Belle II Software development
CDCTriggerNeuroDQMModule Class Reference

CDC Trigger DQM Module. More...

#include <CDCTriggerNeuroDQMModule.h>

Inheritance diagram for CDCTriggerNeuroDQMModule:
HistoModule Module PathElement

Classes

struct  TSLine
 

Public Types

typedef std::vector< TSLineTSLines
 
enum  EModulePropFlags {
  c_Input = 1 ,
  c_Output = 2 ,
  c_ParallelProcessingCertified = 4 ,
  c_HistogramManager = 8 ,
  c_InternalSerializer = 16 ,
  c_TerminateInAllProcesses = 32 ,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

 CDCTriggerNeuroDQMModule ()
 Constructor.
 
virtual ~CDCTriggerNeuroDQMModule ()
 Destructor.
 
virtual void initialize () override
 Module functions.
 
virtual void beginRun () override
 Function to process begin_run record.
 
virtual void event () override
 Function to process event record.
 
virtual void endRun () override
 Function to process end_run record.
 
virtual void terminate () override
 Function to terminate module.
 
virtual void defineHisto () override
 Histogram definitions such as TH1(), TH2(), TNtuple(), TTree()....
 
virtual std::vector< std::string > getFileNames (bool outputFiles)
 Return a list of output filenames for this modules.
 
const std::string & getName () const
 Returns the name of the module.
 
const std::string & getType () const
 Returns the type of the module (i.e.
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module.
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties.
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level.
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module.
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module.
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module.
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true.
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished.
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module.
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter.
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module.
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module.
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters.
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Protected Member Functions

virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python.
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side.
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module.
 
void setType (const std::string &type)
 Set the module type.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module.
 
void setReturnValue (int value)
 Sets the return value for this module as integer.
 
void setReturnValue (bool value)
 Sets the return value for this module as bool.
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Private Member Functions

void condFill (TH1F *histo, float value)
 Fill a histogram only with non-zero values.
 
unsigned getPattern (CDCTriggerTrack *track, std::string hitCollectionName)
 get pattern of the track
 
bool isValidPattern (unsigned pattern)
 Validity of the pattern.
 
std::string padto (std::string s, unsigned l)
 
std::string padright (std::string s, unsigned l)
 
bool have_relation (const CDCTriggerTrack &track, const CDCTriggerSegmentHit &hit, std::string &arrayname)
 
void sorted_insert (TSLines &lines, TSLine &line, std::string &arrayname, std::string &firstsortarray, std::string &secondsortarray)
 
std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects.
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary.
 

Private Attributes

std::string m_histogramDirectoryName
 Name of the histogram directory in ROOT file.
 
bool m_limitedoutput
 Switch to supress output for dqm online module.
 
int m_nsamets
 Number of identical track segments to be required for matching between HW and SW Neurotrigger.
 
std::string m_unpackedSegmentHitsName
 Name for TS hits from unpacker.
 
std::string m_unpacked2DTracksName
 Name for 2D finder tracks from unpacker.
 
std::string m_unpackedNeuroTracksName
 Name for neuro tracks from unpacker.
 
std::string m_unpackedNeuroInputVectorName
 Name for neuro input vector from unpacker.
 
std::string m_unpackedNeuroInput2DTracksName
 Name for neuro input 2d finder tracks.
 
std::string m_unpackedNeuroInputSegmentsName
 Name for neuro input Track segments.
 
std::string m_simNeuroTracksName
 Name for neuro tracks from TSIM using HW TS, HW 2D.
 
std::string m_simNeuroInputVectorName
 Name for simulated neuro input vector using HW TS, HW 2D.
 
bool m_showRecoTracks
 Switch to turn on a comparison with the reconstruction.
 
int m_recoTrackMultiplicity
 Select events with a specific RecoTrack track multiplicity.
 
bool m_skipWithoutHWTS
 Switch to skip events without unpacked TS.
 
double m_maxRecoZDist
 Select only RecoTracks with a maximum z distance to the IP.
 
double m_maxRecoD0Dist
 Select only RecoTracks with a maximum d0 distance to the z axis.
 
std::string m_simSegmentHitsName
 Name for simulated TS hits.
 
std::string m_sim2DTracksSWTSName
 Name for simulated 2D finder tracks using simulated TS.
 
std::string m_simNeuroTracksSWTSSW2DName
 Name for neuro tracks using simulated TS and simulated 2D.
 
std::string m_simNeuroInputVectorSWTSSW2DName
 Name for neuro input vector using simulated TS and simulated 2D.
 
std::string m_recoTracksName
 Name for the RecoTrack array name.
 
StoreArray< CDCTriggerSegmentHitm_unpackedSegmentHits
 StoreArray for TS hits from unpacker.
 
StoreArray< CDCTriggerTrackm_unpacked2DTracks
 StoreArray for 2D finder tracks from unpacker.
 
StoreArray< CDCTriggerTrackm_unpackedNeuroTracks
 StoreArray for neuro tracks from unpacker.
 
StoreArray< CDCTriggerMLPInputm_unpackedNeuroInputVector
 StoreArray for neuro input vector from unpacker.
 
StoreArray< CDCTriggerTrackm_unpackedNeuroInput2DTracks
 StoreArray for neuro input 2dfinder tracks.
 
StoreArray< CDCTriggerSegmentHitm_unpackedNeuroInputSegments
 StoreArray for neuro input Track segments.
 
StoreArray< CDCTriggerTrackm_simNeuroTracks
 StoreArray for neuro tracks from TSIM.
 
StoreArray< CDCTriggerMLPInputm_simNeuroInputVector
 StoreArray for neuro input vector from TSIM.
 
StoreArray< RecoTrackm_RecoTracks
 StoreArray for RecoTracks.
 
StoreArray< CDCTriggerSegmentHitm_simSegmentHits
 StoreArray for simulated TS hits.
 
StoreArray< CDCTriggerTrackm_sim2DTracksSWTS
 StoreArray for simulated 2D finder tracks using simulated TS.
 
StoreArray< CDCTriggerMLPInputm_simNeuroInputVectorSWTSSW2D
 StoreArray for neuro input vector using simulated TS and simulated 2D.
 
StoreArray< CDCTriggerTrackm_simNeuroTracksSWTSSW2D
 StoreArray for neuro tracks using simulated TS and simulated 2D.
 
StoreObjPtr< BinnedEventT0m_eventTime
 storeobjpointer for event time
 
TH1F * m_neuroHWOutZ = nullptr
 z distribution of unpacked neuro tracks
 
TH1F * m_neuroHWOutCosTheta = nullptr
 cos theta distribution of unpacked neuro tracks
 
TH1F * m_neuroHWOutInvPt = nullptr
 Inverse Pt distribution of unpacked neuro tracks.
 
TH1F * m_neuroHWOutPt = nullptr
 Pt distribution of unpacked neuro tracks.
 
TH1F * m_neuroHWOutPhi0 = nullptr
 phi distribution of unpacked neuro tracks
 
TH1F * m_neuroHWOutHitPattern = nullptr
 stereo hit pattern of simulated neuro tracks (hw TS hw 2D sw NN)
 
TH1F * m_neuroHWOutm_time = nullptr
 m_time distribution of unpacked neuro tracks
 
TH1F * m_neuroHWOutTrackCount = nullptr
 number of unpacked tracks per event
 
TH1F * m_neuroHWSector = nullptr
 sector of unpacked neuro tracks
 
TH1F * m_neuroHWInInvPt = nullptr
 Inverse Pt distribution from incoming 2dtrack.
 
TH1F * m_neuroHWInPhi0 = nullptr
 Phi0 of incoming 2dtrack.
 
TH1F * m_neuroHWInm_time = nullptr
 m_time distribution from incoming 2dtracks
 
TH1F * m_neuroHWInTrackCount = nullptr
 number of neuro input 2dtracks per event
 
TH1F * m_neuroHWOutVsInTrackCount = nullptr
 neuroHWOutTracks - neuroHWInTrackCount
 
TH1F * m_2DHWOutInvPt = nullptr
 Inverse Pt of 2dtracks.
 
TH1F * m_2DHWOutPhi0 = nullptr
 Phi0 of 2dtracks.
 
TH1F * m_2DHWOutm_time = nullptr
 m_time 2dtracks
 
TH1F * m_2DHWOutTrackCount = nullptr
 number of 2dtracks per event
 
TH1F * m_neuroHWInVs2DOutTrackCount = nullptr
 neuroHWInTrackCount - 2DHWOutTrackCountput
 
TH1F * m_neuroSWOutZ = nullptr
 z distribution from simulation (hw TS hw 2D sw NN)
 
TH1F * m_neuroSWOutCosTheta = nullptr
 cos theta distribution from simulation (hw TS hw 2D sw NN)
 
TH1F * m_neuroSWOutInvPt = nullptr
 Inverse Pt distribution from simulation (hw TS hw 2D sw NN)
 
TH1F * m_neuroSWOutPhi0 = nullptr
 phi distribution from simulation (hw TS hw 2D sw NN)
 
TH1F * m_neuroSWOutHitPattern = nullptr
 stereo hit pattern of simulated neuro tracks (hw TS hw 2D sw NN)
 
TH1F * m_neuroSWOutTrackCount = nullptr
 number of simulated tracks per event (hw TS hw 2D sw NN)
 
TH1F * m_neuroSWSector = nullptr
 NN sector from simulation (hw TS hw 2D sw NN)
 
TH1F * m_2DSWOutInvPt = nullptr
 Inverse Pt of 2dtracks (sw TS sw 2D)
 
TH1F * m_2DSWOutPhi0 = nullptr
 Phi0 of 2dtracks (sw TS sw 2D)
 
TH1F * m_2DSWOutm_time = nullptr
 m_time 2dtracks (sw TS sw 2D)
 
TH1F * m_2DSWOutTrackCount = nullptr
 number of 2dtracks per event (sw TS sw 2D)
 
TH1F * m_neuroSWTSSW2DOutZ = nullptr
 z distribution from simulation (sw TS sw 2D sw NN)
 
TH1F * m_neuroSWTSSW2DOutCosTheta = nullptr
 cos theta distribution from simulation (sw TS sw 2D sw NN)
 
TH1F * m_neuroSWTSSW2DOutInvPt = nullptr
 Inverse Pt distribution from simulation (sw TS sw 2D sw NN)
 
TH1F * m_neuroSWTSSW2DOutPhi0 = nullptr
 phi distribution from simulation (sw TS sw 2D sw NN)
 
TH1F * m_neuroSWTSSW2DOutHitPattern = nullptr
 stereo hit pattern of simulated neuro tracks (sw TS sw 2D sw NN)
 
TH1F * m_neuroSWTSSW2DOutTrackCount = nullptr
 number of simulated tracks per event (sw TS sw 2D sw NN)
 
TH1F * m_neuroSWTSSW2DSector = nullptr
 NN sector from simulation (sw TS sw 2D sw NN)
 
TH1F * m_neuroDeltaZ = nullptr
 unpacked z - TSIM z
 
TH1F * m_neuroDeltaTheta = nullptr
 unpacked theta - TSIM theta
 
TH2F * m_neuroScatterZ = nullptr
 unpacked z vs TSIM z, scatter plot
 
TH2F * m_neuroScatterTheta = nullptr
 unpacked theta vs TSIM theta, scatter plot
 
TH1F * m_neuroDeltaInputID = nullptr
 unpacked ID input - TSIM ID input
 
TH1F * m_neuroDeltaInputT = nullptr
 unpacked time input - TSIM time input
 
TH1F * m_neuroDeltaInputAlpha = nullptr
 unpacked alpha input - TSIM alpha input
 
TH1F * m_neuroDeltaTSID = nullptr
 unpacked selected TSID - TSIM selected TSID
 
TH1F * m_neuroDeltaSector = nullptr
 unpacked sector - TSIM sector
 
TH1F * m_simSameTS = nullptr
 number of TS selected in both, unpacked and TSIM tracks
 
TH1F * m_simDiffTS = nullptr
 number of TS selcted in TSIM but not in unpacked
 
TH1F * m_neuroHWOutQuad5Z = nullptr
 z distribution from unpacker (no quadrant set)
 
TH1F * m_neuroHWOutQuad5CosTheta = nullptr
 cos theta distribution from unpacker (no quadrant set)
 
TH1F * m_neuroHWOutQuad5Phi0 = nullptr
 phi distribution from unpacker (no quadrant set)
 
TH1F * m_neuroHWOutQuad5InvPt = nullptr
 Inverse Pt distribution from unpacker (no quadrant set)
 
TH1F * m_neuroHWOutQuad0Z = nullptr
 z distribution from unpacker (quadrant 0)
 
TH1F * m_neuroHWOutQuad0CosTheta = nullptr
 cos theta distribution from unpacker (quadrant 0)
 
TH1F * m_neuroHWOutQuad0Phi0 = nullptr
 phi distribution from unpacker (quadrant 0)
 
TH1F * m_neuroHWOutQuad0InvPt = nullptr
 Inverse Pt distribution from unpacker (quadrant 0)
 
TH1F * m_neuroHWOutQuad1Z = nullptr
 z distribution from unpacker (quadrant 1)
 
TH1F * m_neuroHWOutQuad1CosTheta = nullptr
 cos theta distribution from unpacker (quadrant 1)
 
TH1F * m_neuroHWOutQuad1Phi0 = nullptr
 phi distribution from unpacker (quadrant 1)
 
TH1F * m_neuroHWOutQuad1InvPt = nullptr
 Inverse Pt distribution from unpacker (quadrant 1)
 
TH1F * m_neuroHWOutQuad2Z = nullptr
 z distribution from unpacker (quadrant 2)
 
TH1F * m_neuroHWOutQuad2CosTheta = nullptr
 cos theta distribution from unpacker (quadrant 2)
 
TH1F * m_neuroHWOutQuad2Phi0 = nullptr
 phi distribution from unpacker (quadrant 2)
 
TH1F * m_neuroHWOutQuad2InvPt = nullptr
 Inverse Pt distribution from unpacker (quadrant 2)
 
TH1F * m_neuroHWOutQuad3Z = nullptr
 z distribution from unpacker (quadrant 3)
 
TH1F * m_neuroHWOutQuad3CosTheta = nullptr
 cos theta distribution from unpacker (quadrant 3)
 
TH1F * m_neuroHWOutQuad3Phi0 = nullptr
 phi distribution from unpacker (quadrant 3)
 
TH1F * m_neuroHWOutQuad3InvPt = nullptr
 Inverse Pt distribution from unpacker (quadrant 3)
 
TH1F * m_neuroHWInTSID = nullptr
 ID of incoming track segments.
 
TH1F * m_neuroHWInTSCount = nullptr
 number of TS per track
 
TH1F * m_neuroHWInTSPrioT_Layer0 = nullptr
 Priority time of track segments in layer 0.
 
TH1F * m_neuroHWInTSPrioT_Layer1 = nullptr
 Priority time of track segments in layer 1.
 
TH1F * m_neuroHWInTSPrioT_Layer2 = nullptr
 Priority time of track segments in layer 2.
 
TH1F * m_neuroHWInTSPrioT_Layer3 = nullptr
 Priority time of track segments in layer 3.
 
TH1F * m_neuroHWInTSPrioT_Layer4 = nullptr
 Priority time of track segments in layer 4.
 
TH1F * m_neuroHWInTSPrioT_Layer5 = nullptr
 Priority time of track segments in layer 5.
 
TH1F * m_neuroHWInTSPrioT_Layer6 = nullptr
 Priority time of track segments in layer 6.
 
TH1F * m_neuroHWInTSPrioT_Layer7 = nullptr
 Priority time of track segments in layer 7.
 
TH1F * m_neuroHWInTSPrioT_Layer8 = nullptr
 Priority time of track segments in layer 8.
 
TH1F * m_neuroHWInTSFoundT_Layer0 = nullptr
 Found time of track segments in layer 0.
 
TH1F * m_neuroHWInTSFoundT_Layer1 = nullptr
 Found time of track segments in layer 1.
 
TH1F * m_neuroHWInTSFoundT_Layer2 = nullptr
 Found time of track segments in layer 2.
 
TH1F * m_neuroHWInTSFoundT_Layer3 = nullptr
 Found time of track segments in layer 3.
 
TH1F * m_neuroHWInTSFoundT_Layer4 = nullptr
 Found time of track segments in layer 4.
 
TH1F * m_neuroHWInTSFoundT_Layer5 = nullptr
 Found time of track segments in layer 5.
 
TH1F * m_neuroHWInTSFoundT_Layer6 = nullptr
 Found time of track segments in layer 6.
 
TH1F * m_neuroHWInTSFoundT_Layer7 = nullptr
 Found time of track segments in layer 7.
 
TH1F * m_neuroHWInTSFoundT_Layer8 = nullptr
 Found time of track segments in layer 8.
 
TH1F * m_neuroHWInTSPrioB_Layer0 = nullptr
 Priority bits of track segments in layer 0.
 
TH1F * m_neuroHWInTSPrioB_Layer1 = nullptr
 Priority bits of track segments in layer 1.
 
TH1F * m_neuroHWInTSPrioB_Layer2 = nullptr
 Priority bits of track segments in layer 2.
 
TH1F * m_neuroHWInTSPrioB_Layer3 = nullptr
 Priority bits of track segments in layer 3.
 
TH1F * m_neuroHWInTSPrioB_Layer4 = nullptr
 Priority bits of track segments in layer 4.
 
TH1F * m_neuroHWInTSPrioB_Layer5 = nullptr
 Priority bits of track segments in layer 5.
 
TH1F * m_neuroHWInTSPrioB_Layer6 = nullptr
 Priority bits of track segments in layer 6.
 
TH1F * m_neuroHWInTSPrioB_Layer7 = nullptr
 Priority bits of track segments in layer 7.
 
TH1F * m_neuroHWInTSPrioB_Layer8 = nullptr
 Priority bits of track segments in layer 8.
 
TH1F * m_neuroHWInTSLR_Layer0 = nullptr
 Left/Right of track segments in layer 0.
 
TH1F * m_neuroHWInTSLR_Layer1 = nullptr
 Left/Right of track segments in layer 1.
 
TH1F * m_neuroHWInTSLR_Layer2 = nullptr
 Left/Right of track segments in layer 2.
 
TH1F * m_neuroHWInTSLR_Layer3 = nullptr
 Left/Right of track segments in layer 3.
 
TH1F * m_neuroHWInTSLR_Layer4 = nullptr
 Left/Right of track segments in layer 4.
 
TH1F * m_neuroHWInTSLR_Layer5 = nullptr
 Left/Right of track segments in layer 5.
 
TH1F * m_neuroHWInTSLR_Layer6 = nullptr
 Left/Right of track segments in layer 6.
 
TH1F * m_neuroHWInTSLR_Layer7 = nullptr
 Left/Right of track segments in layer 7.
 
TH1F * m_neuroHWInTSLR_Layer8 = nullptr
 Left/Right of track segments in layer 8.
 
TH1F * m_neuroHWSelTSID = nullptr
 ID of selected track segments.
 
TH1F * m_neuroHWSelTSCount = nullptr
 number of selected TS per SL
 
TH1F * m_neuroHWSelTSPrioT_Layer0 = nullptr
 Priority time of selected track segments in layer 0.
 
TH1F * m_neuroHWSelTSPrioT_Layer1 = nullptr
 Priority time of selected track segments in layer 1.
 
TH1F * m_neuroHWSelTSPrioT_Layer2 = nullptr
 Priority time of selected track segments in layer 2.
 
TH1F * m_neuroHWSelTSPrioT_Layer3 = nullptr
 Priority time of selected track segments in layer 3.
 
TH1F * m_neuroHWSelTSPrioT_Layer4 = nullptr
 Priority time of selected track segments in layer 4.
 
TH1F * m_neuroHWSelTSPrioT_Layer5 = nullptr
 Priority time of selected track segments in layer 5.
 
TH1F * m_neuroHWSelTSPrioT_Layer6 = nullptr
 Priority time of selected track segments in layer 6.
 
TH1F * m_neuroHWSelTSPrioT_Layer7 = nullptr
 Priority time of selected track segments in layer 7.
 
TH1F * m_neuroHWSelTSPrioT_Layer8 = nullptr
 Priority time of selected track segments in layer 8.
 
TH1F * m_neuroHWSelTSFoundT_Layer0 = nullptr
 Found time of selected track segments in layer 0.
 
TH1F * m_neuroHWSelTSFoundT_Layer1 = nullptr
 Found time of selected track segments in layer 1.
 
TH1F * m_neuroHWSelTSFoundT_Layer2 = nullptr
 Found time of selected track segments in layer 2.
 
TH1F * m_neuroHWSelTSFoundT_Layer3 = nullptr
 Found time of selected track segments in layer 3.
 
TH1F * m_neuroHWSelTSFoundT_Layer4 = nullptr
 Found time of selected track segments in layer 4.
 
TH1F * m_neuroHWSelTSFoundT_Layer5 = nullptr
 Found time of selected track segments in layer 5.
 
TH1F * m_neuroHWSelTSFoundT_Layer6 = nullptr
 Found time of selected track segments in layer 6.
 
TH1F * m_neuroHWSelTSFoundT_Layer7 = nullptr
 Found time of selected track segments in layer 7.
 
TH1F * m_neuroHWSelTSFoundT_Layer8 = nullptr
 Found time of selected track segments in layer 8.
 
TH1F * m_neuroHWSelTSPrioB_Layer0 = nullptr
 Priority bits of track segments in layer 0.
 
TH1F * m_neuroHWSelTSPrioB_Layer1 = nullptr
 Priority bits of track segments in layer 1.
 
TH1F * m_neuroHWSelTSPrioB_Layer2 = nullptr
 Priority bits of track segments in layer 2.
 
TH1F * m_neuroHWSelTSPrioB_Layer3 = nullptr
 Priority bits of track segments in layer 3.
 
TH1F * m_neuroHWSelTSPrioB_Layer4 = nullptr
 Priority bits of track segments in layer 4.
 
TH1F * m_neuroHWSelTSPrioB_Layer5 = nullptr
 Priority bits of track segments in layer 5.
 
TH1F * m_neuroHWSelTSPrioB_Layer6 = nullptr
 Priority bits of track segments in layer 6.
 
TH1F * m_neuroHWSelTSPrioB_Layer7 = nullptr
 Priority bits of track segments in layer 7.
 
TH1F * m_neuroHWSelTSPrioB_Layer8 = nullptr
 Priority bits of track segments in layer 8.
 
TH1F * m_neuroHWSelTSLR_Layer0 = nullptr
 Left/Right of track segments in layer 0.
 
TH1F * m_neuroHWSelTSLR_Layer1 = nullptr
 Left/Right of track segments in layer 1.
 
TH1F * m_neuroHWSelTSLR_Layer2 = nullptr
 Left/Right of track segments in layer 2.
 
TH1F * m_neuroHWSelTSLR_Layer3 = nullptr
 Left/Right of track segments in layer 3.
 
TH1F * m_neuroHWSelTSLR_Layer4 = nullptr
 Left/Right of track segments in layer 4.
 
TH1F * m_neuroHWSelTSLR_Layer5 = nullptr
 Left/Right of track segments in layer 5.
 
TH1F * m_neuroHWSelTSLR_Layer6 = nullptr
 Left/Right of track segments in layer 6.
 
TH1F * m_neuroHWSelTSLR_Layer7 = nullptr
 Left/Right of track segments in layer 7.
 
TH1F * m_neuroHWSelTSLR_Layer8 = nullptr
 Left/Right of track segments in layer 8.
 
TH1F * m_2DHWInTSPrioT_Layer0 = nullptr
 Priority time of 2D track segments in layer 0.
 
TH1F * m_2DHWInTSPrioT_Layer2 = nullptr
 Priority time of 2D track segments in layer 2.
 
TH1F * m_2DHWInTSPrioT_Layer4 = nullptr
 Priority time of 2D track segments in layer 4.
 
TH1F * m_2DHWInTSPrioT_Layer6 = nullptr
 Priority time of 2D track segments in layer 6.
 
TH1F * m_2DHWInTSPrioT_Layer8 = nullptr
 Priority time of 2D track segments in layer 8.
 
TH1F * m_2DHWInTSFoundT_Layer0 = nullptr
 Found time of 2D track segments in layer 0.
 
TH1F * m_2DHWInTSFoundT_Layer2 = nullptr
 Found time of 2D track segments in layer 2.
 
TH1F * m_2DHWInTSFoundT_Layer4 = nullptr
 Found time of 2D track segments in layer 4.
 
TH1F * m_2DHWInTSFoundT_Layer6 = nullptr
 Found time of 2D track segments in layer 6.
 
TH1F * m_2DHWInTSFoundT_Layer8 = nullptr
 Found time of 2D track segments in layer 8.
 
TH1F * m_2DHWInTSPrioB_Layer0 = nullptr
 Priority bits of 2D track segments in layer 0.
 
TH1F * m_2DHWInTSPrioB_Layer2 = nullptr
 Priority bits of 2D track segments in layer 2.
 
TH1F * m_2DHWInTSPrioB_Layer4 = nullptr
 Priority bits of 2D track segments in layer 4.
 
TH1F * m_2DHWInTSPrioB_Layer6 = nullptr
 Priority bits of 2D track segments in layer 6.
 
TH1F * m_2DHWInTSPrioB_Layer8 = nullptr
 Priority bits of 2D track segments in layer 8.
 
