.

◆ h_U_DeltaRes_SVD_Lyr4

TH1F* h_U_DeltaRes_SVD_Lyr4 = nullptr
private

Histogram of SVD layer-4 u-coordinate differences of residuals.

Definition at line 73 of file OverlapResidualsModule.h.

◆ h_U_DeltaRes_SVD_Lyr5

TH1F* h_U_DeltaRes_SVD_Lyr5 = nullptr
private

Histogram of SVD layer-5 u-coordinate differences of residuals.

Definition at line 75 of file OverlapResidualsModule.h.

◆ h_U_DeltaRes_SVD_Lyr6

TH1F* h_U_DeltaRes_SVD_Lyr6 = nullptr
private

Histogram of SVD layer-6 u-coordinate differences of residuals.

Definition at line 77 of file OverlapResidualsModule.h.

◆ h_V_Cl1Cl2_DeltaRes

TH1F* h_V_Cl1Cl2_DeltaRes[5] = {nullptr}
private

Histogram of SVD differences of v-coordinate residuals grouped by clusters sizes.

Definition at line 141 of file OverlapResidualsModule.h.

◆ h_V_DeltaRes

TH1F* h_V_DeltaRes = nullptr
private

Histogram of VXD ( PXD + SVD ) differences of v-coordinate residuals.

Definition at line 55 of file OverlapResidualsModule.h.

◆ h_V_DeltaRes_PXD

TH1F* h_V_DeltaRes_PXD = nullptr
private

Histogram of PXD v-coordinate differences of residuals.

Definition at line 63 of file OverlapResidualsModule.h.

◆ h_V_DeltaRes_PXD_Lyr1

TH1F* h_V_DeltaRes_PXD_Lyr1 = nullptr
private

Histogram of PXD layer-1 v-coordinate differences of residuals.

Definition at line 65 of file OverlapResidualsModule.h.

◆ h_V_DeltaRes_PXD_Lyr2

TH1F* h_V_DeltaRes_PXD_Lyr2 = nullptr
private

Histogram of PXD layer-2 v-coordinate differences of residuals.

Definition at line 67 of file OverlapResidualsModule.h.

◆ h_V_DeltaRes_SVD

TH1F* h_V_DeltaRes_SVD = nullptr
private

Histogram of SVD v-coordinate differences of residuals.

Definition at line 79 of file OverlapResidualsModule.h.

◆ h_V_DeltaRes_SVD_Lyr3

TH1F* h_V_DeltaRes_SVD_Lyr3 = nullptr
private

Histogram of SVD layer-3 v-coordinate differences of residuals.

Definition at line 81 of file OverlapResidualsModule.h.

◆ h_V_DeltaRes_SVD_Lyr4

TH1F* h_V_DeltaRes_SVD_Lyr4 = nullptr
private

Histogram of SVD layer-4 v-coordinate differences of residuals.

Definition at line 83 of file OverlapResidualsModule.h.

◆ h_V_DeltaRes_SVD_Lyr5

TH1F* h_V_DeltaRes_SVD_Lyr5 = nullptr
private

Histogram of SVD layer-5 v-coordinate differences of residuals.

Definition at line 85 of file OverlapResidualsModule.h.

◆ h_V_DeltaRes_SVD_Lyr6

TH1F* h_V_DeltaRes_SVD_Lyr6 = nullptr
private

Histogram of SVD layer-6 v-coordinate differences of residuals.

Definition at line 87 of file OverlapResidualsModule.h.

◆ intLadder_PXD

unsigned int intLadder_PXD = 0
private

tree t_PXD branch intLadder_PXD/i

Definition at line 175 of file OverlapResidualsModule.h.

◆ intLayer_PXD

unsigned int intLayer_PXD = 0
private

tree t_PXD branch intLayer_PXD/i

Definition at line 174 of file OverlapResidualsModule.h.