TH1F * m_2DHWInTSLR_Layer0 = nullptr
 Left/Right of 2D track segments in layer 0.
 
TH1F * m_2DHWInTSLR_Layer2 = nullptr
 Left/Right of 2D track segments in layer 2.
 
TH1F * m_2DHWInTSLR_Layer4 = nullptr
 Left/Right of 2D track segments in layer 4.
 
TH1F * m_2DHWInTSLR_Layer6 = nullptr
 Left/Right of 2D track segments in layer 6.
 
TH1F * m_2DHWInTSLR_Layer8 = nullptr
 Left/Right of 2D track segments in layer 8.
 
TH1F * m_neuroSWSelTSID = nullptr
 ID of incoming track segments.
 
TH1F * m_neuroSWSelTSCount = nullptr
 number of TS per SL
 
TH1F * m_neuroSWSelTSPrioT_Layer0 = nullptr
 Priority time of track segments in layer 0.
 
TH1F * m_neuroSWSelTSPrioT_Layer1 = nullptr
 Priority time of track segments in layer 1.
 
TH1F * m_neuroSWSelTSPrioT_Layer2 = nullptr
 Priority time of track segments in layer 2.
 
TH1F * m_neuroSWSelTSPrioT_Layer3 = nullptr
 Priority time of track segments in layer 3.
 
TH1F * m_neuroSWSelTSPrioT_Layer4 = nullptr
 Priority time of track segments in layer 4.
 
TH1F * m_neuroSWSelTSPrioT_Layer5 = nullptr
 Priority time of track segments in layer 5.
 
TH1F * m_neuroSWSelTSPrioT_Layer6 = nullptr
 Priority time of track segments in layer 6.
 
TH1F * m_neuroSWSelTSPrioT_Layer7 = nullptr
 Priority time of track segments in layer 7.
 
TH1F * m_neuroSWSelTSPrioT_Layer8 = nullptr
 Priority time of track segments in layer 8.
 
TH1F * m_neuroSWSelTSFoundT_Layer0 = nullptr
 Found time of track segments in layer 0.
 
TH1F * m_neuroSWSelTSFoundT_Layer1 = nullptr
 Found time of track segments in layer 1.
 
TH1F * m_neuroSWSelTSFoundT_Layer2 = nullptr
 Found time of track segments in layer 2.
 
TH1F * m_neuroSWSelTSFoundT_Layer3 = nullptr
 Found time of track segments in layer 3.
 
TH1F * m_neuroSWSelTSFoundT_Layer4 = nullptr
 Found time of track segments in layer 4.
 
TH1F * m_neuroSWSelTSFoundT_Layer5 = nullptr
 Found time of track segments in layer 5.
 
TH1F * m_neuroSWSelTSFoundT_Layer6 = nullptr
 Found time of track segments in layer 6.
 
TH1F * m_neuroSWSelTSFoundT_Layer7 = nullptr
 Found time of track segments in layer 7.
 
TH1F * m_neuroSWSelTSFoundT_Layer8 = nullptr
 Found time of track segments in layer 8.
 
TH1F * m_neuroSWSelTSPrioB_Layer0 = nullptr
 Priority bits of track segments in layer 0.
 
TH1F * m_neuroSWSelTSPrioB_Layer1 = nullptr
 Priority bits of track segments in layer 1.
 
TH1F * m_neuroSWSelTSPrioB_Layer2 = nullptr
 Priority bits of track segments in layer 2.
 
TH1F * m_neuroSWSelTSPrioB_Layer3 = nullptr
 Priority bits of track segments in layer 3.
 
TH1F * m_neuroSWSelTSPrioB_Layer4 = nullptr
 Priority bits of track segments in layer 4.
 
TH1F * m_neuroSWSelTSPrioB_Layer5 = nullptr
 Priority bits of track segments in layer 5.
 
TH1F * m_neuroSWSelTSPrioB_Layer6 = nullptr
 Priority bits of track segments in layer 6.
 
TH1F * m_neuroSWSelTSPrioB_Layer7 = nullptr
 Priority bits of track segments in layer 7.
 
TH1F * m_neuroSWSelTSPrioB_Layer8 = nullptr
 Priority bits of track segments in layer 8.
 
TH1F * m_neuroSWSelTSLR_Layer0 = nullptr
 Left/Right of track segments in layer 0.
 
TH1F * m_neuroSWSelTSLR_Layer1 = nullptr
 Left/Right of track segments in layer 1.
 
TH1F * m_neuroSWSelTSLR_Layer2 = nullptr
 Left/Right of track segments in layer 2.
 
TH1F * m_neuroSWSelTSLR_Layer3 = nullptr
 Left/Right of track segments in layer 3.
 
TH1F * m_neuroSWSelTSLR_Layer4 = nullptr
 Left/Right of track segments in layer 4.
 
TH1F * m_neuroSWSelTSLR_Layer5 = nullptr
 Left/Right of track segments in layer 5.
 
TH1F * m_neuroSWSelTSLR_Layer6 = nullptr
 Left/Right of track segments in layer 6.
 
TH1F * m_neuroSWSelTSLR_Layer7 = nullptr
 Left/Right of track segments in layer 7.
 
TH1F * m_neuroSWSelTSLR_Layer8 = nullptr
 Left/Right of track segments in layer 8.
 
TH1F * m_neuroSWTSSW2DInTSID = nullptr
 ID of incoming track segments.
 
TH1F * m_neuroSWTSSW2DInTSCount = nullptr
 number of TS per event
 
TH1F * m_neuroSWTSSW2DInTSPrioT_Layer0 = nullptr
 Priority time of track segments in layer 0.
 
TH1F * m_neuroSWTSSW2DInTSPrioT_Layer1 = nullptr
 Priority time of track segments in layer 1.
 
TH1F * m_neuroSWTSSW2DInTSPrioT_Layer2 = nullptr
 Priority time of track segments in layer 2.
 
TH1F * m_neuroSWTSSW2DInTSPrioT_Layer3 = nullptr
 Priority time of track segments in layer 3.
 
TH1F * m_neuroSWTSSW2DInTSPrioT_Layer4 = nullptr
 Priority time of track segments in layer 4.
 
TH1F * m_neuroSWTSSW2DInTSPrioT_Layer5 = nullptr
 Priority time of track segments in layer 5.
 
TH1F * m_neuroSWTSSW2DInTSPrioT_Layer6 = nullptr
 Priority time of track segments in layer 6.
 
TH1F * m_neuroSWTSSW2DInTSPrioT_Layer7 = nullptr
 Priority time of track segments in layer 7.
 
TH1F * m_neuroSWTSSW2DInTSPrioT_Layer8 = nullptr
 Priority time of track segments in layer 8.
 
TH1F * m_neuroSWTSSW2DInTSFoundT_Layer0 = nullptr
 Found time of track segments in layer 0.
 
TH1F * m_neuroSWTSSW2DInTSFoundT_Layer1 = nullptr
 Found time of track segments in layer 1.
 
TH1F * m_neuroSWTSSW2DInTSFoundT_Layer2 = nullptr
 Found time of track segments in layer 2.
 
TH1F * m_neuroSWTSSW2DInTSFoundT_Layer3 = nullptr
 Found time of track segments in layer 3.
 
TH1F * m_neuroSWTSSW2DInTSFoundT_Layer4 = nullptr
 Found time of track segments in layer 4.
 
TH1F * m_neuroSWTSSW2DInTSFoundT_Layer5 = nullptr
 Found time of track segments in layer 5.
 
TH1F * m_neuroSWTSSW2DInTSFoundT_Layer6 = nullptr
 Found time of track segments in layer 6.
 
TH1F * m_neuroSWTSSW2DInTSFoundT_Layer7 = nullptr
 Found time of track segments in layer 7.
 
TH1F * m_neuroSWTSSW2DInTSFoundT_Layer8 = nullptr
 Found time of track segments in layer 8.
 
TH1F * m_neuroSWTSSW2DInTSPrioB_Layer0 = nullptr
 Priority bits of track segments in layer 0.
 
TH1F * m_neuroSWTSSW2DInTSPrioB_Layer1 = nullptr
 Priority bits of track segments in layer 1.
 
TH1F * m_neuroSWTSSW2DInTSPrioB_Layer2 = nullptr
 Priority bits of track segments in layer 2.
 
TH1F * m_neuroSWTSSW2DInTSPrioB_Layer3 = nullptr
 Priority bits of track segments in layer 3.
 
TH1F * m_neuroSWTSSW2DInTSPrioB_Layer4 = nullptr
 Priority bits of track segments in layer 4.
 
TH1F * m_neuroSWTSSW2DInTSPrioB_Layer5 = nullptr
 Priority bits of track segments in layer 5.
 
TH1F * m_neuroSWTSSW2DInTSPrioB_Layer6 = nullptr
 Priority bits of track segments in layer 6.
 
TH1F * m_neuroSWTSSW2DInTSPrioB_Layer7 = nullptr
 Priority bits of track segments in layer 7.
 
TH1F * m_neuroSWTSSW2DInTSPrioB_Layer8 = nullptr
 Priority bits of track segments in layer 8.
 
TH1F * m_neuroSWTSSW2DInTSLR_Layer0 = nullptr
 Left/Right of track segments in layer 0.
 
TH1F * m_neuroSWTSSW2DInTSLR_Layer1 = nullptr
 Left/Right of track segments in layer 1.
 
TH1F * m_neuroSWTSSW2DInTSLR_Layer2 = nullptr
 Left/Right of track segments in layer 2.
 
TH1F * m_neuroSWTSSW2DInTSLR_Layer3 = nullptr
 Left/Right of track segments in layer 3.
 
TH1F * m_neuroSWTSSW2DInTSLR_Layer4 = nullptr
 Left/Right of track segments in layer 4.
 
TH1F * m_neuroSWTSSW2DInTSLR_Layer5 = nullptr
 Left/Right of track segments in layer 5.
 
TH1F * m_neuroSWTSSW2DInTSLR_Layer6 = nullptr
 Left/Right of track segments in layer 6.
 
TH1F * m_neuroSWTSSW2DInTSLR_Layer7 = nullptr
 Left/Right of track segments in layer 7.
 
TH1F * m_neuroSWTSSW2DInTSLR_Layer8 = nullptr
 Left/Right of track segments in layer 8.
 
TH1F * m_neuroSWTSSW2DSelTSID = nullptr
 ID of incoming track segments.
 
TH1F * m_neuroSWTSSW2DSelTSCount = nullptr
 number of TS per SL
 
TH1F * m_neuroSWTSSW2DSelTSPrioT_Layer0 = nullptr
 Priority time of selected track segments in layer 0.
 
TH1F * m_neuroSWTSSW2DSelTSPrioT_Layer1 = nullptr
 Priority time of selected track segments in layer 1.
 
TH1F * m_neuroSWTSSW2DSelTSPrioT_Layer2 = nullptr
 Priority time of selected track segments in layer 2.
 
TH1F * m_neuroSWTSSW2DSelTSPrioT_Layer3 = nullptr
 Priority time of selected track segments in layer 3.
 
TH1F * m_neuroSWTSSW2DSelTSPrioT_Layer4 = nullptr
 Priority time of selected track segments in layer 4.
 
TH1F * m_neuroSWTSSW2DSelTSPrioT_Layer5 = nullptr
 Priority time of selected track segments in layer 5.
 
TH1F * m_neuroSWTSSW2DSelTSPrioT_Layer6 = nullptr
 Priority time of selected track segments in layer 6.
 
TH1F * m_neuroSWTSSW2DSelTSPrioT_Layer7 = nullptr
 Priority time of selected track segments in layer 7.
 
TH1F * m_neuroSWTSSW2DSelTSPrioT_Layer8 = nullptr
 Priority time of selected track segments in layer 8.
 
TH1F * m_neuroSWTSSW2DSelTSFoundT_Layer0 = nullptr
 Found time of selected track segments in layer 0.
 
TH1F * m_neuroSWTSSW2DSelTSFoundT_Layer1 = nullptr
 Found time of selected track segments in layer 1.
 
TH1F * m_neuroSWTSSW2DSelTSFoundT_Layer2 = nullptr
 Found time of selected track segments in layer 2.
 
TH1F * m_neuroSWTSSW2DSelTSFoundT_Layer3 = nullptr
 Found time of selected track segments in layer 3.
 
TH1F * m_neuroSWTSSW2DSelTSFoundT_Layer4 = nullptr
 Found time of selected track segments in layer 4.
 
TH1F * m_neuroSWTSSW2DSelTSFoundT_Layer5 = nullptr
 Found time of selected track segments in layer 5.
 
TH1F * m_neuroSWTSSW2DSelTSFoundT_Layer6 = nullptr
 Found time of selected track segments in layer 6.
 
TH1F * m_neuroSWTSSW2DSelTSFoundT_Layer7 = nullptr
 Found time of selected track segments in layer 7.
 
TH1F * m_neuroSWTSSW2DSelTSFoundT_Layer8 = nullptr
 Found time of selected track segments in layer 8.
 
TH1F * m_neuroSWTSSW2DSelTSPrioB_Layer0 = nullptr
 Priority bits of track segments in layer 0.
 
TH1F * m_neuroSWTSSW2DSelTSPrioB_Layer1 = nullptr
 Priority bits of track segments in layer 1.
 
TH1F * m_neuroSWTSSW2DSelTSPrioB_Layer2 = nullptr
 Priority bits of track segments in layer 2.
 
TH1F * m_neuroSWTSSW2DSelTSPrioB_Layer3 = nullptr
 Priority bits of track segments in layer 3.
 
TH1F * m_neuroSWTSSW2DSelTSPrioB_Layer4 = nullptr
 Priority bits of track segments in layer 4.
 
TH1F * m_neuroSWTSSW2DSelTSPrioB_Layer5 = nullptr
 Priority bits of track segments in layer 5.
 
TH1F * m_neuroSWTSSW2DSelTSPrioB_Layer6 = nullptr
 Priority bits of track segments in layer 6.
 
TH1F * m_neuroSWTSSW2DSelTSPrioB_Layer7 = nullptr
 Priority bits of track segments in layer 7.
 
TH1F * m_neuroSWTSSW2DSelTSPrioB_Layer8 = nullptr
 Priority bits of track segments in layer 8.
 
TH1F * m_neuroSWTSSW2DSelTSLR_Layer0 = nullptr
 Left/Right of track segments in layer 0.
 
TH1F * m_neuroSWTSSW2DSelTSLR_Layer1 = nullptr
 Left/Right of track segments in layer 1.
 
TH1F * m_neuroSWTSSW2DSelTSLR_Layer2 = nullptr
 Left/Right of track segments in layer 2.
 
TH1F * m_neuroSWTSSW2DSelTSLR_Layer3 = nullptr
 Left/Right of track segments in layer 3.
 
TH1F * m_neuroSWTSSW2DSelTSLR_Layer4 = nullptr
 Left/Right of track segments in layer 4.
 
TH1F * m_neuroSWTSSW2DSelTSLR_Layer5 = nullptr
 Left/Right of track segments in layer 5.
 
TH1F * m_neuroSWTSSW2DSelTSLR_Layer6 = nullptr
 Left/Right of track segments in layer 6.
 
TH1F * m_neuroSWTSSW2DSelTSLR_Layer7 = nullptr
 Left/Right of track segments in layer 7.
 
TH1F * m_neuroSWTSSW2DSelTSLR_Layer8 = nullptr
 Left/Right of track segments in layer 8.
 
TH1F * m_neuroHWInputID_Layer0 = nullptr
 unpacked id input in layer 0
 
TH1F * m_neuroHWInputT_Layer0 = nullptr
 unpacked time input in layer 0
 
TH1F * m_neuroHWInputAlpha_Layer0 = nullptr
 unpacked alpha input in layer 0
 
TH1F * m_neuroHWInputID_Layer1 = nullptr
 unpacked id input in layer 1
 
TH1F * m_neuroHWInputT_Layer1 = nullptr
 unpacked time input in layer 1
 
TH1F * m_neuroHWInputAlpha_Layer1 = nullptr
 unpacked alpha input in layer 1
 
TH1F * m_neuroHWInputID_Layer2 = nullptr
 unpacked id input in layer 2
 
TH1F * m_neuroHWInputT_Layer2 = nullptr
 unpacked time input in layer 2
 
TH1F * m_neuroHWInputAlpha_Layer2 = nullptr
 unpacked alpha input in layer 2
 
TH1F * m_neuroHWInputID_Layer3 = nullptr
 unpacked id input in layer 3
 
TH1F * m_neuroHWInputT_Layer3 = nullptr
 unpacked time input in layer 3
 
TH1F * m_neuroHWInputAlpha_Layer3 = nullptr
 unpacked alpha input in layer 3
 
TH1F * m_neuroHWInputID_Layer4 = nullptr
 unpacked id input in layer 4
 
TH1F * m_neuroHWInputT_Layer4 = nullptr
 unpacked time input in layer 4
 
TH1F * m_neuroHWInputAlpha_Layer4 = nullptr
 unpacked alpha input in layer 4
 
TH1F * m_neuroHWInputID_Layer5 = nullptr
 unpacked id input in layer 5
 
TH1F * m_neuroHWInputT_Layer5 = nullptr
 unpacked time input in layer 5
 
TH1F * m_neuroHWInputAlpha_Layer5 = nullptr
 unpacked alpha input in layer 5
 
TH1F * m_neuroHWInputID_Layer6 = nullptr
 unpacked id input in layer 6
 
TH1F * m_neuroHWInputT_Layer6 = nullptr
 unpacked time input in layer 6
 
TH1F * m_neuroHWInputAlpha_Layer6 = nullptr
 unpacked alpha input in layer 6
 
TH1F * m_neuroHWInputID_Layer7 = nullptr
 unpacked id input in layer 7
 
TH1F * m_neuroHWInputT_Layer7 = nullptr
 unpacked time input in layer 7
 
TH1F * m_neuroHWInputAlpha_Layer7 = nullptr
 unpacked alpha input in layer 7
 
TH1F * m_neuroHWInputID_Layer8 = nullptr
 unpacked id input in layer 8
 
TH1F * m_neuroHWInputT_Layer8 = nullptr
 unpacked time input in layer 8
 
TH1F * m_neuroHWInputAlpha_Layer8 = nullptr
 unpacked alpha input in layer 8
 
TH1F * m_neuroSWInputID_Layer0 = nullptr
 simulated id input in layer 0
 
TH1F * m_neuroSWInputT_Layer0 = nullptr
 simulated time input in layer 0
 
TH1F * m_neuroSWInputAlpha_Layer0 = nullptr
 simulated alpha input in layer 0
 
TH1F * m_neuroSWInputID_Layer1 = nullptr
 simulated id input in layer 1
 
TH1F * m_neuroSWInputT_Layer1 = nullptr
 simulated time input in layer 1
 
TH1F * m_neuroSWInputAlpha_Layer1 = nullptr
 simulated alpha input in layer 1
 
TH1F * m_neuroSWInputID_Layer2 = nullptr
 simulated id input in layer 2
 
TH1F * m_neuroSWInputT_Layer2 = nullptr
 simulated time input in layer 2
 
TH1F * m_neuroSWInputAlpha_Layer2 = nullptr
 simulated alpha input in layer 2
 
TH1F * m_neuroSWInputID_Layer3 = nullptr
 simulated id input in layer 3
 
TH1F * m_neuroSWInputT_Layer3 = nullptr
 simulated time input in layer 3
 
TH1F * m_neuroSWInputAlpha_Layer3 = nullptr
 simulated alpha input in layer 3
 
TH1F * m_neuroSWInputID_Layer4 = nullptr
 simulated id input in layer 4
 
TH1F * m_neuroSWInputT_Layer4 = nullptr
 simulated time input in layer 4
 
TH1F * m_neuroSWInputAlpha_Layer4 = nullptr
 simulated alpha input in layer 4
 
TH1F * m_neuroSWInputID_Layer5 = nullptr
 simulated id input in layer 5
 
TH1F * m_neuroSWInputT_Layer5 = nullptr
 simulated time input in layer 5
 
TH1F * m_neuroSWInputAlpha_Layer5 = nullptr
 simulated alpha input in layer 5
 
TH1F * m_neuroSWInputID_Layer6 = nullptr
 simulated id input in layer 6
 
TH1F * m_neuroSWInputT_Layer6 = nullptr
 simulated time input in layer 6
 
TH1F * m_neuroSWInputAlpha_Layer6 = nullptr
 simulated alpha input in layer 6
 
TH1F * m_neuroSWInputID_Layer7 = nullptr
 simulated id input in layer 7
 
TH1F * m_neuroSWInputT_Layer7 = nullptr
 simulated time input in layer 7
 
TH1F * m_neuroSWInputAlpha_Layer7 = nullptr
 simulated alpha input in layer 7
 
TH1F * m_neuroSWInputID_Layer8 = nullptr
 simulated id input in layer 8
 
TH1F * m_neuroSWInputT_Layer8 = nullptr
 simulated time input in layer 8
 
TH1F * m_neuroSWInputAlpha_Layer8 = nullptr
 simulated alpha input in layer 8
 
TH1F * m_neuroSWTSSW2DInputID_Layer0 = nullptr
 simulated id input in layer 0
 
TH1F * m_neuroSWTSSW2DInputT_Layer0 = nullptr
 simulated time input in layer 0
 
TH1F * m_neuroSWTSSW2DInputAlpha_Layer0 = nullptr
 simulated alpha input in layer 0
 
TH1F * m_neuroSWTSSW2DInputID_Layer1 = nullptr
 simulated id input in layer 1
 
TH1F * m_neuroSWTSSW2DInputT_Layer1 = nullptr
 simulated time input in layer 1
 
TH1F * m_neuroSWTSSW2DInputAlpha_Layer1 = nullptr
 simulated alpha input in layer 1
 
TH1F * m_neuroSWTSSW2DInputID_Layer2 = nullptr
 simulated id input in layer 2
 
TH1F * m_neuroSWTSSW2DInputT_Layer2 = nullptr
 simulated time input in layer 2
 
TH1F * m_neuroSWTSSW2DInputAlpha_Layer2 = nullptr
 simulated alpha input in layer 2
 
TH1F * m_neuroSWTSSW2DInputID_Layer3 = nullptr
 simulated id input in layer 3
 
TH1F * m_neuroSWTSSW2DInputT_Layer3 = nullptr
 simulated time input in layer 3
 
TH1F * m_neuroSWTSSW2DInputAlpha_Layer3 = nullptr
 simulated alpha input in layer 3
 
TH1F * m_neuroSWTSSW2DInputID_Layer4 = nullptr
 simulated id input in layer 4
 
TH1F * m_neuroSWTSSW2DInputT_Layer4 = nullptr
 simulated time input in layer 4
 
TH1F * m_neuroSWTSSW2DInputAlpha_Layer4 = nullptr
 simulated alpha input in layer 4
 
TH1F * m_neuroSWTSSW2DInputID_Layer5 = nullptr
 simulated id input in layer 5
 
TH1F * m_neuroSWTSSW2DInputT_Layer5 = nullptr
 simulated time input in layer 5
 
TH1F * m_neuroSWTSSW2DInputAlpha_Layer5 = nullptr
 simulated alpha input in layer 5
 
TH1F * m_neuroSWTSSW2DInputID_Layer6 = nullptr
 simulated id input in layer 6
 
TH1F * m_neuroSWTSSW2DInputT_Layer6 = nullptr
 simulated time input in layer 6
 
TH1F * m_neuroSWTSSW2DInputAlpha_Layer6 = nullptr
 simulated alpha input in layer 6
 
TH1F * m_neuroSWTSSW2DInputID_Layer7 = nullptr
 simulated id input in layer 7
 
TH1F * m_neuroSWTSSW2DInputT_Layer7 = nullptr
 simulated time input in layer 7
 
TH1F * m_neuroSWTSSW2DInputAlpha_Layer7 = nullptr
 simulated alpha input in layer 7
 
TH1F * m_neuroSWTSSW2DInputID_Layer8 = nullptr
 simulated id input in layer 8
 
TH1F * m_neuroSWTSSW2DInputT_Layer8 = nullptr
 simulated time input in layer 8
 
TH1F * m_neuroSWTSSW2DInputAlpha_Layer8 = nullptr
 simulated alpha input in layer 8
 
TH1F * m_RecoZ = nullptr
 reconstructed z
 
TH1F * m_RecoCosTheta = nullptr
 reconstructed cos(theta)
 
TH1F * m_RecoInvPt = nullptr
 reconstructed inverse Pt
 
TH1F * m_RecoPhi = nullptr
 reconstructed phi
 
TH1F * m_RecoD0 = nullptr
 reconstructed d0
 
TH1F * m_RecoTrackCount = nullptr
 number of reconstructed tracks per event
 
TH1F * m_RecoHWZ = nullptr
 matched to HW reconstructed z
 
TH1F * m_RecoHWCosTheta = nullptr
 matched to HW reconstructed cos(theta)
 
TH1F * m_RecoHWInvPt = nullptr
 matched to HW reconstructed inverse Pt
 
TH1F * m_RecoHWPhi = nullptr
 matched to HW reconstructed phi
 
TH1F * m_RecoHWD0 = nullptr
 matched to HW reconstructed d0
 
TH2F * m_RecoHWZScatter = nullptr
 matched to HW reconstructed z scatter plot
 
TH1F * m_neuroRecoHWOutZ = nullptr
 reco matched z distribution from unpacker
 
TH1F * m_neuroRecoHWOutCosTheta = nullptr
 reco matched cos theta distribution from unpacker
 
TH1F * m_neuroRecoHWOutInvPt = nullptr
 reco matched Inverse Pt distribution from unpacker
 
TH1F * m_neuroRecoHWOutPhi0 = nullptr
 reco matched phi distribution from unpacker
 
TH1F * m_neuroRecoHWOutHitPattern = nullptr
 reco matched stereo hit pattern from unpacker
 
TH1F * m_neuroRecoHWOutTrackCount = nullptr
 reco matched number of unpacked and matched tracks per event
 
TH1F * m_neuroRecoHWSector = nullptr
 reco matched NN sector from unpacker
 
TH1F * m_DeltaRecoHWZ = nullptr
 matched to HW reconstructed z
 
TH1F * m_DeltaRecoHWCosTheta = nullptr
 matched to HW reconstructed cos(theta)
 
TH1F * m_DeltaRecoHWInvPt = nullptr
 matched to HW reconstructed inverse Pt
 
TH1F * m_DeltaRecoHWPhi = nullptr
 matched to HW reconstructed phi
 
TH1F * m_RecoSWZ = nullptr
 matched to SW reconstructed z
 
TH1F * m_RecoSWCosTheta = nullptr
 matched to SW reconstructed cos(theta)
 
TH1F * m_RecoSWInvPt = nullptr
 matched to SW reconstructed inverse Pt
 
TH1F * m_RecoSWPhi = nullptr
 matched to SW reconstructed phi
 
TH1F * m_RecoSWD0 = nullptr
 matched to SW reconstructed d0
 
TH2F * m_RecoSWZScatter = nullptr
 matched to SW reconstructed z scatter plot
 
TH1F * m_neuroRecoSWOutZ = nullptr
 reco matched z distribution from simulation (hw TS hw 2D sw NN)
 
TH1F * m_neuroRecoSWOutCosTheta = nullptr
 reco matched cos theta distribution from simulation (hw TS hw 2D sw NN)
 
TH1F * m_neuroRecoSWOutInvPt = nullptr
 reco matched Inverse Pt distribution from simulation (hw TS hw 2D sw NN)
 
TH1F * m_neuroRecoSWOutPhi0 = nullptr
 reco matched phi distribution from simulation (hw TS hw 2D sw NN)
 
TH1F * m_neuroRecoSWOutHitPattern = nullptr
 reco matched stereo hit pattern of simulated neuro tracks (hw TS hw 2D sw NN)
 
TH1F * m_neuroRecoSWOutTrackCount = nullptr
 reco matched number of simulated tracks per event (hw TS hw 2D sw NN)
 
TH1F * m_neuroRecoSWSector = nullptr
 reco matched NN sector from simulation (hw TS hw 2D sw NN)
 
TH1F * m_DeltaRecoSWZ = nullptr
 matched to SW reconstructed z
 
TH1F * m_DeltaRecoSWCosTheta = nullptr
 matched to SW reconstructed cos(theta)
 
TH1F * m_DeltaRecoSWInvPt = nullptr
 matched to SW reconstructed inverse Pt
 
TH1F * m_DeltaRecoSWPhi = nullptr
 matched to SW reconstructed phi
 
TH1F * m_RecoSWTSSW2DZ = nullptr
 matched to SWTSSW2DSWNN reconstructed z
 
TH1F * m_RecoSWTSSW2DCosTheta = nullptr
 matched to SWTSSW2DSWNN reconstructed cos(theta)
 
TH1F * m_RecoSWTSSW2DInvPt = nullptr
 matched to SWTSSW2DSWNN reconstructed inverse Pt
 
TH1F * m_RecoSWTSSW2DPhi = nullptr
 matched to SWTSSW2DSWNN reconstructed phi
 
TH1F * m_RecoSWTSSW2DD0 = nullptr
 matched to SWTSSW2DSWNN reconstructed d0
 
TH2F * m_RecoSWTSSW2DZScatter = nullptr
 matched to SWTSSW2DSWNN reconstructed z scatter plot
 
TH1F * m_neuroRecoSWTSSW2DOutZ = nullptr
 reco matched z distribution from simulation (sw TS sw 2D sw NN)
 
TH1F * m_neuroRecoSWTSSW2DOutCosTheta = nullptr
 reco matched cos theta distribution from simulation (sw TS sw 2D sw NN)
 
TH1F * m_neuroRecoSWTSSW2DOutInvPt = nullptr
 reco matched Inverse Pt distribution from simulation (sw TS sw 2D sw NN)
 
TH1F * m_neuroRecoSWTSSW2DOutPhi0 = nullptr
 reco matched phi distribution from simulation (sw TS sw 2D sw NN)
 
TH1F * m_neuroRecoSWTSSW2DOutHitPattern
 reco matched stereo hit pattern of simulated neuro tracks (sw TS sw 2D sw NN)
 
TH1F * m_neuroRecoSWTSSW2DOutTrackCount = nullptr
 reco matched number of simulated tracks per event (sw TS sw 2D sw NN)
 
TH1F * m_neuroRecoSWTSSW2DSector = nullptr
 reco matched NN sector from simulation (sw TS sw 2D sw NN)
 
TH1F * m_DeltaRecoSWTSSW2DZ = nullptr
 matched to SWTSSW2DSWNN reconstructed z
 
TH1F * m_DeltaRecoSWTSSW2DCosTheta = nullptr
 matched to SWTSSW2DSWNN reconstructed cos(theta)
 
TH1F * m_DeltaRecoSWTSSW2DInvPt = nullptr
 matched to SWTSSW2DSWNN reconstructed inverse Pt
 
TH1F * m_DeltaRecoSWTSSW2DPhi = nullptr
 matched to SWTSSW2DSWNN reconstructed phi
 
std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 

Detailed Description

CDC Trigger DQM Module.

Definition at line 31 of file CDCTriggerNeuroDQMModule.h.

Member Typedef Documentation

◆ EAfterConditionPath

Forward the EAfterConditionPath definition from the ModuleCondition.

Definition at line 88 of file Module.h.

◆ TSLines

typedef std::vector<TSLine> TSLines

Definition at line 61 of file CDCTriggerNeuroDQMModule.h.

Member Enumeration Documentation

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 77 of file Module.h.

77 {
78 c_Input = 1,
79 c_Output = 2,
85 };
@ c_HistogramManager
This module is used to manage histograms accumulated by other modules.
Definition: Module.h:81
@ c_Input
This module is an input module (reads data).
Definition: Module.h:78
@ c_DontCollectStatistics
No statistics is collected for this module.
Definition: Module.h:84
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
Definition: Module.h:80
@ c_InternalSerializer
This module is an internal serializer/deserializer for parallel processing.
Definition: Module.h:82
@ c_Output
This module is an output module (writes data).
Definition: Module.h:79
@ c_TerminateInAllProcesses
When using parallel processing, call this module's terminate() function in all processes().
Definition: Module.h:83

Constructor & Destructor Documentation

◆ CDCTriggerNeuroDQMModule()

Constructor.

Definition at line 29 of file CDCTriggerNeuroDQMModule.cc.

29 : HistoModule()
30{
31 //Set module properties
32 setDescription("CDC Trigger DQM module");
33 setPropertyFlags(c_ParallelProcessingCertified); // specify this flag if you need parallel processing
34 addParam("limitedoutput", m_limitedoutput,
35 "Switch to supress output for online dqm purposes. ",
36 true);
37 addParam("unpackedSegmentHitsName", m_unpackedSegmentHitsName,
38 "The name of the StoreArray of the unpacked CDCTriggerSegmentHits",
39 string("CDCTriggerSegmentHits"));
40 addParam("unpacked2DTracksName", m_unpacked2DTracksName,
41 "The name of the StoreArray of the unpacked 2D finder tracks",
42 string("CDCTrigger2DFinderTracks"));
43 addParam("unpackedNeuroTracksName", m_unpackedNeuroTracksName,
44 "The name of the StoreArray of the unpacked neurotrigger tracks",
45 string("CDCTriggerNeuroTracks"));
46 addParam("unpackedNeuroInput2dTracksName", m_unpackedNeuroInput2DTracksName,
47 "The name of the StoreArray of the neurotrigger input 2d tracks",
48 string("CDCTriggerNNInput2DFinderTracks"));
49 addParam("unpackedNeuroInputSegmentHits", m_unpackedNeuroInputSegmentsName,
50 "The name of the StoreArray of the neurotrigger input segment hits",
51 string("CDCTriggerNNInputSegmentHits"));
52 addParam("simNeuroTracksName", m_simNeuroTracksName,
53 "The name of the StoreArray of the neurotrigger tracks from TSIM",
54 string(""));
55 addParam("histogramDirectoryName", m_histogramDirectoryName,
56 "Name of the directory where histograms will be placed",
57 string("TRGCDCTNN"));
58 addParam("simSegmentHitsName", m_simSegmentHitsName,
59 "StoreArray name for simulated TS hits", string(""));
60 addParam("sim2DTracksSWTSName", m_sim2DTracksSWTSName,
61 "StoreArray name for simulated 2D finder tracks using simulated TS", string(""));
62 addParam("simNeuroTracksSWTSSW2DName", m_simNeuroTracksSWTSSW2DName,
63 "StoreArray name for neuro tracks using simulated TS and simulated 2D", string(""));
64 addParam("showRecoTracks", m_showRecoTracks,
65 "switch to turn on a comparison with the reconstruction, DEPRECATED! Use RecoTracks='RecoTracks' (='') instead!",
66 false);
67 addParam("RecoTracks", m_recoTracksName,
68 "Name of the RecoTrack StoreArray. Leave empty for skipping them.",
69 string(""));
70 addParam("recoTrackMultiplicity", m_recoTrackMultiplicity,
71 "Select events with a specific RecoTrack track multiplicity. -1 for all events",
72 -1);
73 addParam("skipWithoutHWTS", m_skipWithoutHWTS,
74 "Switch to skip events without unpacked TS",
75 true);
76 addParam("maxRecoZDist", m_maxRecoZDist,
77 "Select only RecoTracks with a maximum z distance to the IP. -1.0 for all tracks",
78 (double)(- 1.0));
79 addParam("maxRecoD0Dist", m_maxRecoD0Dist,
80 "Select only RecoTracks with a maximum d0 distance to the z axis. -1.0 for all tracks",
81 (double)(- 1.0));
82 addParam("nSameTS", m_nsamets,
83 "Number of identical track segments to be required for matching between HW and SW Neurotrigger",
84 (int)(0));
85}
bool m_limitedoutput
Switch to supress output for dqm online module.
std::string m_unpackedSegmentHitsName
Name for TS hits from unpacker.
int m_recoTrackMultiplicity
Select events with a specific RecoTrack track multiplicity.
double m_maxRecoD0Dist
Select only RecoTracks with a maximum d0 distance to the z axis.
bool m_showRecoTracks
Switch to turn on a comparison with the reconstruction.
std::string m_simSegmentHitsName
Name for simulated TS hits.
std::string m_unpacked2DTracksName
Name for 2D finder tracks from unpacker.
std::string m_unpackedNeuroInputSegmentsName
Name for neuro input Track segments.
std::string m_unpackedNeuroInput2DTracksName
Name for neuro input 2d finder tracks.
bool m_skipWithoutHWTS
Switch to skip events without unpacked TS.
std::string m_histogramDirectoryName
Name of the histogram directory in ROOT file.
std::string m_recoTracksName
Name for the RecoTrack array name.
double m_maxRecoZDist
Select only RecoTracks with a maximum z distance to the IP.
int m_nsamets
Number of identical track segments to be required for matching between HW and SW Neurotrigger.
std::string m_simNeuroTracksName
Name for neuro tracks from TSIM using HW TS, HW 2D.
std::string m_sim2DTracksSWTSName
Name for simulated 2D finder tracks using simulated TS.
std::string m_simNeuroTracksSWTSSW2DName
Name for neuro tracks using simulated TS and simulated 2D.
std::string m_unpackedNeuroTracksName
Name for neuro tracks from unpacker.
HistoModule()
Constructor.
Definition: HistoModule.h:32
void setDescription(const std::string &description)
Sets the description of the module.
Definition: Module.cc:214
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
Definition: Module.cc:208
void addParam(const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
Definition: Module.h:560

◆ ~CDCTriggerNeuroDQMModule()

Destructor.

Definition at line 88 of file CDCTriggerNeuroDQMModule.cc.

89{
90}

Member Function Documentation

◆ beginRun()

void beginRun ( void  )
overridevirtual

Function to process begin_run record.

Reimplemented from HistoModule.

Definition at line 1318 of file CDCTriggerNeuroDQMModule.cc.