◆ intPhi_PXD

float intPhi_PXD = 0
private

tree t_PXD branch intPhi_PXD/F

Definition at line 166 of file OverlapResidualsModule.h.

◆ intResU_PXD

float intResU_PXD = 0
private

tree t_PXD branch intResU_PXD/F

Definition at line 162 of file OverlapResidualsModule.h.

◆ intResV_PXD

float intResV_PXD = 0
private

tree t_PXD branch intResV/PXD/F

Definition at line 163 of file OverlapResidualsModule.h.

◆ intSensor_PXD

unsigned int intSensor_PXD = 0
private

tree t_PXD branch intSensor_PXD/i

Definition at line 176 of file OverlapResidualsModule.h.

◆ intU_PXD

float intU_PXD = 0
private

tree t_PXD branch intU_PXD/F

Definition at line 164 of file OverlapResidualsModule.h.

◆ intV_PXD

float intV_PXD = 0
private

tree t_PXD branch intV_PXD/F

Definition at line 165 of file OverlapResidualsModule.h.

◆ intZ_PXD

float intZ_PXD = 0
private

tree t_PXD branch intZ_PXD/F

Definition at line 167 of file OverlapResidualsModule.h.

◆ m_conditions

std::vector<ModuleCondition> m_conditions
privateinherited

Module condition, only non-null if set.

Definition at line 521 of file Module.h.

◆ m_description

std::string m_description
privateinherited

The description of the module.

Definition at line 511 of file Module.h.

◆ m_ExpertLevel

bool m_ExpertLevel
private

Expert level switch.

Definition at line 45 of file OverlapResidualsModule.h.

◆ m_hasReturnValue

bool m_hasReturnValue
privateinherited

True, if the return value is set.

Definition at line 518 of file Module.h.

◆ m_logConfig

LogConfig m_logConfig
privateinherited

The log system configuration of the module.

Definition at line 514 of file Module.h.

◆ m_moduleParamList

ModuleParamList m_moduleParamList
privateinherited

List storing and managing all parameter of the module.

Definition at line 516 of file Module.h.

◆ m_name

std::string m_name
privateinherited

The name of the module, saved as a string (user-modifiable)

Definition at line 508 of file Module.h.

◆ m_package

std::string m_package
privateinherited

Package this module is found in (may be empty).

Definition at line 510 of file Module.h.

◆ m_propertyFlags

unsigned int m_propertyFlags
privateinherited

The properties of the module as bitwise or (with |) of EModulePropFlags.

Definition at line 512 of file Module.h.

◆ m_pxdcluster

StoreArray<PXDCluster> m_pxdcluster
private

Array storing PXD clusters.

Definition at line 49 of file OverlapResidualsModule.h.

◆ m_recoTracksStoreArrayName

std::string m_recoTracksStoreArrayName {"RecoTracks"}
private

StoreArray name of the input and output RecoTracks.

Definition at line 47 of file OverlapResidualsModule.h.

◆ m_returnValue

int m_returnValue
privateinherited

The return value.

Definition at line 519 of file Module.h.

◆ m_svdcluster

StoreArray<SVDCluster> m_svdcluster
private

Array storing SVD clusters.

Definition at line 51 of file OverlapResidualsModule.h.

◆ m_type

std::string m_type
privateinherited

The type of the module, saved as a string.

Definition at line 509 of file Module.h.

◆ svdClCharge_U_ext

float svdClCharge_U_ext = 0
private

U external cluster charge.

Definition at line 208 of file OverlapResidualsModule.h.

◆ svdClCharge_U_int

float svdClCharge_U_int = 0
private

U internal cluster charge.

Definition at line 182 of file OverlapResidualsModule.h.

◆ svdClCharge_V_ext

float svdClCharge_V_ext = 0
private

V external cluster charge.

Definition at line 273 of file OverlapResidualsModule.h.

◆ svdClCharge_V_int

float svdClCharge_V_int = 0
private

V internal cluster charge.

Definition at line 251 of file OverlapResidualsModule.h.