1319{
1320 // Just to make sure, reset all the histograms.
1321 if (m_unpackedNeuroTracksName != "") {
1322
1323 m_neuroHWOutZ->Reset();
1324 m_neuroHWOutCosTheta->Reset();
1325 m_neuroHWOutInvPt->Reset();
1326 m_neuroHWOutPt->Reset();
1327 m_neuroHWOutPhi0->Reset();
1328 m_neuroHWOutHitPattern->Reset();
1329 m_neuroHWOutm_time->Reset();
1330 m_neuroHWOutTrackCount->Reset();
1332 m_neuroHWSector->Reset();
1333
1334 m_neuroHWInInvPt->Reset();
1335 m_neuroHWInPhi0->Reset();
1336 m_neuroHWInm_time->Reset();
1337 m_neuroHWInTrackCount->Reset();
1338
1339 m_neuroHWInTSID->Reset();
1340 m_neuroHWInTSCount->Reset();
1341
1342 m_neuroHWSelTSID->Reset();
1343 m_neuroHWSelTSCount->Reset();
1344 }
1345 if (m_unpacked2DTracksName != "") {
1346 m_2DHWOutInvPt->Reset();
1347 m_2DHWOutPhi0->Reset();
1348 m_2DHWOutm_time->Reset();
1349 m_2DHWOutTrackCount->Reset();
1350
1351 }
1354 }
1356 m_neuroHWOutQuad5Z->Reset();
1358 m_neuroHWOutQuad5InvPt->Reset();
1359 m_neuroHWOutQuad5Phi0->Reset();
1360 m_neuroHWOutQuad0Z->Reset();
1362 m_neuroHWOutQuad0InvPt->Reset();
1363 m_neuroHWOutQuad0Phi0->Reset();
1364 m_neuroHWOutQuad1Z->Reset();
1366 m_neuroHWOutQuad1InvPt->Reset();
1367 m_neuroHWOutQuad1Phi0->Reset();
1368 m_neuroHWOutQuad2Z->Reset();
1370 m_neuroHWOutQuad2InvPt->Reset();
1371 m_neuroHWOutQuad2Phi0->Reset();
1372 m_neuroHWOutQuad3Z->Reset();
1374 m_neuroHWOutQuad3InvPt->Reset();
1375 m_neuroHWOutQuad3Phi0->Reset();
1376
1395
1405 m_neuroHWInTSLR_Layer0->Reset();
1406 m_neuroHWInTSLR_Layer1->Reset();
1407 m_neuroHWInTSLR_Layer2->Reset();
1408 m_neuroHWInTSLR_Layer3->Reset();
1409 m_neuroHWInTSLR_Layer4->Reset();
1410 m_neuroHWInTSLR_Layer5->Reset();
1411 m_neuroHWInTSLR_Layer6->Reset();
1412 m_neuroHWInTSLR_Layer7->Reset();
1413 m_neuroHWInTSLR_Layer8->Reset();
1414
1433
1443 m_neuroHWSelTSLR_Layer0->Reset();
1444 m_neuroHWSelTSLR_Layer1->Reset();
1445 m_neuroHWSelTSLR_Layer2->Reset();
1446 m_neuroHWSelTSLR_Layer3->Reset();
1447 m_neuroHWSelTSLR_Layer4->Reset();
1448 m_neuroHWSelTSLR_Layer5->Reset();
1449 m_neuroHWSelTSLR_Layer6->Reset();
1450 m_neuroHWSelTSLR_Layer7->Reset();
1451 m_neuroHWSelTSLR_Layer8->Reset();
1452
1453 m_neuroHWInputID_Layer0->Reset();
1454 m_neuroHWInputT_Layer0->Reset();
1456 m_neuroHWInputID_Layer1->Reset();
1457 m_neuroHWInputT_Layer1->Reset();
1459 m_neuroHWInputID_Layer2->Reset();
1460 m_neuroHWInputT_Layer2->Reset();
1462 m_neuroHWInputID_Layer3->Reset();
1463 m_neuroHWInputT_Layer3->Reset();
1465 m_neuroHWInputID_Layer4->Reset();
1466 m_neuroHWInputT_Layer4->Reset();
1468 m_neuroHWInputID_Layer5->Reset();
1469 m_neuroHWInputT_Layer5->Reset();
1471 m_neuroHWInputID_Layer6->Reset();
1472 m_neuroHWInputT_Layer6->Reset();
1474 m_neuroHWInputID_Layer7->Reset();
1475 m_neuroHWInputT_Layer7->Reset();
1477 m_neuroHWInputID_Layer8->Reset();
1478 m_neuroHWInputT_Layer8->Reset();
1480 }
1481 if (!m_limitedoutput && m_simNeuroTracksName != "") {
1482 m_neuroSWOutZ->Reset();
1483 m_neuroSWOutCosTheta->Reset();
1484 m_neuroSWOutPhi0->Reset();
1485 m_neuroSWOutInvPt->Reset();
1486 m_neuroSWOutHitPattern->Reset();
1487 m_neuroSWOutTrackCount->Reset();
1488 m_neuroSWSector->Reset();
1489 }
1491 m_2DSWOutInvPt->Reset();
1492 m_2DSWOutPhi0->Reset();
1493 m_2DSWOutm_time->Reset();
1494 m_2DSWOutTrackCount->Reset();
1495
1496 m_neuroSWTSSW2DOutZ->Reset();
1498 m_neuroSWTSSW2DOutInvPt->Reset();
1499 m_neuroSWTSSW2DOutPhi0->Reset();
1502 m_neuroSWTSSW2DSector->Reset();
1503 }
1504 if (!m_limitedoutput && m_simNeuroTracksName != "") {
1505 m_neuroDeltaZ->Reset();
1506 m_neuroDeltaTheta->Reset();
1507 m_neuroScatterZ->Reset();
1508 m_neuroScatterTheta->Reset();
1509
1510 m_neuroDeltaInputID->Reset();
1511 m_neuroDeltaInputT->Reset();
1512 m_neuroDeltaInputAlpha->Reset();
1513 m_neuroDeltaTSID->Reset();
1514 m_neuroDeltaSector->Reset();
1515 m_simSameTS->Reset();
1516 m_simDiffTS->Reset();
1517 }
1519 m_2DHWInTSPrioT_Layer0->Reset();
1520 m_2DHWInTSPrioT_Layer2->Reset();
1521 m_2DHWInTSPrioT_Layer4->Reset();
1522 m_2DHWInTSPrioT_Layer6->Reset();
1523 m_2DHWInTSPrioT_Layer8->Reset();
1524 m_2DHWInTSFoundT_Layer0->Reset();
1525 m_2DHWInTSFoundT_Layer2->Reset();
1526 m_2DHWInTSFoundT_Layer4->Reset();
1527 m_2DHWInTSFoundT_Layer6->Reset();
1528 m_2DHWInTSFoundT_Layer8->Reset();
1529
1530 m_2DHWInTSPrioB_Layer0->Reset();
1531 m_2DHWInTSPrioB_Layer2->Reset();
1532 m_2DHWInTSPrioB_Layer4->Reset();
1533 m_2DHWInTSPrioB_Layer6->Reset();
1534 m_2DHWInTSPrioB_Layer8->Reset();
1535 m_2DHWInTSLR_Layer0->Reset();
1536 m_2DHWInTSLR_Layer2->Reset();
1537 m_2DHWInTSLR_Layer4->Reset();
1538 m_2DHWInTSLR_Layer6->Reset();
1539 m_2DHWInTSLR_Layer8->Reset();
1540 }
1541 if (!m_limitedoutput && m_simNeuroTracksName != "") {
1542 m_neuroSWSelTSID->Reset();
1543 m_neuroSWSelTSCount->Reset();
1562
1572
1573 m_neuroSWSelTSLR_Layer0->Reset();
1574 m_neuroSWSelTSLR_Layer1->Reset();
1575 m_neuroSWSelTSLR_Layer2->Reset();
1576 m_neuroSWSelTSLR_Layer3->Reset();
1577 m_neuroSWSelTSLR_Layer4->Reset();
1578 m_neuroSWSelTSLR_Layer5->Reset();
1579 m_neuroSWSelTSLR_Layer6->Reset();
1580 m_neuroSWSelTSLR_Layer7->Reset();
1581 m_neuroSWSelTSLR_Layer8->Reset();
1582
1583 m_neuroSWInputID_Layer0->Reset();
1584 m_neuroSWInputT_Layer0->Reset();
1586 m_neuroSWInputID_Layer1->Reset();
1587 m_neuroSWInputT_Layer1->Reset();
1589 m_neuroSWInputID_Layer2->Reset();
1590 m_neuroSWInputT_Layer2->Reset();
1592 m_neuroSWInputID_Layer3->Reset();
1593 m_neuroSWInputT_Layer3->Reset();
1595 m_neuroSWInputID_Layer4->Reset();
1596 m_neuroSWInputT_Layer4->Reset();
1598 m_neuroSWInputID_Layer5->Reset();
1599 m_neuroSWInputT_Layer5->Reset();
1601 m_neuroSWInputID_Layer6->Reset();
1602 m_neuroSWInputT_Layer6->Reset();
1604 m_neuroSWInputID_Layer7->Reset();
1605 m_neuroSWInputT_Layer7->Reset();
1607 m_neuroSWInputID_Layer8->Reset();
1608 m_neuroSWInputT_Layer8->Reset();
1610 }
1611
1613 m_neuroSWTSSW2DInTSID->Reset();
1614 m_neuroSWTSSW2DInTSCount->Reset();
1651
1652 m_neuroSWTSSW2DSelTSID->Reset();
1690
1718 }
1719 if (m_recoTracksName != "") {
1720 m_RecoZ->Reset();
1721 m_RecoCosTheta->Reset();
1722 m_RecoInvPt->Reset();
1723 m_RecoPhi->Reset();
1724 m_RecoD0->Reset();
1725 m_RecoTrackCount->Reset();
1726
1727 m_RecoHWZ->Reset();
1728 m_RecoHWCosTheta->Reset();
1729 m_RecoHWInvPt->Reset();
1730 m_RecoHWPhi->Reset();
1731 m_RecoHWD0->Reset();
1732 }
1733 if (!m_limitedoutput && m_recoTracksName != "") {
1734 m_RecoHWZScatter->Reset();
1735 }
1736 if (m_unpackedNeuroTracksName != "" && m_recoTracksName != "") {
1737 m_neuroRecoHWOutZ->Reset();
1738 m_neuroRecoHWOutCosTheta->Reset();
1739 m_neuroRecoHWOutInvPt->Reset();
1740 m_neuroRecoHWOutPhi0->Reset();
1743 m_neuroRecoHWSector->Reset();
1744
1745 m_DeltaRecoHWZ->Reset();
1746 m_DeltaRecoHWCosTheta->Reset();
1747 m_DeltaRecoHWInvPt->Reset();
1748 m_DeltaRecoHWPhi->Reset();
1749 }
1750 if (!m_limitedoutput && m_simNeuroTracksName != "" && m_recoTracksName != "") {
1751 m_RecoSWZ->Reset();
1752 m_RecoSWCosTheta->Reset();
1753 m_RecoSWInvPt->Reset();
1754 m_RecoSWPhi->Reset();
1755 m_RecoSWD0->Reset();
1756 m_RecoSWZScatter->Reset();
1757
1758 m_neuroRecoSWOutZ->Reset();
1759 m_neuroRecoSWOutCosTheta->Reset();
1760 m_neuroRecoSWOutInvPt->Reset();
1761 m_neuroRecoSWOutPhi0->Reset();
1764 m_neuroRecoSWSector->Reset();
1765
1766 m_DeltaRecoSWZ->Reset();
1767 m_DeltaRecoSWCosTheta->Reset();
1768 m_DeltaRecoSWInvPt->Reset();
1769 m_DeltaRecoSWPhi->Reset();
1770 }
1772 m_RecoSWTSSW2DZ->Reset();
1773 m_RecoSWTSSW2DCosTheta->Reset();
1774 m_RecoSWTSSW2DInvPt->Reset();
1775 m_RecoSWTSSW2DPhi->Reset();
1776 m_RecoSWTSSW2DD0->Reset();
1777 m_RecoSWTSSW2DZScatter->Reset();
1778
1779 m_neuroRecoSWTSSW2DOutZ->Reset();
1786
1787 m_DeltaRecoSWTSSW2DZ->Reset();
1789 m_DeltaRecoSWTSSW2DInvPt->Reset();
1790 m_DeltaRecoSWTSSW2DPhi->Reset();
1791 }
1792
1793}
TH1F * m_neuroSWTSSW2DInputID_Layer6
simulated id input in layer 6
TH1F * m_neuroRecoSWOutInvPt
reco matched Inverse Pt distribution from simulation (hw TS hw 2D sw NN)
TH1F * m_neuroSWTSSW2DSelTSPrioB_Layer8
Priority bits of track segments in layer 8.
TH1F * m_neuroSWTSSW2DSelTSPrioB_Layer4
Priority bits of track segments in layer 4.
TH1F * m_neuroSWTSSW2DInTSPrioB_Layer0
Priority bits of track segments in layer 0.
TH1F * m_neuroSWSelTSPrioB_Layer7
Priority bits of track segments in layer 7.
TH1F * m_neuroDeltaInputT
unpacked time input - TSIM time input
TH1F * m_neuroSWSelTSPrioT_Layer3
Priority time of track segments in layer 3.
TH1F * m_neuroHWInputID_Layer7
unpacked id input in layer 7
TH1F * m_neuroSWSelTSLR_Layer5
Left/Right of track segments in layer 5.
TH1F * m_neuroSWSelTSLR_Layer2
Left/Right of track segments in layer 2.
TH1F * m_neuroSWTSSW2DInputT_Layer6
simulated time input in layer 6
TH1F * m_neuroHWSelTSPrioT_Layer5
Priority time of selected track segments in layer 5.
TH1F * m_neuroSWSelTSPrioT_Layer1
Priority time of track segments in layer 1.
TH1F * m_2DHWInTSPrioB_Layer4
Priority bits of 2D track segments in layer 4.
TH1F * m_neuroHWInTSLR_Layer3
Left/Right of track segments in layer 3.
TH1F * m_neuroSWInputAlpha_Layer3
simulated alpha input in layer 3
TH1F * m_neuroSWOutInvPt
Inverse Pt distribution from simulation (hw TS hw 2D sw NN)
TH1F * m_neuroSWInputID_Layer7
simulated id input in layer 7
TH1F * m_neuroSWTSSW2DSelTSFoundT_Layer2
Found time of selected track segments in layer 2.
TH1F * m_2DHWOutInvPt
Inverse Pt of 2dtracks.
TH1F * m_neuroSWTSSW2DInputID_Layer2
simulated id input in layer 2
TH1F * m_neuroRecoHWOutZ
reco matched z distribution from unpacker
TH1F * m_neuroSWTSSW2DInTSFoundT_Layer1
Found time of track segments in layer 1.
TH1F * m_neuroHWInPhi0
Phi0 of incoming 2dtrack.
TH1F * m_2DHWOutTrackCount
number of 2dtracks per event
TH1F * m_neuroSWSelTSFoundT_Layer3
Found time of track segments in layer 3.
TH1F * m_neuroSWTSSW2DInputAlpha_Layer2
simulated alpha input in layer 2
TH1F * m_neuroHWInTSPrioB_Layer8
Priority bits of track segments in layer 8.
TH1F * m_neuroHWInTSPrioT_Layer5
Priority time of track segments in layer 5.
TH1F * m_neuroSWInputID_Layer6
simulated id input in layer 6
TH1F * m_neuroSWTSSW2DSelTSPrioB_Layer0
Priority bits of track segments in layer 0.
TH1F * m_RecoInvPt
reconstructed inverse Pt
TH1F * m_neuroSWTSSW2DInTSLR_Layer2
Left/Right of track segments in layer 2.
TH1F * m_neuroHWInputAlpha_Layer4
unpacked alpha input in layer 4
TH1F * m_neuroSWTSSW2DSelTSLR_Layer3
Left/Right of track segments in layer 3.
TH1F * m_neuroSWSelTSPrioT_Layer8
Priority time of track segments in layer 8.
TH1F * m_neuroHWInTSFoundT_Layer6
Found time of track segments in layer 6.
TH1F * m_neuroSWTSSW2DSelTSFoundT_Layer8
Found time of selected track segments in layer 8.
TH1F * m_neuroSWTSSW2DSelTSPrioT_Layer7
Priority time of selected track segments in layer 7.
TH1F * m_neuroSWTSSW2DSelTSPrioB_Layer3
Priority bits of track segments in layer 3.
TH1F * m_neuroSWSelTSPrioB_Layer0
Priority bits of track segments in layer 0.
TH1F * m_neuroHWOutQuad1Z
z distribution from unpacker (quadrant 1)
TH1F * m_neuroSWTSSW2DSelTSPrioT_Layer5
Priority time of selected track segments in layer 5.
TH1F * m_neuroSWTSSW2DSelTSFoundT_Layer3
Found time of selected track segments in layer 3.
TH1F * m_neuroSWTSSW2DOutInvPt
Inverse Pt distribution from simulation (sw TS sw 2D sw NN)
TH1F * m_neuroHWInVs2DOutTrackCount
neuroHWInTrackCount - 2DHWOutTrackCountput
TH2F * m_neuroScatterTheta
unpacked theta vs TSIM theta, scatter plot
TH1F * m_neuroSWInputT_Layer5
simulated time input in layer 5
TH1F * m_2DHWInTSFoundT_Layer2
Found time of 2D track segments in layer 2.
TH2F * m_RecoHWZScatter
matched to HW reconstructed z scatter plot
TH1F * m_neuroSWSelTSPrioB_Layer1
Priority bits of track segments in layer 1.
TH1F * m_neuroSWTSSW2DInTSCount
number of TS per event
TH1F * m_neuroRecoSWTSSW2DOutPhi0
reco matched phi distribution from simulation (sw TS sw 2D sw NN)
TH1F * m_neuroRecoHWOutCosTheta
reco matched cos theta distribution from unpacker
TH1F * m_neuroSWTSSW2DSelTSPrioT_Layer2
Priority time of selected track segments in layer 2.
TH1F * m_neuroHWSelTSCount
number of selected TS per SL
TH1F * m_neuroSWOutPhi0
phi distribution from simulation (hw TS hw 2D sw NN)
TH1F * m_DeltaRecoSWTSSW2DInvPt
matched to SWTSSW2DSWNN reconstructed inverse Pt
TH1F * m_neuroHWInTSLR_Layer2
Left/Right of track segments in layer 2.
TH1F * m_neuroHWInTSPrioT_Layer4
Priority time of track segments in layer 4.
TH1F * m_neuroRecoHWOutHitPattern
reco matched stereo hit pattern from unpacker
TH1F * m_neuroHWInm_time
m_time distribution from incoming 2dtracks
TH1F * m_RecoTrackCount
number of reconstructed tracks per event
TH1F * m_neuroSWSelTSLR_Layer6
Left/Right of track segments in layer 6.
TH1F * m_2DHWInTSFoundT_Layer4
Found time of 2D track segments in layer 4.
TH1F * m_neuroDeltaTheta
unpacked theta - TSIM theta
TH1F * m_neuroRecoSWTSSW2DOutInvPt
reco matched Inverse Pt distribution from simulation (sw TS sw 2D sw NN)
TH1F * m_neuroSWSelTSFoundT_Layer5
Found time of track segments in layer 5.
TH1F * m_neuroSWTSSW2DSelTSFoundT_Layer4
Found time of selected track segments in layer 4.
TH1F * m_RecoSWTSSW2DInvPt
matched to SWTSSW2DSWNN reconstructed inverse Pt
TH1F * m_2DHWInTSLR_Layer4
Left/Right of 2D track segments in layer 4.
TH1F * m_2DHWInTSFoundT_Layer0
Found time of 2D track segments in layer 0.
TH1F * m_neuroSWTSSW2DInputT_Layer1
simulated time input in layer 1
TH1F * m_neuroHWOutZ
z distribution of unpacked neuro tracks
TH1F * m_neuroHWInputT_Layer2
unpacked time input in layer 2
TH1F * m_neuroSWTSSW2DInputID_Layer5
simulated id input in layer 5
TH1F * m_DeltaRecoSWTSSW2DCosTheta
matched to SWTSSW2DSWNN reconstructed cos(theta)
TH1F * m_neuroSWTSSW2DInTSLR_Layer0
Left/Right of track segments in layer 0.
TH1F * m_neuroHWInInvPt
Inverse Pt distribution from incoming 2dtrack.
TH1F * m_neuroRecoHWOutInvPt
reco matched Inverse Pt distribution from unpacker
TH1F * m_neuroHWOutQuad2InvPt
Inverse Pt distribution from unpacker (quadrant 2)
TH1F * m_neuroSWSector
NN sector from simulation (hw TS hw 2D sw NN)
TH1F * m_neuroSWSelTSLR_Layer7
Left/Right of track segments in layer 7.
TH1F * m_neuroHWSelTSFoundT_Layer1
Found time of selected track segments in layer 1.
TH1F * m_neuroSWTSSW2DInTSPrioB_Layer1
Priority bits of track segments in layer 1.
TH1F * m_neuroHWInputAlpha_Layer3
unpacked alpha input in layer 3
TH1F * m_neuroSWTSSW2DInputAlpha_Layer6
simulated alpha input in layer 6
TH1F * m_neuroHWSelTSFoundT_Layer6
Found time of selected track segments in layer 6.
TH1F * m_neuroHWInTSFoundT_Layer2
Found time of track segments in layer 2.
TH1F * m_neuroHWOutQuad0Phi0
phi distribution from unpacker (quadrant 0)
TH1F * m_DeltaRecoHWInvPt
matched to HW reconstructed inverse Pt
TH1F * m_neuroSWInputT_Layer0
simulated time input in layer 0
TH1F * m_neuroHWInTSPrioT_Layer1
Priority time of track segments in layer 1.
TH1F * m_neuroSWTSSW2DInTSPrioT_Layer6
Priority time of track segments in layer 6.
TH1F * m_neuroSWInputAlpha_Layer1
simulated alpha input in layer 1
TH1F * m_neuroSWOutTrackCount
number of simulated tracks per event (hw TS hw 2D sw NN)
TH1F * m_neuroSWTSSW2DOutTrackCount
number of simulated tracks per event (sw TS sw 2D sw NN)
TH1F * m_neuroHWSelTSPrioB_Layer5
Priority bits of track segments in layer 5.
TH1F * m_neuroHWSelTSFoundT_Layer4
Found time of selected track segments in layer 4.
TH1F * m_neuroSWTSSW2DInputAlpha_Layer3
simulated alpha input in layer 3
TH1F * m_neuroSWTSSW2DInTSFoundT_Layer4
Found time of track segments in layer 4.
TH1F * m_2DHWInTSFoundT_Layer8
Found time of 2D track segments in layer 8.
TH1F * m_2DHWInTSPrioT_Layer8
Priority time of 2D track segments in layer 8.
TH1F * m_simSameTS
number of TS selected in both, unpacked and TSIM tracks
TH1F * m_neuroHWInTSFoundT_Layer8
Found time of track segments in layer 8.
TH1F * m_neuroHWSelTSPrioB_Layer3
Priority bits of track segments in layer 3.
TH1F * m_neuroSWInputID_Layer8
simulated id input in layer 8
TH1F * m_2DHWInTSFoundT_Layer6
Found time of 2D track segments in layer 6.
TH1F * m_neuroRecoSWOutTrackCount
reco matched number of simulated tracks per event (hw TS hw 2D sw NN)
TH1F * m_neuroSWInputAlpha_Layer6
simulated alpha input in layer 6
TH1F * m_neuroSWTSSW2DInputT_Layer3
simulated time input in layer 3
TH1F * m_2DHWInTSPrioB_Layer8
Priority bits of 2D track segments in layer 8.
TH1F * m_neuroSWTSSW2DInTSLR_Layer3
Left/Right of track segments in layer 3.
TH1F * m_neuroHWOutQuad1InvPt
Inverse Pt distribution from unpacker (quadrant 1)
TH1F * m_neuroSWSelTSPrioT_Layer0
Priority time of track segments in layer 0.
TH1F * m_RecoSWPhi
matched to SW reconstructed phi
TH1F * m_RecoSWD0
matched to SW reconstructed d0
TH1F * m_neuroSWTSSW2DInTSFoundT_Layer3
Found time of track segments in layer 3.
TH1F * m_neuroRecoSWTSSW2DOutHitPattern
reco matched stereo hit pattern of simulated neuro tracks (sw TS sw 2D sw NN)
TH1F * m_neuroHWInTSLR_Layer5
Left/Right of track segments in layer 5.
TH1F * m_neuroHWInTSLR_Layer6
Left/Right of track segments in layer 6.
TH1F * m_neuroSWSelTSPrioT_Layer6
Priority time of track segments in layer 6.
TH1F * m_neuroHWInputAlpha_Layer2
unpacked alpha input in layer 2
TH1F * m_RecoHWD0
matched to HW reconstructed d0
TH1F * m_neuroSWSelTSFoundT_Layer0
Found time of track segments in layer 0.
TH1F * m_neuroSWTSSW2DSelTSLR_Layer2
Left/Right of track segments in layer 2.
TH1F * m_neuroHWInTSPrioB_Layer1
Priority bits of track segments in layer 1.
TH1F * m_neuroHWInputID_Layer4
unpacked id input in layer 4
TH1F * m_neuroSWTSSW2DSelTSFoundT_Layer6
Found time of selected track segments in layer 6.
TH1F * m_neuroSWTSSW2DSelTSFoundT_Layer5
Found time of selected track segments in layer 5.
TH1F * m_neuroSWTSSW2DSelTSID
ID of incoming track segments.
TH1F * m_neuroSWInputT_Layer7
simulated time input in layer 7
TH1F * m_neuroHWSelTSPrioB_Layer6
Priority bits of track segments in layer 6.
TH1F * m_neuroSWTSSW2DInTSLR_Layer1
Left/Right of track segments in layer 1.
TH1F * m_neuroSWSelTSID
ID of incoming track segments.
TH1F * m_neuroSWTSSW2DInTSLR_Layer4
Left/Right of track segments in layer 4.
TH1F * m_neuroSWTSSW2DSector
NN sector from simulation (sw TS sw 2D sw NN)
TH1F * m_neuroHWInTSPrioB_Layer5
Priority bits of track segments in layer 5.
TH1F * m_neuroSWTSSW2DInputID_Layer3
simulated id input in layer 3
TH1F * m_neuroSWTSSW2DInTSPrioT_Layer7
Priority time of track segments in layer 7.
TH1F * m_neuroSWSelTSPrioT_Layer4
Priority time of track segments in layer 4.
TH1F * m_neuroSWInputID_Layer0
simulated id input in layer 0
TH1F * m_neuroRecoSWOutHitPattern
reco matched stereo hit pattern of simulated neuro tracks (hw TS hw 2D sw NN)
TH1F * m_neuroSWTSSW2DSelTSLR_Layer8
Left/Right of track segments in layer 8.
TH1F * m_neuroHWSelTSPrioT_Layer2
Priority time of selected track segments in layer 2.
TH1F * m_neuroHWInTSFoundT_Layer7
Found time of track segments in layer 7.
TH2F * m_RecoSWTSSW2DZScatter
matched to SWTSSW2DSWNN reconstructed z scatter plot
TH1F * m_simDiffTS
number of TS selcted in TSIM but not in unpacked
TH1F * m_neuroSWTSSW2DInTSPrioB_Layer6
Priority bits of track segments in layer 6.
TH1F * m_neuroHWInTSPrioB_Layer4
Priority bits of track segments in layer 4.
TH1F * m_neuroSWOutZ
z distribution from simulation (hw TS hw 2D sw NN)
TH1F * m_neuroHWSelTSPrioB_Layer7
Priority bits of track segments in layer 7.
TH1F * m_neuroSWTSSW2DInputAlpha_Layer5
simulated alpha input in layer 5
TH1F * m_2DSWOutInvPt
Inverse Pt of 2dtracks (sw TS sw 2D)
TH1F * m_neuroSWTSSW2DInTSFoundT_Layer7
Found time of track segments in layer 7.
TH1F * m_neuroHWInputT_Layer1
unpacked time input in layer 1
TH1F * m_neuroHWInputID_Layer3
unpacked id input in layer 3
TH1F * m_neuroSWInputAlpha_Layer0
simulated alpha input in layer 0
TH1F * m_neuroSWTSSW2DOutHitPattern
stereo hit pattern of simulated neuro tracks (sw TS sw 2D sw NN)
TH1F * m_neuroHWInTSPrioT_Layer2
Priority time of track segments in layer 2.
TH1F * m_neuroSWInputID_Layer4
simulated id input in layer 4
TH1F * m_RecoSWCosTheta
matched to SW reconstructed cos(theta)
TH1F * m_2DSWOutm_time
m_time 2dtracks (sw TS sw 2D)
TH1F * m_2DHWInTSPrioB_Layer0
Priority bits of 2D track segments in layer 0.
TH1F * m_2DSWOutTrackCount
number of 2dtracks per event (sw TS sw 2D)
TH1F * m_neuroHWSelTSPrioT_Layer7
Priority time of selected track segments in layer 7.
TH1F * m_neuroHWSelTSPrioT_Layer0
Priority time of selected track segments in layer 0.
TH2F * m_RecoSWZScatter
matched to SW reconstructed z scatter plot
TH1F * m_neuroHWInputT_Layer0
unpacked time input in layer 0
TH1F * m_neuroHWInputID_Layer6
unpacked id input in layer 6
TH1F * m_neuroRecoSWTSSW2DOutTrackCount
reco matched number of simulated tracks per event (sw TS sw 2D sw NN)
TH1F * m_neuroHWOutQuad0CosTheta
cos theta distribution from unpacker (quadrant 0)
TH1F * m_neuroSWTSSW2DSelTSLR_Layer4
Left/Right of track segments in layer 4.
TH1F * m_neuroSWSelTSPrioB_Layer8
Priority bits of track segments in layer 8.
TH1F * m_neuroHWInTSFoundT_Layer1
Found time of track segments in layer 1.
TH1F * m_neuroHWOutPt
Pt distribution of unpacked neuro tracks.
TH1F * m_neuroHWSelTSLR_Layer6
Left/Right of track segments in layer 6.
TH1F * m_neuroHWOutQuad3Phi0
phi distribution from unpacker (quadrant 3)
TH1F * m_neuroHWInputAlpha_Layer7
unpacked alpha input in layer 7
TH1F * m_neuroSWInputT_Layer8
simulated time input in layer 8
TH1F * m_neuroHWInTSFoundT_Layer0
Found time of track segments in layer 0.
TH1F * m_neuroHWOutQuad5CosTheta
cos theta distribution from unpacker (no quadrant set)
TH1F * m_2DSWOutPhi0
Phi0 of 2dtracks (sw TS sw 2D)
TH1F * m_neuroSWTSSW2DSelTSPrioT_Layer6
Priority time of selected track segments in layer 6.
TH1F * m_neuroSWInputT_Layer6
simulated time input in layer 6
TH1F * m_DeltaRecoSWInvPt
matched to SW reconstructed inverse Pt
TH1F * m_neuroHWSelTSLR_Layer0
Left/Right of track segments in layer 0.
TH1F * m_neuroSWTSSW2DInTSLR_Layer6
Left/Right of track segments in layer 6.
TH1F * m_neuroSWInputID_Layer1
simulated id input in layer 1
TH1F * m_neuroSWTSSW2DInputT_Layer0
simulated time input in layer 0
TH1F * m_neuroSWTSSW2DSelTSPrioB_Layer7
Priority bits of track segments in layer 7.
TH1F * m_neuroHWInTSFoundT_Layer3
Found time of track segments in layer 3.
TH1F * m_neuroSWTSSW2DInTSFoundT_Layer6
Found time of track segments in layer 6.
TH1F * m_neuroHWInputT_Layer4
unpacked time input in layer 4
TH1F * m_neuroHWInputAlpha_Layer5
unpacked alpha input in layer 5
TH1F * m_RecoSWTSSW2DPhi
matched to SWTSSW2DSWNN reconstructed phi
TH1F * m_neuroHWInTSLR_Layer0
Left/Right of track segments in layer 0.
TH1F * m_neuroSWTSSW2DSelTSLR_Layer5
Left/Right of track segments in layer 5.
TH1F * m_DeltaRecoHWCosTheta
matched to HW reconstructed cos(theta)
TH1F * m_neuroSWTSSW2DInTSID
ID of incoming track segments.
TH1F * m_neuroHWInputID_Layer1
unpacked id input in layer 1
TH1F * m_RecoSWTSSW2DZ
matched to SWTSSW2DSWNN reconstructed z
TH1F * m_neuroSWTSSW2DInTSPrioB_Layer3
Priority bits of track segments in layer 3.
TH1F * m_neuroHWSelTSLR_Layer3
Left/Right of track segments in layer 3.
TH1F * m_neuroHWSelTSFoundT_Layer8
Found time of selected track segments in layer 8.
TH1F * m_neuroSWTSSW2DSelTSLR_Layer6
Left/Right of track segments in layer 6.
TH1F * m_neuroRecoSWTSSW2DOutZ
reco matched z distribution from simulation (sw TS sw 2D sw NN)
TH1F * m_neuroSWTSSW2DInTSPrioB_Layer4
Priority bits of track segments in layer 4.
TH1F * m_2DHWInTSPrioT_Layer2
Priority time of 2D track segments in layer 2.
TH1F * m_neuroHWOutPhi0
phi distribution of unpacked neuro tracks
TH1F * m_neuroHWOutQuad3Z
z distribution from unpacker (quadrant 3)
TH1F * m_neuroHWInTSFoundT_Layer5
Found time of track segments in layer 5.
TH1F * m_neuroHWOutQuad1Phi0
phi distribution from unpacker (quadrant 1)
TH1F * m_neuroHWSector
sector of unpacked neuro tracks
TH1F * m_neuroSWTSSW2DSelTSPrioT_Layer8
Priority time of selected track segments in layer 8.
TH1F * m_neuroHWInTrackCount
number of neuro input 2dtracks per event
TH1F * m_neuroHWSelTSPrioB_Layer2
Priority bits of track segments in layer 2.
TH1F * m_neuroHWInTSLR_Layer4
Left/Right of track segments in layer 4.
TH1F * m_neuroSWOutHitPattern
stereo hit pattern of simulated neuro tracks (hw TS hw 2D sw NN)
TH1F * m_neuroSWTSSW2DSelTSPrioB_Layer6
Priority bits of track segments in layer 6.
TH1F * m_2DHWInTSLR_Layer0
Left/Right of 2D track segments in layer 0.
TH1F * m_neuroSWOutCosTheta
cos theta distribution from simulation (hw TS hw 2D sw NN)
TH1F * m_neuroSWInputT_Layer2
simulated time input in layer 2
TH1F * m_neuroRecoHWSector
reco matched NN sector from unpacker
TH1F * m_neuroSWTSSW2DInputID_Layer0
simulated id input in layer 0
TH1F * m_neuroSWTSSW2DInTSPrioT_Layer2
Priority time of track segments in layer 2.
TH1F * m_neuroHWInTSLR_Layer8
Left/Right of track segments in layer 8.
TH1F * m_neuroHWSelTSPrioB_Layer4
Priority bits of track segments in layer 4.
TH1F * m_neuroSWSelTSPrioB_Layer4
Priority bits of track segments in layer 4.
TH1F * m_neuroHWOutQuad0Z
z distribution from unpacker (quadrant 0)
TH1F * m_neuroHWInputAlpha_Layer1
unpacked alpha input in layer 1
TH1F * m_neuroHWInTSPrioB_Layer7
Priority bits of track segments in layer 7.
TH1F * m_neuroSWSelTSFoundT_Layer2
Found time of track segments in layer 2.
TH1F * m_neuroSWSelTSPrioT_Layer2
Priority time of track segments in layer 2.
TH1F * m_2DHWInTSLR_Layer6
Left/Right of 2D track segments in layer 6.
TH1F * m_neuroHWSelTSPrioT_Layer1
Priority time of selected track segments in layer 1.
TH1F * m_neuroHWSelTSLR_Layer5
Left/Right of track segments in layer 5.
TH1F * m_RecoHWPhi
matched to HW reconstructed phi
TH1F * m_neuroHWOutQuad1CosTheta
cos theta distribution from unpacker (quadrant 1)
TH1F * m_neuroSWInputID_Layer2
simulated id input in layer 2
TH1F * m_neuroHWSelTSFoundT_Layer5
Found time of selected track segments in layer 5.
TH1F * m_neuroHWOutInvPt
Inverse Pt distribution of unpacked neuro tracks.
TH1F * m_neuroSWSelTSLR_Layer3
Left/Right of track segments in layer 3.
TH1F * m_neuroSWTSSW2DInTSLR_Layer5
Left/Right of track segments in layer 5.
TH1F * m_neuroDeltaInputAlpha
unpacked alpha input - TSIM alpha input
TH1F * m_neuroHWInTSPrioT_Layer8
Priority time of track segments in layer 8.
TH1F * m_neuroSWSelTSPrioT_Layer7
Priority time of track segments in layer 7.
TH1F * m_neuroSWInputT_Layer3
simulated time input in layer 3
TH1F * m_neuroSWSelTSFoundT_Layer6
Found time of track segments in layer 6.
TH1F * m_neuroSWSelTSFoundT_Layer4
Found time of track segments in layer 4.
TH1F * m_neuroHWInTSCount
number of TS per track
TH1F * m_neuroRecoSWSector
reco matched NN sector from simulation (hw TS hw 2D sw NN)
TH1F * m_neuroDeltaSector
unpacked sector - TSIM sector
TH1F * m_neuroHWOutm_time
m_time distribution of unpacked neuro tracks
TH1F * m_2DHWInTSLR_Layer8
Left/Right of 2D track segments in layer 8.
TH1F * m_RecoHWCosTheta
matched to HW reconstructed cos(theta)
TH1F * m_neuroSWSelTSFoundT_Layer1
Found time of track segments in layer 1.
TH1F * m_neuroSWTSSW2DSelTSPrioB_Layer5
Priority bits of track segments in layer 5.
TH1F * m_neuroRecoSWTSSW2DOutCosTheta
reco matched cos theta distribution from simulation (sw TS sw 2D sw NN)
TH1F * m_neuroHWSelTSLR_Layer7
Left/Right of track segments in layer 7.
TH1F * m_neuroHWSelTSFoundT_Layer0
Found time of selected track segments in layer 0.
TH1F * m_neuroSWSelTSPrioB_Layer3
Priority bits of track segments in layer 3.
TH1F * m_neuroSWTSSW2DSelTSFoundT_Layer7
Found time of selected track segments in layer 7.
TH1F * m_neuroSWTSSW2DInputT_Layer5
simulated time input in layer 5
TH1F * m_DeltaRecoSWCosTheta
matched to SW reconstructed cos(theta)
TH1F * m_neuroHWSelTSPrioB_Layer8
Priority bits of track segments in layer 8.
TH1F * m_RecoSWTSSW2DD0
matched to SWTSSW2DSWNN reconstructed d0
TH1F * m_neuroSWTSSW2DInTSFoundT_Layer5
Found time of track segments in layer 5.
TH1F * m_neuroSWTSSW2DInTSFoundT_Layer2
Found time of track segments in layer 2.
TH1F * m_neuroSWTSSW2DInputAlpha_Layer1
simulated alpha input in layer 1
TH1F * m_neuroSWTSSW2DSelTSPrioT_Layer0
Priority time of selected track segments in layer 0.
TH1F * m_neuroSWTSSW2DInputT_Layer7
simulated time input in layer 7
TH1F * m_neuroSWInputID_Layer5
simulated id input in layer 5
TH1F * m_neuroHWInTSPrioB_Layer6
Priority bits of track segments in layer 6.
TH1F * m_neuroSWSelTSLR_Layer0
Left/Right of track segments in layer 0.
TH1F * m_neuroSWTSSW2DSelTSPrioT_Layer4
Priority time of selected track segments in layer 4.
TH1F * m_neuroHWInputID_Layer2
unpacked id input in layer 2
TH1F * m_neuroHWInTSPrioT_Layer0
Priority time of track segments in layer 0.
TH1F * m_neuroRecoSWOutZ
reco matched z distribution from simulation (hw TS hw 2D sw NN)
TH1F * m_neuroSWInputAlpha_Layer4
simulated alpha input in layer 4
TH1F * m_neuroSWTSSW2DSelTSLR_Layer1
Left/Right of track segments in layer 1.
TH1F * m_neuroHWInputID_Layer5
unpacked id input in layer 5
TH1F * m_neuroSWTSSW2DInTSPrioB_Layer8
Priority bits of track segments in layer 8.
TH1F * m_neuroSWSelTSCount
number of TS per SL
TH1F * m_neuroSWTSSW2DInTSPrioB_Layer7
Priority bits of track segments in layer 7.
TH1F * m_neuroSWInputAlpha_Layer5
simulated alpha input in layer 5
TH1F * m_neuroHWSelTSPrioT_Layer3
Priority time of selected track segments in layer 3.
TH1F * m_neuroHWSelTSPrioT_Layer6
Priority time of selected track segments in layer 6.
TH1F * m_neuroSWTSSW2DInputT_Layer2
simulated time input in layer 2
TH1F * m_neuroSWTSSW2DInputID_Layer8
simulated id input in layer 8
TH1F * m_neuroSWTSSW2DInTSPrioB_Layer5
Priority bits of track segments in layer 5.
TH1F * m_RecoHWZ
matched to HW reconstructed z
TH1F * m_neuroHWSelTSFoundT_Layer7
Found time of selected track segments in layer 7.
TH1F * m_neuroSWTSSW2DInTSPrioT_Layer1
Priority time of track segments in layer 1.
TH2F * m_neuroScatterZ
unpacked z vs TSIM z, scatter plot
TH1F * m_neuroHWOutQuad2Z
z distribution from unpacker (quadrant 2)
TH1F * m_neuroDeltaInputID
unpacked ID input - TSIM ID input
TH1F * m_neuroHWSelTSLR_Layer4
Left/Right of track segments in layer 4.
TH1F * m_neuroHWInTSFoundT_Layer4
Found time of track segments in layer 4.
TH1F * m_neuroHWInTSPrioT_Layer3
Priority time of track segments in layer 3.
TH1F * m_RecoHWInvPt
matched to HW reconstructed inverse Pt
TH1F * m_neuroHWInTSPrioB_Layer2
Priority bits of track segments in layer 2.
TH1F * m_neuroHWInputAlpha_Layer0
unpacked alpha input in layer 0
TH1F * m_neuroHWOutTrackCount
number of unpacked tracks per event
TH1F * m_DeltaRecoSWZ
matched to SW reconstructed z
TH1F * m_neuroSWTSSW2DInputAlpha_Layer7
simulated alpha input in layer 7
TH1F * m_2DHWInTSLR_Layer2
Left/Right of 2D track segments in layer 2.
TH1F * m_neuroSWSelTSLR_Layer4
Left/Right of track segments in layer 4.
TH1F * m_2DHWInTSPrioT_Layer0
Priority time of 2D track segments in layer 0.
TH1F * m_DeltaRecoHWZ
matched to HW reconstructed z
TH1F * m_neuroRecoSWTSSW2DSector
reco matched NN sector from simulation (sw TS sw 2D sw NN)
TH1F * m_neuroSWTSSW2DInTSPrioT_Layer0
Priority time of track segments in layer 0.
TH1F * m_neuroRecoHWOutPhi0
reco matched phi distribution from unpacker
TH1F * m_neuroSWTSSW2DOutPhi0
phi distribution from simulation (sw TS sw 2D sw NN)
TH1F * m_neuroHWOutCosTheta
cos theta distribution of unpacked neuro tracks
TH1F * m_neuroHWSelTSPrioT_Layer4
Priority time of selected track segments in layer 4.
TH1F * m_neuroSWInputID_Layer3
simulated id input in layer 3
TH1F * m_neuroHWInputID_Layer0
unpacked id input in layer 0
TH1F * m_neuroHWSelTSLR_Layer1
Left/Right of track segments in layer 1.
TH1F * m_neuroSWTSSW2DOutZ
z distribution from simulation (sw TS sw 2D sw NN)
TH1F * m_neuroSWInputAlpha_Layer8
simulated alpha input in layer 8
TH1F * m_neuroHWOutQuad3CosTheta
cos theta distribution from unpacker (quadrant 3)
TH1F * m_neuroHWOutQuad3InvPt
Inverse Pt distribution from unpacker (quadrant 3)
TH1F * m_neuroHWInputT_Layer8
unpacked time input in layer 8
TH1F * m_neuroSWTSSW2DSelTSFoundT_Layer1
Found time of selected track segments in layer 1.
TH1F * m_neuroSWSelTSPrioB_Layer5
Priority bits of track segments in layer 5.
TH1F * m_neuroHWInTSLR_Layer7
Left/Right of track segments in layer 7.
TH1F * m_DeltaRecoSWTSSW2DZ
matched to SWTSSW2DSWNN reconstructed z
TH1F * m_2DHWInTSPrioB_Layer2
Priority bits of 2D track segments in layer 2.
TH1F * m_neuroSWTSSW2DInputID_Layer4
simulated id input in layer 4
TH1F * m_neuroHWInputAlpha_Layer8
unpacked alpha input in layer 8
TH1F * m_neuroSWInputT_Layer4
simulated time input in layer 4
TH1F * m_neuroSWSelTSPrioT_Layer5
Priority time of track segments in layer 5.
TH1F * m_neuroSWTSSW2DOutCosTheta
cos theta distribution from simulation (sw TS sw 2D sw NN)
TH1F * m_neuroHWInputT_Layer7
unpacked time input in layer 7
TH1F * m_2DHWInTSPrioT_Layer6
Priority time of 2D track segments in layer 6.
TH1F * m_neuroSWInputAlpha_Layer7
simulated alpha input in layer 7
TH1F * m_neuroSWTSSW2DSelTSFoundT_Layer0
Found time of selected track segments in layer 0.
TH1F * m_neuroSWTSSW2DInputAlpha_Layer4
simulated alpha input in layer 4
TH1F * m_neuroHWOutVsInTrackCount
neuroHWOutTracks - neuroHWInTrackCount
TH1F * m_RecoSWTSSW2DCosTheta
matched to SWTSSW2DSWNN reconstructed cos(theta)
TH1F * m_neuroSWTSSW2DInputID_Layer7
simulated id input in layer 7
TH1F * m_neuroHWInTSPrioB_Layer3
Priority bits of track segments in layer 3.
TH1F * m_neuroSWInputT_Layer1
simulated time input in layer 1
TH1F * m_2DHWInTSPrioB_Layer6
Priority bits of 2D track segments in layer 6.
TH1F * m_RecoCosTheta
reconstructed cos(theta)
TH1F * m_neuroHWSelTSLR_Layer2
Left/Right of track segments in layer 2.
TH1F * m_neuroSWSelTSLR_Layer8
Left/Right of track segments in layer 8.
TH1F * m_neuroHWOutQuad5Z
z distribution from unpacker (no quadrant set)
TH1F * m_neuroSWTSSW2DInTSPrioT_Layer4
Priority time of track segments in layer 4.
TH1F * m_neuroSWTSSW2DInTSPrioT_Layer8
Priority time of track segments in layer 8.
TH1F * m_neuroHWOutQuad5Phi0
phi distribution from unpacker (no quadrant set)
TH1F * m_neuroSWSelTSLR_Layer1
Left/Right of track segments in layer 1.
TH1F * m_RecoSWZ
matched to SW reconstructed z
TH1F * m_neuroHWSelTSFoundT_Layer2
Found time of selected track segments in layer 2.
TH1F * m_neuroSWSelTSPrioB_Layer6
Priority bits of track segments in layer 6.
TH1F * m_neuroSWSelTSFoundT_Layer8
Found time of track segments in layer 8.
TH1F * m_neuroHWSelTSPrioB_Layer1
Priority bits of track segments in layer 1.
TH1F * m_neuroSWInputAlpha_Layer2
simulated alpha input in layer 2
TH1F * m_neuroSWTSSW2DInputT_Layer8
simulated time input in layer 8
TH1F * m_neuroSWSelTSPrioB_Layer2
Priority bits of track segments in layer 2.
TH1F * m_neuroSWTSSW2DInTSPrioT_Layer5
Priority time of track segments in layer 5.
TH1F * m_neuroSWTSSW2DSelTSLR_Layer0
Left/Right of track segments in layer 0.
TH1F * m_neuroSWTSSW2DInTSLR_Layer7
Left/Right of track segments in layer 7.
TH1F * m_neuroHWOutHitPattern
stereo hit pattern of simulated neuro tracks (hw TS hw 2D sw NN)
TH1F * m_neuroHWOutQuad0InvPt
Inverse Pt distribution from unpacker (quadrant 0)
TH1F * m_DeltaRecoSWTSSW2DPhi
matched to SWTSSW2DSWNN reconstructed phi
TH1F * m_neuroSWTSSW2DSelTSPrioB_Layer1
Priority bits of track segments in layer 1.
TH1F * m_DeltaRecoHWPhi
matched to HW reconstructed phi
TH1F * m_neuroHWInTSPrioT_Layer7
Priority time of track segments in layer 7.
TH1F * m_neuroHWOutQuad2CosTheta
cos theta distribution from unpacker (quadrant 2)
TH1F * m_neuroSWTSSW2DSelTSCount
number of TS per SL
TH1F * m_DeltaRecoSWPhi
matched to SW reconstructed phi
TH1F * m_neuroSWTSSW2DSelTSPrioB_Layer2
Priority bits of track segments in layer 2.
TH1F * m_neuroSWTSSW2DInTSPrioB_Layer2
Priority bits of track segments in layer 2.
TH1F * m_neuroSWTSSW2DSelTSLR_Layer7
Left/Right of track segments in layer 7.
TH1F * m_neuroRecoHWOutTrackCount
reco matched number of unpacked and matched tracks per event
TH1F * m_neuroHWSelTSPrioT_Layer8
Priority time of selected track segments in layer 8.
TH1F * m_neuroDeltaTSID
unpacked selected TSID - TSIM selected TSID
TH1F * m_neuroSWTSSW2DInTSFoundT_Layer8
Found time of track segments in layer 8.
TH1F * m_neuroHWInTSLR_Layer1
Left/Right of track segments in layer 1.
TH1F * m_neuroHWInputAlpha_Layer6
unpacked alpha input in layer 6
TH1F * m_neuroHWOutQuad5InvPt
Inverse Pt distribution from unpacker (no quadrant set)
TH1F * m_neuroHWInputT_Layer3
unpacked time input in layer 3
TH1F * m_neuroRecoSWOutPhi0
reco matched phi distribution from simulation (hw TS hw 2D sw NN)
TH1F * m_neuroHWInputT_Layer5
unpacked time input in layer 5
TH1F * m_neuroHWSelTSPrioB_Layer0
Priority bits of track segments in layer 0.
TH1F * m_neuroSWTSSW2DInputAlpha_Layer0
simulated alpha input in layer 0
TH1F * m_neuroHWInputID_Layer8
unpacked id input in layer 8
TH1F * m_neuroSWTSSW2DInputAlpha_Layer8
simulated alpha input in layer 8
TH1F * m_neuroHWInTSPrioB_Layer0
Priority bits of track segments in layer 0.
TH1F * m_neuroHWInputT_Layer6
unpacked time input in layer 6
TH1F * m_neuroHWInTSPrioT_Layer6
Priority time of track segments in layer 6.
TH1F * m_neuroSWTSSW2DInTSLR_Layer8
Left/Right of track segments in layer 8.
TH1F * m_neuroRecoSWOutCosTheta
reco matched cos theta distribution from simulation (hw TS hw 2D sw NN)
TH1F * m_neuroHWSelTSLR_Layer8
Left/Right of track segments in layer 8.
TH1F * m_2DHWInTSPrioT_Layer4
Priority time of 2D track segments in layer 4.
TH1F * m_neuroSWTSSW2DInTSPrioT_Layer3
Priority time of track segments in layer 3.
TH1F * m_neuroSWSelTSFoundT_Layer7
Found time of track segments in layer 7.
TH1F * m_neuroSWTSSW2DInputT_Layer4
simulated time input in layer 4
TH1F * m_neuroHWSelTSFoundT_Layer3
Found time of selected track segments in layer 3.
TH1F * m_neuroHWOutQuad2Phi0
phi distribution from unpacker (quadrant 2)
TH1F * m_neuroSWTSSW2DInTSFoundT_Layer0
Found time of track segments in layer 0.
TH1F * m_neuroHWInTSID
ID of incoming track segments.
TH1F * m_neuroSWTSSW2DSelTSPrioT_Layer1
Priority time of selected track segments in layer 1.
TH1F * m_neuroHWSelTSID
ID of selected track segments.
TH1F * m_neuroSWTSSW2DInputID_Layer1
simulated id input in layer 1
TH1F * m_neuroSWTSSW2DSelTSPrioT_Layer3
Priority time of selected track segments in layer 3.
TH1F * m_RecoSWInvPt
matched to SW reconstructed inverse Pt

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 179 of file Module.cc.

180{
182 newModule->m_moduleParamList.setParameters(getParamList());
183 newModule->setName(getName());
184 newModule->m_package = m_package;
185 newModule->m_propertyFlags = m_propertyFlags;
186 newModule->m_logConfig = m_logConfig;
187 newModule->m_conditions = m_conditions;
188
189 return newModule;
190}
std::shared_ptr< Module > registerModule(const std::string &moduleName, std::string sharedLibPath="") noexcept(false)
Creates an instance of a module and registers it to the ModuleManager.
static ModuleManager & Instance()
Exception is thrown if the requested module could not be created by the ModuleManager.
const ModuleParamList & getParamList() const
Return module param list.
Definition: Module.h:363
const std::string & getName() const
Returns the name of the module.
Definition: Module.h:187
const std::string & getType() const
Returns the type of the module (i.e.
Definition: Module.cc:41
unsigned int m_propertyFlags
The properties of the module as bitwise or (with |) of EModulePropFlags.
Definition: Module.h:512
LogConfig m_logConfig
The log system configuration of the module.
Definition: Module.h:514
std::vector< ModuleCondition > m_conditions
Module condition, only non-null if set.
Definition: Module.h:521
std::string m_package
Package this module is found in (may be empty).
Definition: Module.h:510
std::shared_ptr< Module > ModulePtr
Defines a pointer to a module object as a boost shared pointer.
Definition: Module.h:43

◆ condFill()

void condFill ( TH1F *  histo,
float  value 
)
inlineprivate

Fill a histogram only with non-zero values.

Definition at line 65 of file CDCTriggerNeuroDQMModule.h.

66 {
67 if (value != 0) {
68 histo->Fill(value);
69 }
70 }

◆ def_beginRun()

virtual void def_beginRun ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 426 of file Module.h.

426{ beginRun(); }
virtual void beginRun()
Called when entering a new run.
Definition: Module.h:147

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 439 of file Module.h.

439{ endRun(); }
virtual void endRun()
This method is called if the current run ends.
Definition: Module.h:166

◆ def_event()

virtual void def_event ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 432 of file Module.h.

432{ event(); }
virtual void event()
This method is the core of the module.
Definition: Module.h:157

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 420 of file Module.h.

420{ initialize(); }
virtual void initialize()
Initialize the Module.
Definition: Module.h:109

◆ def_terminate()

virtual void def_terminate ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 445 of file Module.h.

445{ terminate(); }
virtual void terminate()
This method is called at the end of the event processing.
Definition: Module.h:176

◆ defineHisto()

void defineHisto ( )
overridevirtual

Histogram definitions such as TH1(), TH2(), TNtuple(), TTree()....

are supposed to be placed in this function.

Reimplemented from HistoModule.

Definition at line 96 of file CDCTriggerNeuroDQMModule.cc.