◆ svdClIntStrPos_U_ext

float svdClIntStrPos_U_ext = 0
private

U external cluster interstrip position.

Definition at line 212 of file OverlapResidualsModule.h.

◆ svdClIntStrPos_U_int

float svdClIntStrPos_U_int = 0
private

U internal cluster interstrip position.

Definition at line 186 of file OverlapResidualsModule.h.

◆ svdClIntStrPos_V_ext

float svdClIntStrPos_V_ext = 0
private

V external cluster interstrip position.

Definition at line 277 of file OverlapResidualsModule.h.

◆ svdClIntStrPos_V_int

float svdClIntStrPos_V_int = 0
private

V internal cluster interstrip position.

Definition at line 255 of file OverlapResidualsModule.h.

◆ svdClPhi_U_ext

float svdClPhi_U_ext = 0
private

U external cluster global phi.

Definition at line 216 of file OverlapResidualsModule.h.

◆ svdClPhi_U_int

float svdClPhi_U_int = 0
private

U internal cluster global phi.

Definition at line 190 of file OverlapResidualsModule.h.

◆ svdClPhi_V_ext

float svdClPhi_V_ext = 0
private

V external cluster global phi.

Definition at line 281 of file OverlapResidualsModule.h.

◆ svdClPhi_V_int

float svdClPhi_V_int = 0
private

V internal cluster global phi.

Definition at line 259 of file OverlapResidualsModule.h.

◆ svdClPos_U_ext

float svdClPos_U_ext = 0
private

U external cluster position.

Definition at line 213 of file OverlapResidualsModule.h.

◆ svdClPos_U_int

float svdClPos_U_int = 0
private

U internal cluster position.

Definition at line 187 of file OverlapResidualsModule.h.

◆ svdClPos_V_ext

float svdClPos_V_ext = 0
private

V external cluster position.

Definition at line 278 of file OverlapResidualsModule.h.

◆ svdClPos_V_int

float svdClPos_V_int = 0
private

V internal cluster position.

Definition at line 256 of file OverlapResidualsModule.h.

◆ svdClPosErr_U_ext

float svdClPosErr_U_ext = 0
private

U external cluster position error.

Definition at line 214 of file OverlapResidualsModule.h.

◆ svdClPosErr_U_int

float svdClPosErr_U_int = 0
private

U internal cluster position error.

Definition at line 188 of file OverlapResidualsModule.h.

◆ svdClPosErr_V_ext

float svdClPosErr_V_ext = 0
private

V external cluster position error.

Definition at line 279 of file OverlapResidualsModule.h.

◆ svdClPosErr_V_int

float svdClPosErr_V_int = 0
private

V internal cluster position error.

Definition at line 257 of file OverlapResidualsModule.h.

◆ svdClSNR_U_ext

float svdClSNR_U_ext = 0
private

U external cluster SNR.

Definition at line 209 of file OverlapResidualsModule.h.

◆ svdClSNR_U_int

float svdClSNR_U_int = 0
private

U internal cluster SNR.

Definition at line 183 of file OverlapResidualsModule.h.

◆ svdClSNR_V_ext

float svdClSNR_V_ext = 0
private

V external cluster SNR.

Definition at line 274 of file OverlapResidualsModule.h.

◆ svdClSNR_V_int

float svdClSNR_V_int = 0
private

V internal cluster SNR.

Definition at line 252 of file OverlapResidualsModule.h.

◆ svdClTime_U_ext

float svdClTime_U_ext = 0
private

U external cluster time.

Definition at line 210 of file OverlapResidualsModule.h.

◆ svdClTime_U_int

float svdClTime_U_int = 0
private

U internal cluster time.

Definition at line 184 of file OverlapResidualsModule.h.

◆ svdClTime_V_ext

float svdClTime_V_ext = 0
private

V external cluster time.

Definition at line 275 of file OverlapResidualsModule.h.