97{
98 // Create a separate histogram directory and cd into it.
99 TDirectory* oldDir = gDirectory;
100 if (m_histogramDirectoryName != "") {
101 oldDir->mkdir(m_histogramDirectoryName.c_str());
102 oldDir->cd(m_histogramDirectoryName.c_str());
103 }
104 //----------------------------------------------------------------
105
106 // define neurotrigger histograms
107 if (m_unpackedNeuroTracksName != "") {
108 m_neuroHWOutZ = new TH1F("NeuroHWOutZ",
109 "z distribution of unpacked neuro tracks; z [cm]",
110 100, -100, 100);
111 m_neuroHWOutCosTheta = new TH1F("NeuroHWOutCosTheta",
112 "cos theta distribution of unpacked neuro tracks; cos(#theta) ",
113 100, -1, 1);
114 m_neuroHWOutPhi0 = new TH1F("NeuroHWOutPhi0",
115 "phi distribution of unpacked neuro tracks; #phi [#circ]",
116 80, 0, 360); // shift to reduce the binning error
117 m_neuroHWOutInvPt = new TH1F("NeuroHWOutInvPt",
118 "Inverse Pt distribution of unpacked neuro tracks; p_{T}^{-1} [GeV^{-1}]",
119 50, 0, 5);
120 m_neuroHWOutPt = new TH1F("NeuroHWOutPt",
121 "Pt distribution of unpacked neuro tracks; p_{T} [GeV]",
122 340, 0, 11);
123 m_neuroHWOutHitPattern = new TH1F("NeuroUnpackedHitPattern",
124 "stereo hit pattern of unpacked neuro tracks; pattern",
125 16, 0, 16); // 4 stereo layers -> 2**4 possible patterns
126 m_neuroHWOutm_time = new TH1F("NeuroHWOutM_time", "m_time distribution of unpacked neuro tracks; clock cycle",
127 48, 0, 48);
128 m_neuroHWOutTrackCount = new TH1F("NeuroHWOutTrackCount",
129 "number of unpacked neuro tracks per event",
130 20, 0, 20);
131 m_neuroHWSector = new TH1F("NeuroHWSector",
132 "sector of unpacked neuro tracks; sector",
133 10, 0, 10);
134
135
136 m_neuroHWInInvPt = new TH1F("NeuroHWInInvPt",
137 "Inverse Pt distribution from incoming 2dtrack; p_{T}^{-1} [GeV^{-1}]",
138 50, 0, 5);
139 m_neuroHWInPhi0 = new TH1F("NeuroHWInPhi0", "Phi0 of incoming 2dtrack; #phi [#circ]",
140 80, 0, 360);
141 m_neuroHWInm_time = new TH1F("NeuroHWInM_time", "m_time distribution from incoming 2dtracks; clock cycle",
142 48, 0, 48);
143 m_neuroHWInTrackCount = new TH1F("NeuroHWInTrackCount", "number of neuro input 2dtracks per event",
144 20, 0, 20);
145 m_neuroHWOutVsInTrackCount = new TH1F("NeuroHWOutVsInTrackCount",
146 "number of neuroHWOutTracks - number of 2dinTracks",
147 20, -10, 10);
148 m_neuroHWInTSID = new TH1F("NeuroHWInTSID", "ID of incoming track segments",
149 2336, 0, 2335);
150 m_neuroHWInTSCount = new TH1F("NeuroHWInTSCount", " number of TS per event",
151 200, 0, 200);
152 m_neuroHWSelTSID = new TH1F("NeuroHWSelTSID", "ID of selected track segments",
153 2336, 0, 2335);
154 m_neuroHWSelTSCount = new TH1F("NeuroHWSelTSCount", "number of selected TS per SL; sl", 9, 0, 9);
155 }
157 m_2DHWInTSPrioT_Layer0 = new TH1F("2DHWInTSPrioT_Layer0", "Priority time of track segments in layer 0",
158 512, 0, 511);
159 m_2DHWInTSPrioT_Layer2 = new TH1F("2DHWInTSPrioT_Layer2", "Priority time of track segments in layer 2",
160 512, 0, 511);
161 m_2DHWInTSPrioT_Layer4 = new TH1F("2DHWInTSPrioT_Layer4", "Priority time of track segments in layer 4",
162 512, 0, 511);
163 m_2DHWInTSPrioT_Layer6 = new TH1F("2DHWInTSPrioT_Layer6", "Priority time of track segments in layer 6",
164 512, 0, 511);
165 m_2DHWInTSPrioT_Layer8 = new TH1F("2DHWInTSPrioT_Layer8", "Priority time of track segments in layer 8",
166 512, 0, 511);
167 m_2DHWInTSFoundT_Layer0 = new TH1F("2DHWInTSFoundT_Layer0", "Found time of track segments in layer 0",
168 96, -48, 48);
169 m_2DHWInTSFoundT_Layer2 = new TH1F("2DHWInTSFoundT_Layer2", "Found time of track segments in layer 2",
170 96, -48, 48);
171 m_2DHWInTSFoundT_Layer4 = new TH1F("2DHWInTSFoundT_Layer4", "Found time of track segments in layer 4",
172 96, -48, 48);
173 m_2DHWInTSFoundT_Layer6 = new TH1F("2DHWInTSFoundT_Layer6", "Found time of track segments in layer 6",
174 96, -48, 48);
175 m_2DHWInTSFoundT_Layer8 = new TH1F("2DHWInTSFoundT_Layer8", "Found time of track segments in layer 8",
176 96, -48, 48);
177
178
179 m_2DHWInTSPrioB_Layer0 = new TH1F("2DHWInTSPrioB_Layer0", "Priority bits of track segments in layer 0",
180 4, 0, 4);
181 m_2DHWInTSPrioB_Layer2 = new TH1F("2DHWInTSPrioB_Layer2", "Priority bits of track segments in layer 2",
182 4, 0, 4);
183 m_2DHWInTSPrioB_Layer4 = new TH1F("2DHWInTSPrioB_Layer4", "Priority bits of track segments in layer 4",
184 4, 0, 4);
185 m_2DHWInTSPrioB_Layer6 = new TH1F("2DHWInTSPrioB_Layer6", "Priority bits of track segments in layer 6",
186 4, 0, 4);
187 m_2DHWInTSPrioB_Layer8 = new TH1F("2DHWInTSPrioB_Layer8", "Priority bits of track segments in layer 8",
188 4, 0, 4);
189 m_2DHWInTSLR_Layer0 = new TH1F("2DHWInTSLR_Layer0", "Left/Right of track segments in layer 0",
190 4, 0, 4);
191 m_2DHWInTSLR_Layer2 = new TH1F("2DHWInTSLR_Layer2", "Left/Right of track segments in layer 2",
192 4, 0, 4);
193 m_2DHWInTSLR_Layer4 = new TH1F("2DHWInTSLR_Layer4", "Left/Right of track segments in layer 4",
194 4, 0, 4);
195 m_2DHWInTSLR_Layer6 = new TH1F("2DHWInTSLR_Layer6", "Left/Right of track segments in layer 6",
196 4, 0, 4);
197 m_2DHWInTSLR_Layer8 = new TH1F("2DHWInTSLR_Layer8", "Left/Right of track segments in layer 8",
198 4, 0, 4);
199 }
201
202 m_neuroHWOutQuad5Z = new TH1F("NeuroHWOutQuad5Z",
203 "z distribution of neuro tracks; z [cm]",
204 100, -100, 100);
205 m_neuroHWOutQuad5CosTheta = new TH1F("NeuroHWOutQuad5CosTheta",
206 "cos theta distribution of neuro tracks; cos(#theta) ",
207 100, -1, 1);
208 m_neuroHWOutQuad5InvPt = new TH1F("NeuroHWOutQuad5InvPt",
209 "Pt distribution from unpacker; p_{T}^{-1} [GeV^{-1}]",
210 50, 0, 5);
211 m_neuroHWOutQuad5Phi0 = new TH1F("NeuroHWOutQuad5Phi0",
212 "phi distribution from unpacker; #phi [#circ]",
213 80, 0, 360);
214
215 m_neuroHWOutQuad0Z = new TH1F("NeuroHWOutQuad0Z",
216 "z distribution of neuro tracks; z [cm]",
217 100, -100, 100);
218 m_neuroHWOutQuad0CosTheta = new TH1F("NeuroHWOutQuad0CosTheta",
219 "cos theta distribution of neuro tracks; cos(#theta) ",
220 100, -1, 1);
221 m_neuroHWOutQuad0InvPt = new TH1F("NeuroHWOutQuad0InvPt",
222 "Pt distribution from unpacker; p_{T}^{-1} [GeV^{-1}]",
223 50, 0, 5);
224 m_neuroHWOutQuad0Phi0 = new TH1F("NeuroHWOutQuad0Phi0",
225 "phi distribution from unpacker; #phi [#circ]",
226 80, 0, 360);
227
228 m_neuroHWOutQuad1Z = new TH1F("NeuroHWOutQuad1Z",
229 "z distribution of neuro tracks; z [cm]",
230 100, -100, 100);
231 m_neuroHWOutQuad1CosTheta = new TH1F("NeuroHWOutQuad1CosTheta",
232 "cos theta distribution of neuro tracks; cos(#theta) ",
233 100, -1, 1);
234 m_neuroHWOutQuad1Phi0 = new TH1F("NeuroHWOutQuad1Phi0",
235 "phi distribution from unpacker; #phi [#circ]",
236 80, 0, 360);
237 m_neuroHWOutQuad1InvPt = new TH1F("NeuroHWOutQuad1InvPt",
238 "Pt distribution from unpacker; p_{T}^{-1} [GeV^{-1}]",
239 50, 0, 5);
240
241 m_neuroHWOutQuad2Z = new TH1F("NeuroHWOutQuad2Z",
242 "z distribution of neuro tracks; z [cm]",
243 100, -100, 100);
244 m_neuroHWOutQuad2CosTheta = new TH1F("NeuroHWOutQuad2CosTheta",
245 "cos theta distribution of neuro tracks; cos(#theta) ",
246 100, -1, 1);
247 m_neuroHWOutQuad2Phi0 = new TH1F("NeuroHWOutQuad2Phi0",
248 "phi distribution from unpacker; #phi [#circ]",
249 80, 0, 360);
250 m_neuroHWOutQuad2InvPt = new TH1F("NeuroHWOutQuad2InvPt",
251 "Pt distribution from unpacker; p_{T}^{-1} [GeV^{-1}]",
252 50, 0, 5);
253
254 m_neuroHWOutQuad3Z = new TH1F("NeuroHWOutQuad3Z",
255 "z distribution of neuro tracks; z [cm]",
256 100, -100, 100);
257 m_neuroHWOutQuad3CosTheta = new TH1F("NeuroHWOutQuad3CosTheta",
258 "cos theta distribution of neuro tracks; cos(#theta) ",
259 100, -1, 1);
260 m_neuroHWOutQuad3Phi0 = new TH1F("NeuroHWOutQuad3Phi0",
261 "phi distribution from unpacker; #phi [#circ]",
262 80, 0, 360);
263 m_neuroHWOutQuad3InvPt = new TH1F("NeuroHWOutQuad3InvPt",
264 "Pt distribution from unpacker; p_{T}^{-1} [GeV^{-1}]",
265 50, 0, 5);
266 m_neuroHWInTSPrioT_Layer0 = new TH1F("NeuroHWInTSPrioT_Layer0", "Priority time of track segments in layer 0",
267 512, 0, 511);
268 m_neuroHWInTSPrioT_Layer1 = new TH1F("NeuroHWInTSPrioT_Layer1", "Priority time of track segments in layer 1",
269 512, 0, 511);
270 m_neuroHWInTSPrioT_Layer2 = new TH1F("NeuroHWInTSPrioT_Layer2", "Priority time of track segments in layer 2",
271 512, 0, 511);
272 m_neuroHWInTSPrioT_Layer3 = new TH1F("NeuroHWInTSPrioT_Layer3", "Priority time of track segments in layer 3",
273 512, 0, 511);
274 m_neuroHWInTSPrioT_Layer4 = new TH1F("NeuroHWInTSPrioT_Layer4", "Priority time of track segments in layer 4",
275 512, 0, 511);
276 m_neuroHWInTSPrioT_Layer5 = new TH1F("NeuroHWInTSPrioT_Layer5", "Priority time of track segments in layer 5",
277 512, 0, 511);
278 m_neuroHWInTSPrioT_Layer6 = new TH1F("NeuroHWInTSPrioT_Layer6", "Priority time of track segments in layer 6",
279 512, 0, 511);
280 m_neuroHWInTSPrioT_Layer7 = new TH1F("NeuroHWInTSPrioT_Layer7", "Priority time of track segments in layer 7",
281 512, 0, 511);
282 m_neuroHWInTSPrioT_Layer8 = new TH1F("NeuroHWInTSPrioT_Layer8", "Priority time of track segments in layer 8",
283 512, 0, 511);
284 m_neuroHWInTSFoundT_Layer0 = new TH1F("NeuroHWInTSFoundT_Layer0", "Found time of track segments in layer 0",
285 48, 0, 48);
286 m_neuroHWInTSFoundT_Layer1 = new TH1F("NeuroHWInTSFoundT_Layer1", "Found time of track segments in layer 1",
287 48, 0, 48);
288 m_neuroHWInTSFoundT_Layer2 = new TH1F("NeuroHWInTSFoundT_Layer2", "Found time of track segments in layer 2",
289 48, 0, 48);
290 m_neuroHWInTSFoundT_Layer3 = new TH1F("NeuroHWInTSFoundT_Layer3", "Found time of track segments in layer 3",
291 48, 0, 48);
292 m_neuroHWInTSFoundT_Layer4 = new TH1F("NeuroHWInTSFoundT_Layer4", "Found time of track segments in layer 4",
293 48, 0, 48);
294 m_neuroHWInTSFoundT_Layer5 = new TH1F("NeuroHWInTSFoundT_Layer5", "Found time of track segments in layer 5",
295 48, 0, 48);
296 m_neuroHWInTSFoundT_Layer6 = new TH1F("NeuroHWInTSFoundT_Layer6", "Found time of track segments in layer 6",
297 48, 0, 48);
298 m_neuroHWInTSFoundT_Layer7 = new TH1F("NeuroHWInTSFoundT_Layer7", "Found time of track segments in layer 7",
299 48, 0, 48);
300 m_neuroHWInTSFoundT_Layer8 = new TH1F("NeuroHWInTSFoundT_Layer8", "Found time of track segments in layer 8",
301 48, 0, 48);
302
303
304 m_neuroHWInTSPrioB_Layer0 = new TH1F("NeuroHWInTSPrioB_Layer0", "Priority bits of track segments in layer 0",
305 4, 0, 4);
306 m_neuroHWInTSPrioB_Layer1 = new TH1F("NeuroHWInTSPrioB_Layer1", "Priority bits of track segments in layer 1",
307 4, 0, 4);
308 m_neuroHWInTSPrioB_Layer2 = new TH1F("NeuroHWInTSPrioB_Layer2", "Priority bits of track segments in layer 2",
309 4, 0, 4);
310 m_neuroHWInTSPrioB_Layer3 = new TH1F("NeuroHWInTSPrioB_Layer3", "Priority bits of track segments in layer 3",
311 4, 0, 4);
312 m_neuroHWInTSPrioB_Layer4 = new TH1F("NeuroHWInTSPrioB_Layer4", "Priority bits of track segments in layer 4",
313 4, 0, 4);
314 m_neuroHWInTSPrioB_Layer5 = new TH1F("NeuroHWInTSPrioB_Layer5", "Priority bits of track segments in layer 5",
315 4, 0, 4);
316 m_neuroHWInTSPrioB_Layer6 = new TH1F("NeuroHWInTSPrioB_Layer6", "Priority bits of track segments in layer 6",
317 4, 0, 4);
318 m_neuroHWInTSPrioB_Layer7 = new TH1F("NeuroHWInTSPrioB_Layer7", "Priority bits of track segments in layer 7",
319 4, 0, 4);
320 m_neuroHWInTSPrioB_Layer8 = new TH1F("NeuroHWInTSPrioB_Layer8", "Priority bits of track segments in layer 8",
321 4, 0, 4);
322
323
324 m_neuroHWInTSLR_Layer0 = new TH1F("NeuroHWInTSLR_Layer0", "Left/Right of track segments in layer 0",
325 4, 0, 4);
326 m_neuroHWInTSLR_Layer1 = new TH1F("NeuroHWInTSLR_Layer1", "Left/Right of track segments in layer 1",
327 4, 0, 4);
328 m_neuroHWInTSLR_Layer2 = new TH1F("NeuroHWInTSLR_Layer2", "Left/Right of track segments in layer 2",
329 4, 0, 4);
330 m_neuroHWInTSLR_Layer3 = new TH1F("NeuroHWInTSLR_Layer3", "Left/Right of track segments in layer 3",
331 4, 0, 4);
332 m_neuroHWInTSLR_Layer4 = new TH1F("NeuroHWInTSLR_Layer4", "Left/Right of track segments in layer 4",
333 4, 0, 4);
334 m_neuroHWInTSLR_Layer5 = new TH1F("NeuroHWInTSLR_Layer5", "Left/Right of track segments in layer 5",
335 4, 0, 4);
336 m_neuroHWInTSLR_Layer6 = new TH1F("NeuroHWInTSLR_Layer6", "Left/Right of track segments in layer 6",
337 4, 0, 4);
338 m_neuroHWInTSLR_Layer7 = new TH1F("NeuroHWInTSLR_Layer7", "Left/Right of track segments in layer 7",
339 4, 0, 4);
340 m_neuroHWInTSLR_Layer8 = new TH1F("NeuroHWInTSLR_Layer8", "Left/Right of track segments in layer 8",
341 4, 0, 4);
342 m_neuroHWSelTSPrioT_Layer0 = new TH1F("NeuroHWSelTSPrioT_Layer0", "Priority time of track segments in layer 0",
343 512, 0, 511);
344 m_neuroHWSelTSPrioT_Layer1 = new TH1F("NeuroHWSelTSPrioT_Layer1", "Priority time of track segments in layer 1",
345 512, 0, 511);
346 m_neuroHWSelTSPrioT_Layer2 = new TH1F("NeuroHWSelTSPrioT_Layer2", "Priority time of track segments in layer 2",
347 512, 0, 511);
348 m_neuroHWSelTSPrioT_Layer3 = new TH1F("NeuroHWSelTSPrioT_Layer3", "Priority time of track segments in layer 3",
349 512, 0, 511);
350 m_neuroHWSelTSPrioT_Layer4 = new TH1F("NeuroHWSelTSPrioT_Layer4", "Priority time of track segments in layer 4",
351 512, 0, 511);
352 m_neuroHWSelTSPrioT_Layer5 = new TH1F("NeuroHWSelTSPrioT_Layer5", "Priority time of track segments in layer 5",
353 512, 0, 511);
354 m_neuroHWSelTSPrioT_Layer6 = new TH1F("NeuroHWSelTSPrioT_Layer6", "Priority time of track segments in layer 6",
355 512, 0, 511);
356 m_neuroHWSelTSPrioT_Layer7 = new TH1F("NeuroHWSelTSPrioT_Layer7", "Priority time of track segments in layer 7",
357 512, 0, 511);
358 m_neuroHWSelTSPrioT_Layer8 = new TH1F("NeuroHWSelTSPrioT_Layer8", "Priority time of track segments in layer 8",
359 512, 0, 511);
360 m_neuroHWSelTSFoundT_Layer0 = new TH1F("NeuroHWSelTSFoundT_Layer0",
361 "First found time of selected TS - found time of Neuro Track in SL 0",
362 96, -47.99, 48.01);
363 m_neuroHWSelTSFoundT_Layer1 = new TH1F("NeuroHWSelTSFoundT_Layer1",
364 "First found time of selected TS - found time of Neuro Track in SL 1",
365 96, -47.99, 48.01);
366 m_neuroHWSelTSFoundT_Layer2 = new TH1F("NeuroHWSelTSFoundT_Layer2",
367 "First found time of selected TS - found time of Neuro Track in SL 2",
368 96, -47.99, 48.01);
369 m_neuroHWSelTSFoundT_Layer3 = new TH1F("NeuroHWSelTSFoundT_Layer3",
370 "First found time of selected TS - found time of Neuro Track in SL 3",
371 96, -47.99, 48.01);
372 m_neuroHWSelTSFoundT_Layer4 = new TH1F("NeuroHWSelTSFoundT_Layer4",
373 "First found time of selected TS - found time of Neuro Track in SL 4",
374 96, -47.99, 48.01);
375 m_neuroHWSelTSFoundT_Layer5 = new TH1F("NeuroHWSelTSFoundT_Layer5",
376 "First found time of selected TS - found time of Neuro Track in SL 5",
377 96, -47.99, 48.01);
378 m_neuroHWSelTSFoundT_Layer6 = new TH1F("NeuroHWSelTSFoundT_Layer6",
379 "First found time of selected TS - found time of Neuro Track in SL 6",
380 96, -47.99, 48.01);
381 m_neuroHWSelTSFoundT_Layer7 = new TH1F("NeuroHWSelTSFoundT_Layer7",
382 "First found time of selected TS - found time of Neuro Track in SL 7",
383 96, -47.99, 48.01);
384 m_neuroHWSelTSFoundT_Layer8 = new TH1F("NeuroHWSelTSFoundT_Layer8",
385 "First found time of selected TS - found time of Neuro Track in SL 8",
386 96, -47.99, 48.01);
387
388
389 m_neuroHWSelTSPrioB_Layer0 = new TH1F("NeuroHWSelTSPrioB_Layer0", "Priority bits of track segments in layer 0",
390 4, 0, 4);
391 m_neuroHWSelTSPrioB_Layer1 = new TH1F("NeuroHWSelTSPrioB_Layer1", "Priority bits of track segments in layer 1",
392 4, 0, 4);
393 m_neuroHWSelTSPrioB_Layer2 = new TH1F("NeuroHWSelTSPrioB_Layer2", "Priority bits of track segments in layer 2",
394 4, 0, 4);
395 m_neuroHWSelTSPrioB_Layer3 = new TH1F("NeuroHWSelTSPrioB_Layer3", "Priority bits of track segments in layer 3",
396 4, 0, 4);
397 m_neuroHWSelTSPrioB_Layer4 = new TH1F("NeuroHWSelTSPrioB_Layer4", "Priority bits of track segments in layer 4",
398 4, 0, 4);
399 m_neuroHWSelTSPrioB_Layer5 = new TH1F("NeuroHWSelTSPrioB_Layer5", "Priority bits of track segments in layer 5",
400 4, 0, 4);
401 m_neuroHWSelTSPrioB_Layer6 = new TH1F("NeuroHWSelTSPrioB_Layer6", "Priority bits of track segments in layer 6",
402 4, 0, 4);
403 m_neuroHWSelTSPrioB_Layer7 = new TH1F("NeuroHWSelTSPrioB_Layer7", "Priority bits of track segments in layer 7",
404 4, 0, 4);
405 m_neuroHWSelTSPrioB_Layer8 = new TH1F("NeuroHWSelTSPrioB_Layer8", "Priority bits of track segments in layer 8",
406 4, 0, 4);
407
408
409 m_neuroHWSelTSLR_Layer0 = new TH1F("NeuroHWSelTSLR_Layer0", "Left/Right of track segments in layer 0",
410 4, 0, 4);
411 m_neuroHWSelTSLR_Layer1 = new TH1F("NeuroHWSelTSLR_Layer1", "Left/Right of track segments in layer 1",
412 4, 0, 4);
413 m_neuroHWSelTSLR_Layer2 = new TH1F("NeuroHWSelTSLR_Layer2", "Left/Right of track segments in layer 2",
414 4, 0, 4);
415 m_neuroHWSelTSLR_Layer3 = new TH1F("NeuroHWSelTSLR_Layer3", "Left/Right of track segments in layer 3",
416 4, 0, 4);
417 m_neuroHWSelTSLR_Layer4 = new TH1F("NeuroHWSelTSLR_Layer4", "Left/Right of track segments in layer 4",
418 4, 0, 4);
419 m_neuroHWSelTSLR_Layer5 = new TH1F("NeuroHWSelTSLR_Layer5", "Left/Right of track segments in layer 5",
420 4, 0, 4);
421 m_neuroHWSelTSLR_Layer6 = new TH1F("NeuroHWSelTSLR_Layer6", "Left/Right of track segments in layer 6",
422 4, 0, 4);
423 m_neuroHWSelTSLR_Layer7 = new TH1F("NeuroHWSelTSLR_Layer7", "Left/Right of track segments in layer 7",
424 4, 0, 4);
425 m_neuroHWSelTSLR_Layer8 = new TH1F("NeuroHWSelTSLR_Layer8", "Left/Right of track segments in layer 8",
426 4, 0, 4);
427 m_neuroHWInputID_Layer0 = new TH1F("NeuroHWInputID_Layer0",
428 "unpacked id input in layer 0; id",
429 100, -1, 1);
430 m_neuroHWInputT_Layer0 = new TH1F("NeuroHWInputT_Layer0",
431 "unpacked time input in layer 0; time",
432 100, -1, 1);
433 m_neuroHWInputAlpha_Layer0 = new TH1F("NeuroHWInputAlpha_Layer0",
434 "unpacked alpha input in layer 0; alpha",
435 100, -1, 1);
436 m_neuroHWInputID_Layer1 = new TH1F("NeuroHWInputID_Layer1",
437 "unpacked id input in layer 1; id",
438 100, -1, 1);
439 m_neuroHWInputT_Layer1 = new TH1F("NeuroHWInputT_Layer1",
440 "unpacked time input in layer 1; time",
441 100, -1, 1);
442 m_neuroHWInputAlpha_Layer1 = new TH1F("NeuroHWInputAlpha_Layer1",
443 "unpacked alpha input in layer 1; alpha",
444 100, -1, 1);
445 m_neuroHWInputID_Layer2 = new TH1F("NeuroHWInputID_Layer2",
446 "unpacked id input in layer 2; id",
447 100, -1, 1);
448 m_neuroHWInputT_Layer2 = new TH1F("NeuroHWInputT_Layer2",
449 "unpacked time input in layer 2; time",
450 100, -1, 1);
451 m_neuroHWInputAlpha_Layer2 = new TH1F("NeuroHWInputAlpha_Layer2",
452 "unpacked alpha input in layer 2; alpha",
453 100, -1, 1);
454 m_neuroHWInputID_Layer3 = new TH1F("NeuroHWInputID_Layer3",
455 "unpacked id input in layer 3; id",
456 100, -1, 1);
457 m_neuroHWInputT_Layer3 = new TH1F("NeuroHWInputT_Layer3",
458 "unpacked time input in layer 3; time",
459 100, -1, 1);
460 m_neuroHWInputAlpha_Layer3 = new TH1F("NeuroHWInputAlpha_Layer3",
461 "unpacked alpha input in layer 3; alpha",
462 100, -1, 1);
463 m_neuroHWInputID_Layer4 = new TH1F("NeuroHWInputID_Layer4",
464 "unpacked id input in layer 4; id",
465 100, -1, 1);
466 m_neuroHWInputT_Layer4 = new TH1F("NeuroHWInputT_Layer4",
467 "unpacked time input in layer 4; time",
468 100, -1, 1);
469 m_neuroHWInputAlpha_Layer4 = new TH1F("NeuroHWInputAlpha_Layer4",
470 "unpacked alpha input in layer 4; alpha",
471 100, -1, 1);
472 m_neuroHWInputID_Layer5 = new TH1F("NeuroHWInputID_Layer5",
473 "unpacked id input in layer 5; id",
474 100, -1, 1);
475 m_neuroHWInputT_Layer5 = new TH1F("NeuroHWInputT_Layer5",
476 "unpacked time input in layer 5; time",
477 100, -1, 1);
478 m_neuroHWInputAlpha_Layer5 = new TH1F("NeuroHWInputAlpha_Layer5",