◆ svdClTime_V_int

float svdClTime_V_int = 0
private

V internal cluster time.

Definition at line 253 of file OverlapResidualsModule.h.

◆ svdClZ_U_ext

float svdClZ_U_ext = 0
private

U external cluster global Z.

Definition at line 217 of file OverlapResidualsModule.h.

◆ svdClZ_U_int

float svdClZ_U_int = 0
private

U internal cluster global Z.

Definition at line 191 of file OverlapResidualsModule.h.

◆ svdClZ_V_ext

float svdClZ_V_ext = 0
private

V external cluster global Z.

Definition at line 282 of file OverlapResidualsModule.h.

◆ svdClZ_V_int

float svdClZ_V_int = 0
private

V internal cluster global Z.

Definition at line 260 of file OverlapResidualsModule.h.

◆ svdDeltaRes_U

float svdDeltaRes_U = 0
private

U difference between external and internal residual.

Definition at line 181 of file OverlapResidualsModule.h.

◆ svdDeltaRes_V

float svdDeltaRes_V = 0
private

V difference between external and internal residual.

Definition at line 250 of file OverlapResidualsModule.h.

◆ svdLadder_U_ext

unsigned int svdLadder_U_ext = 0
private

U external ladder.

Definition at line 238 of file OverlapResidualsModule.h.

◆ svdLadder_U_int

unsigned int svdLadder_U_int = 0
private

U internal ladder.

Definition at line 234 of file OverlapResidualsModule.h.

◆ svdLadder_V_ext

unsigned int svdLadder_V_ext = 0
private

V external ladder.

Definition at line 300 of file OverlapResidualsModule.h.

◆ svdLadder_V_int

unsigned int svdLadder_V_int = 0
private

V internal ladder.

Definition at line 296 of file OverlapResidualsModule.h.

◆ svdLayer_U_ext

unsigned int svdLayer_U_ext = 0
private

U external layer.

Definition at line 237 of file OverlapResidualsModule.h.

◆ svdLayer_U_int

unsigned int svdLayer_U_int = 0
private

U internal layer.

Definition at line 233 of file OverlapResidualsModule.h.

◆ svdLayer_V_ext

unsigned int svdLayer_V_ext = 0
private

V external layer.

Definition at line 299 of file OverlapResidualsModule.h.

◆ svdLayer_V_int

unsigned int svdLayer_V_int = 0
private

V internal layer.

Definition at line 295 of file OverlapResidualsModule.h.

◆ svdRes_U_ext

float svdRes_U_ext = 0
private

U external residual computed by genfit.

Definition at line 211 of file OverlapResidualsModule.h.

◆ svdRes_U_int

float svdRes_U_int = 0
private

U internal residual computed by genfit.

Definition at line 185 of file OverlapResidualsModule.h.

◆ svdRes_V_ext

float svdRes_V_ext = 0
private

V external residual computed by genfit.

Definition at line 276 of file OverlapResidualsModule.h.

◆ svdRes_V_int

float svdRes_V_int = 0
private

V internal residual computed by genfit.

Definition at line 254 of file OverlapResidualsModule.h.

◆ svdSensor_U_ext

unsigned int svdSensor_U_ext = 0
private

U external sensor.

Definition at line 239 of file OverlapResidualsModule.h.

◆ svdSensor_U_int

unsigned int svdSensor_U_int = 0
private

U internal sensor.

Definition at line 235 of file OverlapResidualsModule.h.

◆ svdSensor_V_ext

unsigned int svdSensor_V_ext = 0
private

V external sensor.

Definition at line 301 of file OverlapResidualsModule.h.

◆ svdSensor_V_int

unsigned int svdSensor_V_int = 0
private

V internal sensor.

Definition at line 297 of file OverlapResidualsModule.h.

◆ svdSize_U_ext

unsigned int svdSize_U_ext = 0
private

U external size.

Definition at line 240 of file OverlapResidualsModule.h.

◆ svdSize_U_int

unsigned int svdSize_U_int = 0
private

U internal size.

Definition at line 236 of file OverlapResidualsModule.h.

◆ svdSize_V_ext

unsigned int svdSize_V_ext = 0
private

V external size.

Definition at line 302 of file OverlapResidualsModule.h.

◆ svdSize_V_int

unsigned int svdSize_V_int = 0
private

V internal size.

Definition at line 298 of file OverlapResidualsModule.h.

◆ svdStrip6Samples_U_ext

std::vector<float> svdStrip6Samples_U_ext
private

U external 6 samples of the strips of the cluster.

For the nth strip of a given cluster the samples are the 6 elements of indices 6*n to (6*n)+5

Definition at line 246 of file OverlapResidualsModule.h.

◆ svdStrip6Samples_U_int

std::vector<float> svdStrip6Samples_U_int
private

U internal 6 samples of the strips of the cluster.

For the nth strip of a given cluster the samples are the 6 elements of indices 6*n to (6*n)+5

Definition at line 242 of file OverlapResidualsModule.h.

◆ svdStrip6Samples_V_ext

std::vector<float> svdStrip6Samples_V_ext
private

V external 6 samples of the strips of the cluster.

For the nth strip of a given cluster the samples are the 6 elements of indices 6*n to (6*n)+5

Definition at line 308 of file OverlapResidualsModule.h.

◆ svdStrip6Samples_V_int

std::vector<float> svdStrip6Samples_V_int
private

V internal 6 samples of the strips of the cluster.

For the nth strip of a given cluster the samples are the 6 elements of indices 6*n to (6*n)+5

Definition at line 304 of file OverlapResidualsModule.h.

◆ svdStripCharge_U_ext

std::vector<float> svdStripCharge_U_ext
private

U external charge of the strips of the cluster.

Definition at line 245 of file OverlapResidualsModule.h.

◆ svdStripCharge_U_int

std::vector<float> svdStripCharge_U_int
private

U internal charge of the strips of the cluster.

Definition at line 241 of file OverlapResidualsModule.h.

◆ svdStripCharge_V_ext

std::vector<float> svdStripCharge_V_ext
private

V external charge of the strips of the cluster.

Definition at line 307 of file OverlapResidualsModule.h.

◆ svdStripCharge_V_int

std::vector<float> svdStripCharge_V_int
private

V internal charge of the strips of the cluster.

Definition at line 303 of file OverlapResidualsModule.h.

◆ svdStripPosition_U_ext

std::vector<float> svdStripPosition_U_ext
private

U external position of the strips of the cluster.

Definition at line 248 of file OverlapResidualsModule.h.

◆ svdStripPosition_U_int

std::vector<float> svdStripPosition_U_int
private

U internal position of the strips of the cluster.

Definition at line 244 of file OverlapResidualsModule.h.

◆ svdStripPosition_V_ext

std::vector<float> svdStripPosition_V_ext
private

V external position of the strips of the cluster.

Definition at line 310 of file OverlapResidualsModule.h.

◆ svdStripPosition_V_int

std::vector<float> svdStripPosition_V_int
private

V internal position of the strips of the cluster.

Definition at line 306 of file OverlapResidualsModule.h.

◆ svdStripTime_U_ext

std::vector<float> svdStripTime_U_ext
private

U external time of the strips of the cluster.

Definition at line 247 of file OverlapResidualsModule.h.

◆ svdStripTime_U_int

std::vector<float> svdStripTime_U_int
private

U internal time of the strips of the cluster.

Definition at line 243 of file OverlapResidualsModule.h.

◆ svdStripTime_V_ext

std::vector<float> svdStripTime_V_ext
private

V external time of the strips of the cluster.

Definition at line 309 of file OverlapResidualsModule.h.

◆ svdStripTime_V_int

std::vector<float> svdStripTime_V_int
private

V internal time of the strips of the cluster.

Definition at line 305 of file OverlapResidualsModule.h.