479 "unpacked alpha input in layer 5; alpha",
480 100, -1, 1);
481 m_neuroHWInputID_Layer6 = new TH1F("NeuroHWInputID_Layer6",
482 "unpacked id input in layer 6; id",
483 100, -1, 1);
484 m_neuroHWInputT_Layer6 = new TH1F("NeuroHWInputT_Layer6",
485 "unpacked time input in layer 6; time",
486 100, -1, 1);
487 m_neuroHWInputAlpha_Layer6 = new TH1F("NeuroHWInputAlpha_Layer6",
488 "unpacked alpha input in layer 6; alpha",
489 100, -1, 1);
490 m_neuroHWInputID_Layer7 = new TH1F("NeuroHWInputID_Layer7",
491 "unpacked id input in layer 7; id",
492 100, -1, 1);
493 m_neuroHWInputT_Layer7 = new TH1F("NeuroHWInputT_Layer7",
494 "unpacked time input in layer 7; time",
495 100, -1, 1);
496 m_neuroHWInputAlpha_Layer7 = new TH1F("NeuroHWInputAlpha_Layer7",
497 "unpacked alpha input in layer 7; alpha",
498 100, -1, 1);
499 m_neuroHWInputID_Layer8 = new TH1F("NeuroHWInputID_Layer8",
500 "unpacked id input in layer 8; id",
501 100, -1, 1);
502 m_neuroHWInputT_Layer8 = new TH1F("NeuroHWInputT_Layer8",
503 "unpacked time input in layer 8; time",
504 100, -1, 1);
505 m_neuroHWInputAlpha_Layer8 = new TH1F("NeuroHWInputAlpha_Layer8",
506 "unpacked alpha input in layer 8; alpha",
507 100, -1, 1);
508 }
509 if (m_unpacked2DTracksName != "") {
510 m_2DHWOutInvPt = new TH1F("2DHWOutInvPt",
511 "Inverse Pt of 2dtracks; p_{T}^{-1} [GeV^{-1}]",
512 50, 0, 5);
513 m_2DHWOutPhi0 = new TH1F("2DHWOutPhi0", "Phi0 of 2dtracks; #phi [#circ]",
514 80, 0, 360);
515 m_2DHWOutm_time = new TH1F("2DHWOutM_time", "m_time of 2dtracks; clock cycle",
516 96, -48, 48);
517 m_2DHWOutTrackCount = new TH1F("2DHWOutTrackCount", "number of 2dtracks per event", 20, 0, 20);
518 m_neuroHWInVs2DOutTrackCount = new TH1F("NeuroHWInVs2DOutTrackCount", "neuro in tracks - 2d out tracks",
519 20, -10, 10);
520 }
521
523 m_neuroSWOutZ = new TH1F("NeuroSWOutZ",
524 "z distribution from simulation, hw TS hw 2D; z [cm]",
525 100, -100, 100);
526 m_neuroSWOutCosTheta = new TH1F("NeuroSWOutCosTheta",
527 "cos theta distribution from simulation, hw TS hw 2D; cos(#theta) ",
528 100, -1, 1);
529 m_neuroSWOutInvPt = new TH1F("NeuroSWOutInvPt",
530 "Inverse Pt distribution from simulation, hw TS hw 2D; p_{T}^{-1} [GeV^{-1}]",
531 50, 0, 5);
532 m_neuroSWOutPhi0 = new TH1F("NeuroSWOutPhi0",
533 "phi distribution from simulation, hw TS hw 2D; #phi [#circ]",
534 80, 0, 360); // shift to reduce the binning error
535 m_neuroSWOutHitPattern = new TH1F("NeuroSWOutHitPattern",
536 "stereo hit pattern of simulated neuro tracks, hw TS hw 2D; pattern",
537 16, 0, 16); // 4 stereo layers -> 2**4 possible patterns
538 m_neuroSWOutTrackCount = new TH1F("NeuroSWOutTrackCount",
539 "number of neuro tracks per event from simulation, hw TS hw 2D",
540 20, 0, 20);
541 m_neuroSWSector = new TH1F("NeuroSWSector",
542 "sector of simulated neuro tracks, hw TS hw 2D; sector",
543 10, 0, 10);
544 // hw TS selected by sw NN
545 m_neuroSWSelTSID = new TH1F("NeuroSWSelTSID", "ID of selected track segments",
546 2336, 0, 2335);
547 m_neuroSWSelTSCount = new TH1F("NeuroSWSelTSCount", "number of selected TS per SL; sl", 9, 0, 9);
548 m_neuroSWSelTSPrioT_Layer0 = new TH1F("NeuroSWSelTSPrioT_Layer0", "Priority time of track segments in layer 0",
549 512, 0, 511);
550 m_neuroSWSelTSPrioT_Layer1 = new TH1F("NeuroSWSelTSPrioT_Layer1", "Priority time of track segments in layer 1",
551 512, 0, 511);
552 m_neuroSWSelTSPrioT_Layer2 = new TH1F("NeuroSWSelTSPrioT_Layer2", "Priority time of track segments in layer 2",
553 512, 0, 511);
554 m_neuroSWSelTSPrioT_Layer3 = new TH1F("NeuroSWSelTSPrioT_Layer3", "Priority time of track segments in layer 3",
555 512, 0, 511);
556 m_neuroSWSelTSPrioT_Layer4 = new TH1F("NeuroSWSelTSPrioT_Layer4", "Priority time of track segments in layer 4",
557 512, 0, 511);
558 m_neuroSWSelTSPrioT_Layer5 = new TH1F("NeuroSWSelTSPrioT_Layer5", "Priority time of track segments in layer 5",
559 512, 0, 511);
560 m_neuroSWSelTSPrioT_Layer6 = new TH1F("NeuroSWSelTSPrioT_Layer6", "Priority time of track segments in layer 6",
561 512, 0, 511);
562 m_neuroSWSelTSPrioT_Layer7 = new TH1F("NeuroSWSelTSPrioT_Layer7", "Priority time of track segments in layer 7",
563 512, 0, 511);
564 m_neuroSWSelTSPrioT_Layer8 = new TH1F("NeuroSWSelTSPrioT_Layer8", "Priority time of track segments in layer 8",
565 512, 0, 511);
566 m_neuroSWSelTSFoundT_Layer0 = new TH1F("NeuroSWSelTSFoundT_Layer0",
567 "First found time of selected TS - found time of Neuro Track in SL 0",
568 96, -47.99, 48.01);
569 m_neuroSWSelTSFoundT_Layer1 = new TH1F("NeuroSWSelTSFoundT_Layer1",
570 "First found time of selected TS - found time of Neuro Track in SL 1",
571 96, -47.99, 48.01);
572 m_neuroSWSelTSFoundT_Layer2 = new TH1F("NeuroSWSelTSFoundT_Layer2",
573 "First found time of selected TS - found time of Neuro Track in SL 2",
574 96, -47.99, 48.01);
575 m_neuroSWSelTSFoundT_Layer3 = new TH1F("NeuroSWSelTSFoundT_Layer3",
576 "First found time of selected TS - found time of Neuro Track in SL 3",
577 96, -47.99, 48.01);
578 m_neuroSWSelTSFoundT_Layer4 = new TH1F("NeuroSWSelTSFoundT_Layer4",
579 "First found time of selected TS - found time of Neuro Track in SL 4",
580 96, -47.99, 48.01);
581 m_neuroSWSelTSFoundT_Layer5 = new TH1F("NeuroSWSelTSFoundT_Layer5",
582 "First found time of selected TS - found time of Neuro Track in SL 5",
583 96, -47.99, 48.01);
584 m_neuroSWSelTSFoundT_Layer6 = new TH1F("NeuroSWSelTSFoundT_Layer6",
585 "First found time of selected TS - found time of Neuro Track in SL 6",
586 96, -47.99, 48.01);
587 m_neuroSWSelTSFoundT_Layer7 = new TH1F("NeuroSWSelTSFoundT_Layer7",
588 "First found time of selected TS - found time of Neuro Track in SL 7",
589 96, -47.99, 48.01);
590 m_neuroSWSelTSFoundT_Layer8 = new TH1F("NeuroSWSelTSFoundT_Layer8",
591 "First found time of selected TS - found time of Neuro Track in SL 8",
592 96, -47.99, 48.01);
593
594
595 m_neuroSWSelTSPrioB_Layer0 = new TH1F("NeuroSWSelTSPrioB_Layer0", "Priority bits of track segments in layer 0",
596 4, 0, 4);
597 m_neuroSWSelTSPrioB_Layer1 = new TH1F("NeuroSWSelTSPrioB_Layer1", "Priority bits of track segments in layer 1",
598 4, 0, 4);
599 m_neuroSWSelTSPrioB_Layer2 = new TH1F("NeuroSWSelTSPrioB_Layer2", "Priority bits of track segments in layer 2",
600 4, 0, 4);
601 m_neuroSWSelTSPrioB_Layer3 = new TH1F("NeuroSWSelTSPrioB_Layer3", "Priority bits of track segments in layer 3",
602 4, 0, 4);
603 m_neuroSWSelTSPrioB_Layer4 = new TH1F("NeuroSWSelTSPrioB_Layer4", "Priority bits of track segments in layer 4",
604 4, 0, 4);
605 m_neuroSWSelTSPrioB_Layer5 = new TH1F("NeuroSWSelTSPrioB_Layer5", "Priority bits of track segments in layer 5",
606 4, 0, 4);
607 m_neuroSWSelTSPrioB_Layer6 = new TH1F("NeuroSWSelTSPrioB_Layer6", "Priority bits of track segments in layer 6",
608 4, 0, 4);
609 m_neuroSWSelTSPrioB_Layer7 = new TH1F("NeuroSWSelTSPrioB_Layer7", "Priority bits of track segments in layer 7",
610 4, 0, 4);
611 m_neuroSWSelTSPrioB_Layer8 = new TH1F("NeuroSWSelTSPrioB_Layer8", "Priority bits of track segments in layer 8",
612 4, 0, 4);
613
614
615 m_neuroSWSelTSLR_Layer0 = new TH1F("NeuroSWSelTSLR_Layer0", "Left/Right of track segments in layer 0",
616 4, 0, 4);
617 m_neuroSWSelTSLR_Layer1 = new TH1F("NeuroSWSelTSLR_Layer1", "Left/Right of track segments in layer 1",
618 4, 0, 4);
619 m_neuroSWSelTSLR_Layer2 = new TH1F("NeuroSWSelTSLR_Layer2", "Left/Right of track segments in layer 2",
620 4, 0, 4);
621 m_neuroSWSelTSLR_Layer3 = new TH1F("NeuroSWSelTSLR_Layer3", "Left/Right of track segments in layer 3",
622 4, 0, 4);
623 m_neuroSWSelTSLR_Layer4 = new TH1F("NeuroSWSelTSLR_Layer4", "Left/Right of track segments in layer 4",
624 4, 0, 4);
625 m_neuroSWSelTSLR_Layer5 = new TH1F("NeuroSWSelTSLR_Layer5", "Left/Right of track segments in layer 5",
626 4, 0, 4);
627 m_neuroSWSelTSLR_Layer6 = new TH1F("NeuroSWSelTSLR_Layer6", "Left/Right of track segments in layer 6",
628 4, 0, 4);
629 m_neuroSWSelTSLR_Layer7 = new TH1F("NeuroSWSelTSLR_Layer7", "Left/Right of track segments in layer 7",
630 4, 0, 4);
631 m_neuroSWSelTSLR_Layer8 = new TH1F("NeuroSWSelTSLR_Layer8", "Left/Right of track segments in layer 8",
632 4, 0, 4);
633
634 m_neuroSWInputID_Layer0 = new TH1F("NeuroSWInputID_Layer0",
635 "simulated id input in layer 0; id",
636 100, -1, 1);
637 m_neuroSWInputT_Layer0 = new TH1F("NeuroSWInputT_Layer0",
638 "simulated time input in layer 0; time",
639 100, -1, 1);
640 m_neuroSWInputAlpha_Layer0 = new TH1F("NeuroSWInputAlpha_Layer0",
641 "simulated alpha input in layer 0; alpha",
642 100, -1, 1);
643 m_neuroSWInputID_Layer1 = new TH1F("NeuroSWInputID_Layer1",
644 "simulated id input in layer 1; id",
645 100, -1, 1);
646 m_neuroSWInputT_Layer1 = new TH1F("NeuroSWInputT_Layer1",
647 "simulated time input in layer 1; time",
648 100, -1, 1);
649 m_neuroSWInputAlpha_Layer1 = new TH1F("NeuroSWInputAlpha_Layer1",
650 "simulated alpha input in layer 1; alpha",
651 100, -1, 1);
652 m_neuroSWInputID_Layer2 = new TH1F("NeuroSWInputID_Layer2",
653 "simulated id input in layer 2; id",
654 100, -1, 1);
655 m_neuroSWInputT_Layer2 = new TH1F("NeuroSWInputT_Layer2",
656 "simulated time input in layer 2; time",
657 100, -1, 1);
658 m_neuroSWInputAlpha_Layer2 = new TH1F("NeuroSWInputAlpha_Layer2",
659 "simulated alpha input in layer 2; alpha",
660 100, -1, 1);
661 m_neuroSWInputID_Layer3 = new TH1F("NeuroSWInputID_Layer3",
662 "simulated id input in layer 3; id",
663 100, -1, 1);
664 m_neuroSWInputT_Layer3 = new TH1F("NeuroSWInputT_Layer3",
665 "simulated time input in layer 3; time",
666 100, -1, 1);
667 m_neuroSWInputAlpha_Layer3 = new TH1F("NeuroSWInputAlpha_Layer3",
668 "simulated alpha input in layer 3; alpha",
669 100, -1, 1);
670 m_neuroSWInputID_Layer4 = new TH1F("NeuroSWInputID_Layer4",
671 "simulated id input in layer 4; id",
672 100, -1, 1);
673 m_neuroSWInputT_Layer4 = new TH1F("NeuroSWInputT_Layer4",
674 "simulated time input in layer 4; time",
675 100, -1, 1);
676 m_neuroSWInputAlpha_Layer4 = new TH1F("NeuroSWInputAlpha_Layer4",
677 "simulated alpha input in layer 4; alpha",
678 100, -1, 1);
679 m_neuroSWInputID_Layer5 = new TH1F("NeuroSWInputID_Layer5",
680 "simulated id input in layer 5; id",
681 100, -1, 1);
682 m_neuroSWInputT_Layer5 = new TH1F("NeuroSWInputT_Layer5",
683 "simulated time input in layer 5; time",
684 100, -1, 1);
685 m_neuroSWInputAlpha_Layer5 = new TH1F("NeuroSWInputAlpha_Layer5",
686 "simulated alpha input in layer 5; alpha",
687 100, -1, 1);
688 m_neuroSWInputID_Layer6 = new TH1F("NeuroSWInputID_Layer6",
689 "simulated id input in layer 6; id",
690 100, -1, 1);
691 m_neuroSWInputT_Layer6 = new TH1F("NeuroSWInputT_Layer6",
692 "simulated time input in layer 6; time",
693 100, -1, 1);
694 m_neuroSWInputAlpha_Layer6 = new TH1F("NeuroSWInputAlpha_Layer6",
695 "simulated alpha input in layer 6; alpha",
696 100, -1, 1);
697 m_neuroSWInputID_Layer7 = new TH1F("NeuroSWInputID_Layer7",
698 "simulated id input in layer 7; id",
699 100, -1, 1);
700 m_neuroSWInputT_Layer7 = new TH1F("NeuroSWInputT_Layer7",
701 "simulated time input in layer 7; time",
702 100, -1, 1);
703 m_neuroSWInputAlpha_Layer7 = new TH1F("NeuroSWInputAlpha_Layer7",
704 "simulated alpha input in layer 7; alpha",
705 100, -1, 1);
706 m_neuroSWInputID_Layer8 = new TH1F("NeuroSWInputID_Layer8",
707 "simulated id input in layer 8; id",
708 100, -1, 1);
709 m_neuroSWInputT_Layer8 = new TH1F("NeuroSWInputT_Layer8",
710 "simulated time input in layer 8; time",
711 100, -1, 1);
712 m_neuroSWInputAlpha_Layer8 = new TH1F("NeuroSWInputAlpha_Layer8",
713 "simulated alpha input in layer 8; alpha",
714 100, -1, 1);
715 }
716
718
719 m_2DSWOutInvPt = new TH1F("2DSWOutInvPt",
720 "Inverse Pt of 2dtracks from simulation, sw TS sw 2D; p_{T}^{-1} [GeV^{-1}]",
721 50, 0, 5);
722 m_2DSWOutPhi0 = new TH1F("2DSWOutPhi0", "Phi0 of 2dtracks from simulation, sw TS sw 2D; #phi [#circ]",
723 80, 0, 360);
724 m_2DSWOutm_time = new TH1F("2DSWOutM_time", "m_time of 2dtracks from simulation, sw TS sw 2D; clock cycle",
725 96, -48, 48);
726 m_2DSWOutTrackCount = new TH1F("2DSWOutTrackCount", "number of 2dtracks per event from simulation, sw TS sw 2D", 20, 0, 20);
727
728 }
730
731 m_neuroSWTSSW2DOutZ = new TH1F("NeuroSWTSSW2DOutZ",
732 "z distribution from simulation, sw TS sw 2D; z [cm]",
733 100, -100, 100);
734 m_neuroSWTSSW2DOutCosTheta = new TH1F("NeuroSWTSSW2DOutCosTheta",
735 "cos theta distribution from simulation, sw TS sw 2D; cos(#theta) ",
736 100, -1, 1);
737 m_neuroSWTSSW2DOutInvPt = new TH1F("NeuroSWTSSW2DOutInvPt",
738 "Inverse Pt distribution from simulation, sw TS sw 2D; p_{T}^{-1} [GeV^{-1}]",
739 50, 0, 5);
740 m_neuroSWTSSW2DOutPhi0 = new TH1F("NeuroSWTSSW2DOutPhi0",
741 "phi distribution from simulation, sw TS sw 2D; #phi [#circ]",
742 80, 0, 360);
743 m_neuroSWTSSW2DOutHitPattern = new TH1F("NeuroSWTSSW2DOutHitPattern",
744 "stereo hit pattern of simulated neuro tracks, sw TS sw 2D; pattern",
745 16, 0, 16); // 4 stereo layers -> 2**4 possible patterns
746 m_neuroSWTSSW2DOutTrackCount = new TH1F("NeuroSWTSSW2DOutTrackCount",
747 "number of simulated neuro tracks per event, sw TS sw 2D",
748 20, 0, 20);
749 m_neuroSWTSSW2DSector = new TH1F("NeuroSWTSSW2DSector",
750 "sector of simulated neuro tracks, sw TS sw 2D; sector",
751 10, 0, 10);
752 // sw TS incoming
753 m_neuroSWTSSW2DInTSID = new TH1F("NeuroSWTSSW2DInTSID", "ID of simulated track segments",
754 2336, 0, 2335);
755 m_neuroSWTSSW2DInTSCount = new TH1F("NeuroSWTSSW2DInTSCount", "number of simulated TS per event", 200, 0, 800);
756 m_neuroSWTSSW2DInTSPrioT_Layer0 = new TH1F("NeuroSWTSSW2DInTSPrioT_Layer0", "Priority time of track segments in layer 0",
757 512, 0, 511);
758 m_neuroSWTSSW2DInTSPrioT_Layer1 = new TH1F("NeuroSWTSSW2DInTSPrioT_Layer1", "Priority time of track segments in layer 1",
759 512, 0, 511);
760 m_neuroSWTSSW2DInTSPrioT_Layer2 = new TH1F("NeuroSWTSSW2DInTSPrioT_Layer2", "Priority time of track segments in layer 2",
761 512, 0, 511);
762 m_neuroSWTSSW2DInTSPrioT_Layer3 = new TH1F("NeuroSWTSSW2DInTSPrioT_Layer3", "Priority time of track segments in layer 3",
763 512, 0, 511);
764 m_neuroSWTSSW2DInTSPrioT_Layer4 = new TH1F("NeuroSWTSSW2DInTSPrioT_Layer4", "Priority time of track segments in layer 4",
765 512, 0, 511);
766 m_neuroSWTSSW2DInTSPrioT_Layer5 = new TH1F("NeuroSWTSSW2DInTSPrioT_Layer5", "Priority time of track segments in layer 5",
767 512, 0, 511);
768 m_neuroSWTSSW2DInTSPrioT_Layer6 = new TH1F("NeuroSWTSSW2DInTSPrioT_Layer6", "Priority time of track segments in layer 6",
769 512, 0, 511);
770 m_neuroSWTSSW2DInTSPrioT_Layer7 = new TH1F("NeuroSWTSSW2DInTSPrioT_Layer7", "Priority time of track segments in layer 7",
771 512, 0, 511);
772 m_neuroSWTSSW2DInTSPrioT_Layer8 = new TH1F("NeuroSWTSSW2DInTSPrioT_Layer8", "Priority time of track segments in layer 8",
773 512, 0, 511);
774 m_neuroSWTSSW2DInTSFoundT_Layer0 = new TH1F("NeuroSWTSSW2DInTSFoundT_Layer0",
775 "First found time of selected TS - found time of Neuro Track in SL 0",
776 96, -47.99, 48.01);
777 m_neuroSWTSSW2DInTSFoundT_Layer1 = new TH1F("NeuroSWTSSW2DInTSFoundT_Layer1",
778 "First found time of selected TS - found time of Neuro Track in SL 1",
779 96, -47.99, 48.01);
780 m_neuroSWTSSW2DInTSFoundT_Layer2 = new TH1F("NeuroSWTSSW2DInTSFoundT_Layer2",
781 "First found time of selected TS - found time of Neuro Track in SL 2",
782 96, -47.99, 48.01);
783 m_neuroSWTSSW2DInTSFoundT_Layer3 = new TH1F("NeuroSWTSSW2DInTSFoundT_Layer3",
784 "First found time of selected TS - found time of Neuro Track in SL 3",
785 96, -47.99, 48.01);
786 m_neuroSWTSSW2DInTSFoundT_Layer4 = new TH1F("NeuroSWTSSW2DInTSFoundT_Layer4",
787 "First found time of selected TS - found time of Neuro Track in SL 4",
788 96, -47.99, 48.01);
789 m_neuroSWTSSW2DInTSFoundT_Layer5 = new TH1F("NeuroSWTSSW2DInTSFoundT_Layer5",
790 "First found time of selected TS - found time of Neuro Track in SL 5",
791 96, -47.99, 48.01);
792 m_neuroSWTSSW2DInTSFoundT_Layer6 = new TH1F("NeuroSWTSSW2DInTSFoundT_Layer6",
793 "First found time of selected TS - found time of Neuro Track in SL 6",
794 96, -47.99, 48.01);
795 m_neuroSWTSSW2DInTSFoundT_Layer7 = new TH1F("NeuroSWTSSW2DInTSFoundT_Layer7",
796 "First found time of selected TS - found time of Neuro Track in SL 7",
797 96, -47.99, 48.01);
798 m_neuroSWTSSW2DInTSFoundT_Layer8 = new TH1F("NeuroSWTSSW2DInTSFoundT_Layer8",
799 "First found time of selected TS - found time of Neuro Track in SL 8",
800 96, -47.99, 48.01);
801
802
803 m_neuroSWTSSW2DInTSPrioB_Layer0 = new TH1F("NeuroSWTSSW2DInTSPrioB_Layer0", "Priority bits of track segments in layer 0",
804 4, 0, 4);
805 m_neuroSWTSSW2DInTSPrioB_Layer1 = new TH1F("NeuroSWTSSW2DInTSPrioB_Layer1", "Priority bits of track segments in layer 1",
806 4, 0, 4);
807 m_neuroSWTSSW2DInTSPrioB_Layer2 = new TH1F("NeuroSWTSSW2DInTSPrioB_Layer2", "Priority bits of track segments in layer 2",
808 4, 0, 4);
809 m_neuroSWTSSW2DInTSPrioB_Layer3 = new TH1F("NeuroSWTSSW2DInTSPrioB_Layer3", "Priority bits of track segments in layer 3",
810 4, 0, 4);
811 m_neuroSWTSSW2DInTSPrioB_Layer4 = new TH1F("NeuroSWTSSW2DInTSPrioB_Layer4", "Priority bits of track segments in layer 4",
812 4, 0, 4);
813 m_neuroSWTSSW2DInTSPrioB_Layer5 = new TH1F("NeuroSWTSSW2DInTSPrioB_Layer5", "Priority bits of track segments in layer 5",
814 4, 0, 4);
815 m_neuroSWTSSW2DInTSPrioB_Layer6 = new TH1F("NeuroSWTSSW2DInTSPrioB_Layer6", "Priority bits of track segments in layer 6",
816 4, 0, 4);
817 m_neuroSWTSSW2DInTSPrioB_Layer7 = new TH1F("NeuroSWTSSW2DInTSPrioB_Layer7", "Priority bits of track segments in layer 7",
818 4, 0, 4);
819 m_neuroSWTSSW2DInTSPrioB_Layer8 = new TH1F("NeuroSWTSSW2DInTSPrioB_Layer8", "Priority bits of track segments in layer 8",
820 4, 0, 4);
821
822
823 m_neuroSWTSSW2DInTSLR_Layer0 = new TH1F("NeuroSWTSSW2DInTSLR_Layer0", "Left/Right of track segments in layer 0",
824 4, 0, 4);
825 m_neuroSWTSSW2DInTSLR_Layer1 = new TH1F("NeuroSWTSSW2DInTSLR_Layer1", "Left/Right of track segments in layer 1",
826 4, 0, 4);
827 m_neuroSWTSSW2DInTSLR_Layer2 = new TH1F("NeuroSWTSSW2DInTSLR_Layer2", "Left/Right of track segments in layer 2",
828 4, 0, 4);
829 m_neuroSWTSSW2DInTSLR_Layer3 = new TH1F("NeuroSWTSSW2DInTSLR_Layer3", "Left/Right of track segments in layer 3",
830 4, 0, 4);
831 m_neuroSWTSSW2DInTSLR_Layer4 = new TH1F("NeuroSWTSSW2DInTSLR_Layer4", "Left/Right of track segments in layer 4",
832 4, 0, 4);
833 m_neuroSWTSSW2DInTSLR_Layer5 = new TH1F("NeuroSWTSSW2DInTSLR_Layer5", "Left/Right of track segments in layer 5",
834 4, 0, 4);
835 m_neuroSWTSSW2DInTSLR_Layer6 = new TH1F("NeuroSWTSSW2DInTSLR_Layer6", "Left/Right of track segments in layer 6",
836 4, 0, 4);
837 m_neuroSWTSSW2DInTSLR_Layer7 = new TH1F("NeuroSWTSSW2DInTSLR_Layer7", "Left/Right of track segments in layer 7",
838 4, 0, 4);
839 m_neuroSWTSSW2DInTSLR_Layer8 = new TH1F("NeuroSWTSSW2DInTSLR_Layer8", "Left/Right of track segments in layer 8",
840 4, 0, 4);
841
842
843 // sw TS selected
844 m_neuroSWTSSW2DSelTSID = new TH1F("NeuroSWTSSW2DSelTSID", "ID of selected track segments",
845 2336, 0, 2335);
846 m_neuroSWTSSW2DSelTSCount = new TH1F("NeuroSWTSSW2DSelTSCount", "number of selected TS per SL; sl", 9, 0, 9);
847 m_neuroSWTSSW2DSelTSPrioT_Layer0 = new TH1F("NeuroSWTSSW2DSelTSPrioT_Layer0", "Priority time of track segments in layer 0",
848 512, 0, 511);
849 m_neuroSWTSSW2DSelTSPrioT_Layer1 = new TH1F("NeuroSWTSSW2DSelTSPrioT_Layer1", "Priority time of track segments in layer 1",
850 512, 0, 511);
851 m_neuroSWTSSW2DSelTSPrioT_Layer2 = new TH1F("NeuroSWTSSW2DSelTSPrioT_Layer2", "Priority time of track segments in layer 2",
852 512, 0, 511);
853 m_neuroSWTSSW2DSelTSPrioT_Layer3 = new TH1F("NeuroSWTSSW2DSelTSPrioT_Layer3", "Priority time of track segments in layer 3",