◆ svdTrkCDCHits

int svdTrkCDCHits = 0
private

number of PXD hits on the track

Definition at line 232 of file OverlapResidualsModule.h.

◆ svdTrkd0

float svdTrkd0 = 0
private

d0 of the track

Definition at line 192 of file OverlapResidualsModule.h.

◆ svdTrkpCM

float svdTrkpCM = 0
private

pCM of the track

Definition at line 195 of file OverlapResidualsModule.h.

◆ svdTrkPos_U_ext

float svdTrkPos_U_ext = 0
private

U external track position.

Definition at line 219 of file OverlapResidualsModule.h.

◆ svdTrkPos_U_int

float svdTrkPos_U_int = 0
private

U internal track position.

Definition at line 197 of file OverlapResidualsModule.h.

◆ svdTrkPos_V_ext

float svdTrkPos_V_ext = 0
private

V external track position.

Definition at line 284 of file OverlapResidualsModule.h.

◆ svdTrkPos_V_int

float svdTrkPos_V_int = 0
private

V internal track position.

Definition at line 262 of file OverlapResidualsModule.h.

◆ svdTrkPosErr_U_ext

float svdTrkPosErr_U_ext = 0
private

U external track position error.

Definition at line 221 of file OverlapResidualsModule.h.

◆ svdTrkPosErr_U_int

float svdTrkPosErr_U_int = 0
private

U internal track position error.

Definition at line 199 of file OverlapResidualsModule.h.

◆ svdTrkPosErr_V_ext

float svdTrkPosErr_V_ext = 0
private

V external track position error.

Definition at line 286 of file OverlapResidualsModule.h.

◆ svdTrkPosErr_V_int

float svdTrkPosErr_V_int = 0
private

V internal track position error.

Definition at line 264 of file OverlapResidualsModule.h.

◆ svdTrkPosErrOS_U_ext

float svdTrkPosErrOS_U_ext = 0
private

U external track position error on the other side.

Definition at line 222 of file OverlapResidualsModule.h.

◆ svdTrkPosErrOS_U_int

float svdTrkPosErrOS_U_int = 0
private

U internal track position error on the other side.

Definition at line 200 of file OverlapResidualsModule.h.

◆ svdTrkPosErrOS_V_ext

float svdTrkPosErrOS_V_ext = 0
private

V external track position error on the other side.

Definition at line 287 of file OverlapResidualsModule.h.

◆ svdTrkPosErrOS_V_int

float svdTrkPosErrOS_V_int = 0
private

V internal track position error on the other side.

Definition at line 265 of file OverlapResidualsModule.h.

◆ svdTrkPosErrUnbiased_U_ext

float svdTrkPosErrUnbiased_U_ext = 0
private

U external unbiased track position error.

Definition at line 227 of file OverlapResidualsModule.h.

◆ svdTrkPosErrUnbiased_U_int

float svdTrkPosErrUnbiased_U_int = 0
private

U internal unbiased track position error.

Definition at line 205 of file OverlapResidualsModule.h.

◆ svdTrkPosErrUnbiased_V_ext

float svdTrkPosErrUnbiased_V_ext = 0
private

V external unbiased track position error.

Definition at line 292 of file OverlapResidualsModule.h.

◆ svdTrkPosErrUnbiased_V_int

float svdTrkPosErrUnbiased_V_int = 0
private

V internal unbiased track position error.

Definition at line 270 of file OverlapResidualsModule.h.

◆ svdTrkPosOS_U_ext

float svdTrkPosOS_U_ext = 0
private

U external track position on the other side.

Definition at line 220 of file OverlapResidualsModule.h.

◆ svdTrkPosOS_U_int

float svdTrkPosOS_U_int = 0
private

U internal track position on the other side.

Definition at line 198 of file OverlapResidualsModule.h.

◆ svdTrkPosOS_V_ext

float svdTrkPosOS_V_ext = 0
private

V external track position on the other side.

Definition at line 285 of file OverlapResidualsModule.h.

◆ svdTrkPosOS_V_int

float svdTrkPosOS_V_int = 0
private

V internal track position on the other side.

Definition at line 263 of file OverlapResidualsModule.h.

◆ svdTrkPosUnbiased_U_ext

float svdTrkPosUnbiased_U_ext = 0
private

U external unbiased track position.

Definition at line 226 of file OverlapResidualsModule.h.

◆ svdTrkPosUnbiased_U_int

float svdTrkPosUnbiased_U_int = 0
private

U internal unbiased track position.

Definition at line 204 of file OverlapResidualsModule.h.

◆ svdTrkPosUnbiased_V_ext

float svdTrkPosUnbiased_V_ext = 0
private

V external unbiased track position.

Definition at line 291 of file OverlapResidualsModule.h.

◆ svdTrkPosUnbiased_V_int

float svdTrkPosUnbiased_V_int = 0
private

V internal unbiased track position.

Definition at line 269 of file OverlapResidualsModule.h.

◆ svdTrkPrime_U_ext

float svdTrkPrime_U_ext = 0
private

U external tan of incident angle projected on u,w.

Definition at line 224 of file OverlapResidualsModule.h.

◆ svdTrkPrime_U_int

float svdTrkPrime_U_int = 0
private

U internal tan of incident angle projected on u,w.

Definition at line 202 of file OverlapResidualsModule.h.

◆ svdTrkPrime_V_ext

float svdTrkPrime_V_ext = 0
private

V external tan of incident angle projected on u,w.

Definition at line 289 of file OverlapResidualsModule.h.

◆ svdTrkPrime_V_int

float svdTrkPrime_V_int = 0
private

V internal tan of incident angle projected on u,w.

Definition at line 267 of file OverlapResidualsModule.h.

◆ svdTrkPrimeOS_U_ext

float svdTrkPrimeOS_U_ext = 0
private

U external tan of incident angle projected on v/u,w (other side)

Definition at line 225 of file OverlapResidualsModule.h.

◆ svdTrkPrimeOS_U_int

float svdTrkPrimeOS_U_int = 0
private

U internal tan of incident angle projected on v/u,w (other side)

Definition at line 203 of file OverlapResidualsModule.h.

◆ svdTrkPrimeOS_V_ext

float svdTrkPrimeOS_V_ext = 0
private

V external tan of incident angle projected on v/u,w (other side)

Definition at line 290 of file OverlapResidualsModule.h.

◆ svdTrkPrimeOS_V_int

float svdTrkPrimeOS_V_int = 0
private

V internal tan of incident angle projected on v/u,w (other side)

Definition at line 268 of file OverlapResidualsModule.h.

◆ svdTrkPrimeUnbiased_U_ext

float svdTrkPrimeUnbiased_U_ext = 0
private

U external unbiased tan of incident angle projected on u,w.

Definition at line 229 of file OverlapResidualsModule.h.

◆ svdTrkPrimeUnbiased_U_int

float svdTrkPrimeUnbiased_U_int = 0
private

U internal unbiased tan of incident angle projected on u,w.

Definition at line 207 of file OverlapResidualsModule.h.

◆ svdTrkPrimeUnbiased_V_ext

float svdTrkPrimeUnbiased_V_ext = 0
private

V external unbiased tan of incident angle projected on u,w.

Definition at line 294 of file OverlapResidualsModule.h.

◆ svdTrkPrimeUnbiased_V_int

float svdTrkPrimeUnbiased_V_int = 0
private

V internal unbiased tan of incident angle projected on u,w.

Definition at line 272 of file OverlapResidualsModule.h.

◆ svdTrkpT

float svdTrkpT = 0
private

pT of the track

Definition at line 194 of file OverlapResidualsModule.h.

◆ svdTrkPXDHits

int svdTrkPXDHits = 0
private

number of PXD hits on the track

Definition at line 230 of file OverlapResidualsModule.h.