854 512, 0, 511);
855 m_neuroSWTSSW2DSelTSPrioT_Layer4 = new TH1F("NeuroSWTSSW2DSelTSPrioT_Layer4", "Priority time of track segments in layer 4",
856 512, 0, 511);
857 m_neuroSWTSSW2DSelTSPrioT_Layer5 = new TH1F("NeuroSWTSSW2DSelTSPrioT_Layer5", "Priority time of track segments in layer 5",
858 512, 0, 511);
859 m_neuroSWTSSW2DSelTSPrioT_Layer6 = new TH1F("NeuroSWTSSW2DSelTSPrioT_Layer6", "Priority time of track segments in layer 6",
860 512, 0, 511);
861 m_neuroSWTSSW2DSelTSPrioT_Layer7 = new TH1F("NeuroSWTSSW2DSelTSPrioT_Layer7", "Priority time of track segments in layer 7",
862 512, 0, 511);
863 m_neuroSWTSSW2DSelTSPrioT_Layer8 = new TH1F("NeuroSWTSSW2DSelTSPrioT_Layer8", "Priority time of track segments in layer 8",
864 512, 0, 511);
865 m_neuroSWTSSW2DSelTSFoundT_Layer0 = new TH1F("NeuroSWTSSW2DSelTSFoundT_Layer0",
866 "First found time of selected TS - found time of Neuro Track in SL 0",
867 96, -47.99, 48.01);
868 m_neuroSWTSSW2DSelTSFoundT_Layer1 = new TH1F("NeuroSWTSSW2DSelTSFoundT_Layer1",
869 "First found time of selected TS - found time of Neuro Track in SL 1",
870 96, -47.99, 48.01);
871 m_neuroSWTSSW2DSelTSFoundT_Layer2 = new TH1F("NeuroSWTSSW2DSelTSFoundT_Layer2",
872 "First found time of selected TS - found time of Neuro Track in SL 2",
873 96, -47.99, 48.01);
874 m_neuroSWTSSW2DSelTSFoundT_Layer3 = new TH1F("NeuroSWTSSW2DSelTSFoundT_Layer3",
875 "First found time of selected TS - found time of Neuro Track in SL 3",
876 96, -47.99, 48.01);
877 m_neuroSWTSSW2DSelTSFoundT_Layer4 = new TH1F("NeuroSWTSSW2DSelTSFoundT_Layer4",
878 "First found time of selected TS - found time of Neuro Track in SL 4",
879 96, -47.99, 48.01);
880 m_neuroSWTSSW2DSelTSFoundT_Layer5 = new TH1F("NeuroSWTSSW2DSelTSFoundT_Layer5",
881 "First found time of selected TS - found time of Neuro Track in SL 5",
882 96, -47.99, 48.01);
883 m_neuroSWTSSW2DSelTSFoundT_Layer6 = new TH1F("NeuroSWTSSW2DSelTSFoundT_Layer6",
884 "First found time of selected TS - found time of Neuro Track in SL 6",
885 96, -47.99, 48.01);
886 m_neuroSWTSSW2DSelTSFoundT_Layer7 = new TH1F("NeuroSWTSSW2DSelTSFoundT_Layer7",
887 "First found time of selected TS - found time of Neuro Track in SL 7",
888 96, -47.99, 48.01);
889 m_neuroSWTSSW2DSelTSFoundT_Layer8 = new TH1F("NeuroSWTSSW2DSelTSFoundT_Layer8",
890 "First found time of selected TS - found time of Neuro Track in SL 8",
891 96, -47.99, 48.01);
892
893
894 m_neuroSWTSSW2DSelTSPrioB_Layer0 = new TH1F("NeuroSWTSSW2DSelTSPrioB_Layer0", "Priority bits of track segments in layer 0",
895 4, 0, 4);
896 m_neuroSWTSSW2DSelTSPrioB_Layer1 = new TH1F("NeuroSWTSSW2DSelTSPrioB_Layer1", "Priority bits of track segments in layer 1",
897 4, 0, 4);
898 m_neuroSWTSSW2DSelTSPrioB_Layer2 = new TH1F("NeuroSWTSSW2DSelTSPrioB_Layer2", "Priority bits of track segments in layer 2",
899 4, 0, 4);
900 m_neuroSWTSSW2DSelTSPrioB_Layer3 = new TH1F("NeuroSWTSSW2DSelTSPrioB_Layer3", "Priority bits of track segments in layer 3",
901 4, 0, 4);
902 m_neuroSWTSSW2DSelTSPrioB_Layer4 = new TH1F("NeuroSWTSSW2DSelTSPrioB_Layer4", "Priority bits of track segments in layer 4",
903 4, 0, 4);
904 m_neuroSWTSSW2DSelTSPrioB_Layer5 = new TH1F("NeuroSWTSSW2DSelTSPrioB_Layer5", "Priority bits of track segments in layer 5",
905 4, 0, 4);
906 m_neuroSWTSSW2DSelTSPrioB_Layer6 = new TH1F("NeuroSWTSSW2DSelTSPrioB_Layer6", "Priority bits of track segments in layer 6",
907 4, 0, 4);
908 m_neuroSWTSSW2DSelTSPrioB_Layer7 = new TH1F("NeuroSWTSSW2DSelTSPrioB_Layer7", "Priority bits of track segments in layer 7",
909 4, 0, 4);
910 m_neuroSWTSSW2DSelTSPrioB_Layer8 = new TH1F("NeuroSWTSSW2DSelTSPrioB_Layer8", "Priority bits of track segments in layer 8",
911 4, 0, 4);
912
913
914 m_neuroSWTSSW2DSelTSLR_Layer0 = new TH1F("NeuroSWTSSW2DSelTSLR_Layer0", "Left/Right of track segments in layer 0",
915 4, 0, 4);
916 m_neuroSWTSSW2DSelTSLR_Layer1 = new TH1F("NeuroSWTSSW2DSelTSLR_Layer1", "Left/Right of track segments in layer 1",
917 4, 0, 4);
918 m_neuroSWTSSW2DSelTSLR_Layer2 = new TH1F("NeuroSWTSSW2DSelTSLR_Layer2", "Left/Right of track segments in layer 2",
919 4, 0, 4);
920 m_neuroSWTSSW2DSelTSLR_Layer3 = new TH1F("NeuroSWTSSW2DSelTSLR_Layer3", "Left/Right of track segments in layer 3",
921 4, 0, 4);
922 m_neuroSWTSSW2DSelTSLR_Layer4 = new TH1F("NeuroSWTSSW2DSelTSLR_Layer4", "Left/Right of track segments in layer 4",
923 4, 0, 4);
924 m_neuroSWTSSW2DSelTSLR_Layer5 = new TH1F("NeuroSWTSSW2DSelTSLR_Layer5", "Left/Right of track segments in layer 5",
925 4, 0, 4);
926 m_neuroSWTSSW2DSelTSLR_Layer6 = new TH1F("NeuroSWTSSW2DSelTSLR_Layer6", "Left/Right of track segments in layer 6",
927 4, 0, 4);
928 m_neuroSWTSSW2DSelTSLR_Layer7 = new TH1F("NeuroSWTSSW2DSelTSLR_Layer7", "Left/Right of track segments in layer 7",
929 4, 0, 4);
930 m_neuroSWTSSW2DSelTSLR_Layer8 = new TH1F("NeuroSWTSSW2DSelTSLR_Layer8", "Left/Right of track segments in layer 8",
931 4, 0, 4);
932 m_neuroSWTSSW2DInputID_Layer0 = new TH1F("NeuroSWTSSW2DInputID_Layer0",
933 "simulated id input in layer 0; id",
934 100, -1, 1);
935 m_neuroSWTSSW2DInputT_Layer0 = new TH1F("NeuroSWTSSW2DInputT_Layer0",
936 "simulated time input in layer 0; time",
937 100, -1, 1);
938 m_neuroSWTSSW2DInputAlpha_Layer0 = new TH1F("NeuroSWTSSW2DInputAlpha_Layer0",
939 "simulated alpha input in layer 0; alpha",
940 100, -1, 1);
941 m_neuroSWTSSW2DInputID_Layer1 = new TH1F("NeuroSWTSSW2DInputID_Layer1",
942 "simulated id input in layer 1; id",
943 100, -1, 1);
944 m_neuroSWTSSW2DInputT_Layer1 = new TH1F("NeuroSWTSSW2DInputT_Layer1",
945 "simulated time input in layer 1; time",
946 100, -1, 1);
947 m_neuroSWTSSW2DInputAlpha_Layer1 = new TH1F("NeuroSWTSSW2DInputAlpha_Layer1",
948 "simulated alpha input in layer 1; alpha",
949 100, -1, 1);
950 m_neuroSWTSSW2DInputID_Layer2 = new TH1F("NeuroSWTSSW2DInputID_Layer2",
951 "simulated id input in layer 2; id",
952 100, -1, 1);
953 m_neuroSWTSSW2DInputT_Layer2 = new TH1F("NeuroSWTSSW2DInputT_Layer2",
954 "simulated time input in layer 2; time",
955 100, -1, 1);
956 m_neuroSWTSSW2DInputAlpha_Layer2 = new TH1F("NeuroSWTSSW2DInputAlpha_Layer2",
957 "simulated alpha input in layer 2; alpha",
958 100, -1, 1);
959 m_neuroSWTSSW2DInputID_Layer3 = new TH1F("NeuroSWTSSW2DInputID_Layer3",
960 "simulated id input in layer 3; id",
961 100, -1, 1);
962 m_neuroSWTSSW2DInputT_Layer3 = new TH1F("NeuroSWTSSW2DInputT_Layer3",
963 "simulated time input in layer 3; time",
964 100, -1, 1);
965 m_neuroSWTSSW2DInputAlpha_Layer3 = new TH1F("NeuroSWTSSW2DInputAlpha_Layer3",
966 "simulated alpha input in layer 3; alpha",
967 100, -1, 1);
968 m_neuroSWTSSW2DInputID_Layer4 = new TH1F("NeuroSWTSSW2DInputID_Layer4",
969 "simulated id input in layer 4; id",
970 100, -1, 1);
971 m_neuroSWTSSW2DInputT_Layer4 = new TH1F("NeuroSWTSSW2DInputT_Layer4",
972 "simulated time input in layer 4; time",
973 100, -1, 1);
974 m_neuroSWTSSW2DInputAlpha_Layer4 = new TH1F("NeuroSWTSSW2DInputAlpha_Layer4",
975 "simulated alpha input in layer 4; alpha",
976 100, -1, 1);
977 m_neuroSWTSSW2DInputID_Layer5 = new TH1F("NeuroSWTSSW2DInputID_Layer5",
978 "simulated id input in layer 5; id",
979 100, -1, 1);
980 m_neuroSWTSSW2DInputT_Layer5 = new TH1F("NeuroSWTSSW2DInputT_Layer5",
981 "simulated time input in layer 5; time",
982 100, -1, 1);
983 m_neuroSWTSSW2DInputAlpha_Layer5 = new TH1F("NeuroSWTSSW2DInputAlpha_Layer5",
984 "simulated alpha input in layer 5; alpha",
985 100, -1, 1);
986 m_neuroSWTSSW2DInputID_Layer6 = new TH1F("NeuroSWTSSW2DInputID_Layer6",
987 "simulated id input in layer 6; id",
988 100, -1, 1);
989 m_neuroSWTSSW2DInputT_Layer6 = new TH1F("NeuroSWTSSW2DInputT_Layer6",
990 "simulated time input in layer 6; time",
991 100, -1, 1);
992 m_neuroSWTSSW2DInputAlpha_Layer6 = new TH1F("NeuroSWTSSW2DInputAlpha_Layer6",
993 "simulated alpha input in layer 6; alpha",
994 100, -1, 1);
995 m_neuroSWTSSW2DInputID_Layer7 = new TH1F("NeuroSWTSSW2DInputID_Layer7",
996 "simulated id input in layer 7; id",
997 100, -1, 1);
998 m_neuroSWTSSW2DInputT_Layer7 = new TH1F("NeuroSWTSSW2DInputT_Layer7",
999 "simulated time input in layer 7; time",
1000 100, -1, 1);
1001 m_neuroSWTSSW2DInputAlpha_Layer7 = new TH1F("NeuroSWTSSW2DInputAlpha_Layer7",
1002 "simulated alpha input in layer 7; alpha",
1003 100, -1, 1);
1004 m_neuroSWTSSW2DInputID_Layer8 = new TH1F("NeuroSWTSSW2DInputID_Layer8",
1005 "simulated id input in layer 8; id",
1006 100, -1, 1);
1007 m_neuroSWTSSW2DInputT_Layer8 = new TH1F("NeuroSWTSSW2DInputT_Layer8",
1008 "simulated time input in layer 8; time",
1009 100, -1, 1);
1010 m_neuroSWTSSW2DInputAlpha_Layer8 = new TH1F("NeuroSWTSSW2DInputAlpha_Layer8",
1011 "simulated alpha input in layer 8; alpha",
1012 100, -1, 1);
1013 }
1014
1015
1016
1018 m_neuroDeltaZ = new TH1F("NeuroDeltaZ",
1019 "difference between unpacked and simulated neuro z; #Delta z [cm]",
1020 100, -100, 100); // should be bit-precise, so look at very small range
1021 m_neuroDeltaTheta = new TH1F("NeuroDeltaTheta",
1022 "difference between unpacked and simulated neuro theta; #Delta #theta [#circ]",
1023 100, -180, 180); // should be bit-precise, so look at very small range
1024 m_neuroScatterZ = new TH2F("NeuroScatterZ",
1025 "unpacked z vs TSIM; hw z [cm]; sw z [cm]",
1026 100, -150, 150, 100, -150, 150);
1027 m_neuroScatterTheta = new TH2F("NeuroScatterTheta",
1028 "unpacked theta vs TSIM; hw #theta [#circ]; sw #theta [#circ]",
1029 100, 0, 270, 100, 0, 270);
1030
1031 m_neuroDeltaInputID = new TH1F("NeuroDeltaInputID",
1032 "difference between unpacked and simulated ID input; #Delta ID",
1033 100, -0.5, 0.5); // should be bit-precise, so look at very small range
1034 m_neuroDeltaInputT = new TH1F("NeuroDeltaInputT",
1035 "difference between unpacked and simulated time input; #Delta t",
1036 100, -0.5, 0.5); // should be bit-precise, so look at very small range
1037 m_neuroDeltaInputAlpha = new TH1F("NeuroDeltaInputAlpha",
1038 "difference between unpacked and simulated alpha input; #Delta alpha",
1039 100, -0.1, 0.1); // should be bit-precise, so look at very small range
1040 m_neuroDeltaTSID = new TH1F("NeuroDeltaTSID",
1041 "difference between unpacked and simulated tsid; #Delta TSID",
1042 100, -50, 50);
1043 m_neuroDeltaSector = new TH1F("NeuroDeltaSector",
1044 "difference between unpacked and simulated sector; #Delta sector",
1045 20, -10, 10);
1046 m_simSameTS = new TH1F("NeuroSimSameTS",
1047 "number of TS selected in both, unpacked and TSIM tracks",
1048 20, 0, 20);
1049 m_simDiffTS = new TH1F("NeuroSimDiffTS",
1050 "number of TS selcted in TSIM but not in unpacker",
1051 20, 0, 20);
1052 }
1053
1054 if (m_recoTracksName != "") {
1055 //RecoTracks
1056 m_RecoZ = new TH1F("RecoZ",
1057 "z distribution of reconstructed tracks;z [cm]",
1058 100, -150, 150);
1059 m_RecoCosTheta = new TH1F("RecoCosTheta",
1060 "cos theta distribution of reconstructed tracks; cos(#theta) ",
1061 100, -1, 1);
1062 m_RecoInvPt = new TH1F("RecoInvPt",
1063 "Pt distribution of reconstructed tracks; p_{T}^{-1} [GeV^{-1}]",
1064 50, 0, 5);
1065 m_RecoPhi = new TH1F("RecoPhi",
1066 "phi distribution of reconstructed tracks ; #phi [#circ]",
1067 80, 0, 360);
1068 m_RecoD0 = new TH1F("RecoD0",
1069 "d0 distribution of reconstructed tracks ; d_{0} [cm]",
1070 100, 0, 10);
1071 m_RecoTrackCount = new TH1F("RecoTrackCount",
1072 "number of reconstructed tracks per event",
1073 20, 0, 20);
1074 }
1075 if (m_recoTracksName != "" && m_unpackedNeuroTracksName != "") {
1076 //RecoTracks matched to unpacked neuro tracks
1077 m_RecoHWZ = new TH1F("RecoHWZ",
1078 "hw matched z distribution of reconstructed tracks; z [cm]",
1079 100, -150, 150);
1080 m_RecoHWCosTheta = new TH1F("RecoHWCosTheta",
1081 "hw matched cos theta distribution of reconstructed tracks; cos(#theta) ",
1082 100, -1, 1);
1083 m_RecoHWInvPt = new TH1F("RecoHWInvPt",
1084 "hw matched Pt distribution of reconstructed tracks; p_{T}^{-1} [GeV^{-1}]",
1085 50, 0, 5);
1086 m_RecoHWPhi = new TH1F("RecoHWPhi",
1087 "hw matched phi distribution of reconstructed tracks; #phi [#circ]",
1088 80, 0, 360);
1089 m_RecoHWD0 = new TH1F("RecoHWD0",
1090 "hw matched d0 distribution of reconstructed tracks ; d_{0} [cm]",
1091 100, 0, 10);
1092 // hw neuro values for tracks matched to reco tracks
1093 m_neuroRecoHWOutZ = new TH1F("NeuroRecoHWOutZ",
1094 "reco matched z distribution of unpacked neuro tracks; z [cm]",
1095 100, -100, 100);
1096 m_neuroRecoHWOutCosTheta = new TH1F("NeuroRecoHWOutCosTheta",
1097 "reco matched cos theta distribution of unpacked neuro tracks; cos(#theta) ",
1098 100, -1, 1);
1099 m_neuroRecoHWOutInvPt = new TH1F("NeuroRecoHWOutInvPt",
1100 "reco matched Pt distribution of unpacked neuro tracks; p_{T}^{-1} [GeV^{-1}]",
1101 50, 0, 5);
1102 m_neuroRecoHWOutPhi0 = new TH1F("NeuroRecoHWOutPhi0",
1103 "reco matched phi distribution of unpacked neuro tracks; #phi [#circ]",
1104 80, 0, 360); // shift to reduce the binning error
1105 m_neuroRecoHWOutHitPattern = new TH1F("NeuroRecoUnpackedHitPattern",
1106 "reco matched stereo hit pattern of unpacked neuro tracks; pattern",
1107 16, 0, 16); // 4 stereo layers -> 2**4 possible patterns
1108 m_neuroRecoHWOutTrackCount = new TH1F("NeuroRecoHWOutTrackCount",
1109 "reco matched number of unpacked neuro tracks per event",
1110 20, 0, 20);
1111 m_neuroRecoHWSector = new TH1F("NeuroRecoHWSector",
1112 "reco matched sector of unpacked neuro tracks; sector",
1113 10, 0, 10);
1114
1115
1116 m_DeltaRecoHWZ = new TH1F("DeltaRecoHWZ",
1117 "difference between reconstructed and unpacked neuro z; #Delta z [cm]",
1118 100, -100, 100);
1119 m_DeltaRecoHWCosTheta = new TH1F("DeltaRecoHWCosTheta",
1120 "difference between reconstructed and unpacked neuro cos(theta); #Delta cos(#theta)",
1121 100, -1, 1);
1122 m_DeltaRecoHWInvPt = new TH1F("DeltaRecoHWInvPt",
1123 "difference between reconstructed and unpacked neuro Pt; #Delta p_{T}^{-1} [GeV^{-1}]",
1124 100, -10, 10);
1125 m_DeltaRecoHWPhi = new TH1F("DeltaRecoHWPhi",
1126 "difference between reconstructed and unpacked neuro phi; #Delta #phi [#circ]",
1127 80, -180, 180);
1128 }
1130 m_RecoHWZScatter = new TH2F("RecoHWZScatter",
1131 "hw matched reconstruction; reco z [cm]; hw z [cm]",
1132 100, -150, 150, 100, -150, 150);
1133 }
1134
1135
1136
1137 if (!m_limitedoutput && m_simNeuroTracksName != "") {
1138 //RecoTracks matched to simulated neuro tracks (hw TS hw 2D sw NN)
1139 m_RecoSWZ = new TH1F("RecoSWZ",
1140 "sw matched z distribution of reconstructed tracks; z [cm]",
1141 100, -150, 150); // 1cm bins from -50cm to 50cm
1142 m_RecoSWCosTheta = new TH1F("RecoSWCosTheta",
1143 "sw matched cos theta distribution of reconstructed tracks; cos(#theta) ",
1144 100, -1, 1);
1145 m_RecoSWInvPt = new TH1F("RecoSWInvPt",
1146 "sw matched Pt distribution of reconstructed tracks; p_{T}^{-1} [GeV^{-1}]",
1147 50, 0, 5);
1148 m_RecoSWPhi = new TH1F("RecoSWPhi",
1149 "sw matched phi distribution of reconstructed tracks ; #phi [#circ]",
1150 80, 0, 360);
1151 m_RecoSWD0 = new TH1F("RecoSWD0",
1152 "sw matched d0 distribution of reconstructed tracks ; d_{0} [cm]",
1153 100, 0, 10);
1154 m_RecoSWZScatter = new TH2F("RecoSWZScatter",
1155 "sw matched reconstruction; reco z [cm]; sw z [cm]",
1156 100, -150, 150, 100, -150, 150);
1157
1158
1159 // sw neuro values for tracks matched to reco tracks
1160 m_neuroRecoSWOutZ = new TH1F("NeuroRecoSWOutZ",
1161 "reco matched z distribution from simulation; z [cm]",
1162 100, -100, 100);
1163 m_neuroRecoSWOutCosTheta = new TH1F("NeuroRecoSWOutCosTheta",
1164 "reco matched cos theta distribution from simulation; cos(#theta) ",
1165 100, -1, 1);
1166 m_neuroRecoSWOutInvPt = new TH1F("NeuroRecoSWOutInvPt",
1167 "reco matched Pt distribution from simulation; p_{T}^{-1} [GeV^{-1}]",
1168 50, 0, 5);
1169 m_neuroRecoSWOutPhi0 = new TH1F("NeuroRecoSWOutPhi0",
1170 "reco matched phi distribution from simulation; #phi [#circ]",
1171 80, 0, 360); // shift to reduce the binning error
1172 m_neuroRecoSWOutHitPattern = new TH1F("NeuroRecoSWHitPattern",
1173 "reco matched stereo hit pattern from simulation; pattern",
1174 16, 0, 16); // 4 stereo layers -> 2**4 possible patterns
1175 m_neuroRecoSWOutTrackCount = new TH1F("NeuroRecoSWOutTrackCount",
1176 "reco matched number of SW neuro tracks per event",
1177 20, 0, 20);
1178 m_neuroRecoSWSector = new TH1F("NeuroRecoSWSector",
1179 "reco matched sector from simulation; sector",
1180 10, 0, 10);
1181
1182
1183 m_DeltaRecoSWZ = new TH1F("DeltaRecoSWZ",
1184 "difference between reconstructed and simulated neuro z; #Delta z [cm]",
1185 100, -100, 100);
1186 m_DeltaRecoSWCosTheta = new TH1F("DeltaRecoSWCosTheta",
1187 "difference between reconstructed and simulated neuro cos(theta); #Delta cos(#theta)",
1188 100, -1, 1);
1189 m_DeltaRecoSWInvPt = new TH1F("DeltaRecoSWInvPt",
1190 "difference between reconstructed and simulated neuro Pt; #Delta p_{T}^{-1} [GeV^{-1}]",
1191 100, -10, 10);
1192 m_DeltaRecoSWPhi = new TH1F("DeltaRecoSWPhi",
1193 "difference between reconstructed and simulated neuro phi; #Delta #phi [#circ]",
1194 80, -180, 180);
1195 }
1196
1197
1199 //RecoTracks matched to simulated neuro tracks (sw TS sw 2D sw NN)
1200 m_RecoSWTSSW2DZ = new TH1F("RecoSWTSSW2DZ",
1201 "sw matched z distribution of reconstructed tracks; z [cm]",
1202 100, -150, 150); // 1cm bins from -50cm to 50cm
1203 m_RecoSWTSSW2DCosTheta = new TH1F("RecoSWTSSW2DCosTheta",
1204 "sw matched cos theta distribution of reconstructed tracks; cos(#theta) ",
1205 100, -1, 1);
1206 m_RecoSWTSSW2DInvPt = new TH1F("RecoSWTSSW2DInvPt",
1207 "sw matched Pt distribution of reconstructed tracks; p_{T}^{-1} [GeV^{-1}]",
1208 50, 0, 5);
1209 m_RecoSWTSSW2DPhi = new TH1F("RecoSWTSSW2DPhi",
1210 "sw matched phi distribution of reconstructed tracks ; #phi [#circ]",
1211 80, 0, 360);
1212 m_RecoSWTSSW2DD0 = new TH1F("RecoSWTSSW2DD0",
1213 "sw matched d0 distribution of reconstructed tracks ; d_{0} [cm]",
1214 100, 0, 10);
1215 m_RecoSWTSSW2DZScatter = new TH2F("RecoSWTSSW2DZScatter",
1216 "sw matched reconstruction; reco z [cm]; sw z [cm]",
1217 100, -150, 150, 100, -150, 150);
1218
1219
1220 // sw neuro values for tracks matched to reco tracks (sw TS, sw 2D)
1221 m_neuroRecoSWTSSW2DOutZ = new TH1F("NeuroRecoSWTSSW2DOutZ",
1222 "reco matched z distribution from simulation; z [cm]",
1223 100, -100, 100);
1224 m_neuroRecoSWTSSW2DOutCosTheta = new TH1F("NeuroRecoSWTSSW2DOutCosTheta",
1225 "reco matched cos theta distribution from simulation; cos(#theta) ",
1226 100, -1, 1);
1227 m_neuroRecoSWTSSW2DOutInvPt = new TH1F("NeuroRecoSWTSSW2DOutInvPt",
1228 "reco matched Pt distribution from simulation; p_{T}^{-1} [GeV^{-1}]",
1229 50, 0, 5);
1230 m_neuroRecoSWTSSW2DOutPhi0 = new TH1F("NeuroRecoSWTSSW2DOutPhi0",
1231 "reco matched phi distribution from simulation; #phi [#circ]",
1232 80, 0, 360); // shift to reduce the binning error
1233 m_neuroRecoSWTSSW2DOutHitPattern = new TH1F("NeuroRecoSWTSSW2DHitPattern",
1234 "reco matched stereo hit pattern from simulation; pattern",
1235 16, 0, 16); // 4 stereo layers -> 2**4 possible patterns
1236 m_neuroRecoSWTSSW2DOutTrackCount = new TH1F("NeuroRecoSWTSSW2DOutTrackCount",
1237 "reco matched number of SW neuro tracks per event",
1238 20, 0, 20);
1239 m_neuroRecoSWTSSW2DSector = new TH1F("NeuroRecoSWTSSW2DSector",
1240 "reco matched sector from simulation; sector",
1241 10, 0, 10);
1242
1243
1244 m_DeltaRecoSWTSSW2DZ = new TH1F("DeltaRecoSWTSSW2DZ",
1245 "difference between reconstructed and simulated neuro z; #Delta z [cm]",
1246 100, -100, 100);
1247 m_DeltaRecoSWTSSW2DCosTheta = new TH1F("DeltaRecoSWTSSW2DCosTheta",
1248 "difference between reconstructed and simulated neuro cos(theta); #Delta cos(#theta)",
1249 100, -1, 