◆ svdTrkQoP_U_ext

float svdTrkQoP_U_ext = 0
private

U external track q/p.

Definition at line 223 of file OverlapResidualsModule.h.

◆ svdTrkQoP_U_int

float svdTrkQoP_U_int = 0
private

U internal track q/p.

Definition at line 201 of file OverlapResidualsModule.h.

◆ svdTrkQoP_V_ext

float svdTrkQoP_V_ext = 0
private

V external track q/p.

Definition at line 288 of file OverlapResidualsModule.h.

◆ svdTrkQoP_V_int

float svdTrkQoP_V_int = 0
private

V internal track q/p.

Definition at line 266 of file OverlapResidualsModule.h.

◆ svdTrkQoPUnbiased_U_ext

float svdTrkQoPUnbiased_U_ext = 0
private

U external unbiased track q/p.

Definition at line 228 of file OverlapResidualsModule.h.

◆ svdTrkQoPUnbiased_U_int

float svdTrkQoPUnbiased_U_int = 0
private

U internal unbiased track q/p.

Definition at line 206 of file OverlapResidualsModule.h.

◆ svdTrkQoPUnbiased_V_ext

float svdTrkQoPUnbiased_V_ext = 0
private

V external unbiased track q/p.

Definition at line 293 of file OverlapResidualsModule.h.

◆ svdTrkQoPUnbiased_V_int

float svdTrkQoPUnbiased_V_int = 0
private

V internal unbiased track q/p.

Definition at line 271 of file OverlapResidualsModule.h.

◆ svdTrkSVDHits

int svdTrkSVDHits = 0
private

number of PXD hits on the track

Definition at line 231 of file OverlapResidualsModule.h.

◆ svdTrkTraversedLength_U_ext

float svdTrkTraversedLength_U_ext = 0
private

U external traversed length of the track in the sensor.

Definition at line 218 of file OverlapResidualsModule.h.

◆ svdTrkTraversedLength_U_int

float svdTrkTraversedLength_U_int = 0
private

U internal traversed length of the track in the sensor.

Definition at line 196 of file OverlapResidualsModule.h.

◆ svdTrkTraversedLength_V_ext

float svdTrkTraversedLength_V_ext = 0
private

V external traversed length of the track in the sensor.

Definition at line 283 of file OverlapResidualsModule.h.

◆ svdTrkTraversedLength_V_int

float svdTrkTraversedLength_V_int = 0
private

V internal traversed length of the track in the sensor.

Definition at line 261 of file OverlapResidualsModule.h.

◆ svdTrkz0

float svdTrkz0 = 0
private

z0 of the track

Definition at line 193 of file OverlapResidualsModule.h.

◆ svdTruePos_U_ext

float svdTruePos_U_ext = -99
private

U external true position.

Definition at line 215 of file OverlapResidualsModule.h.

◆ svdTruePos_U_int

float svdTruePos_U_int = -99
private

U internal true position.

Definition at line 189 of file OverlapResidualsModule.h.

◆ svdTruePos_V_ext

float svdTruePos_V_ext = -99
private

V external true position.

Definition at line 280 of file OverlapResidualsModule.h.

◆ svdTruePos_V_int

float svdTruePos_V_int = -99
private

V internal true position.

Definition at line 258 of file OverlapResidualsModule.h.

◆ t_PXD

TTree* t_PXD = nullptr
private

Tree containing global information on PXD overlaps.

Definition at line 155 of file OverlapResidualsModule.h.

◆ t_SVD_U

TTree* t_SVD_U = nullptr
private

Tree containing global information on SVD u-coordinate overlaps.

Definition at line 157 of file OverlapResidualsModule.h.

◆ t_SVD_V

TTree* t_SVD_V = nullptr
private

Tree containing global information on SVD v-coordinate overlaps.

Definition at line 159 of file OverlapResidualsModule.h.


The documentation for this class was generated from the following files: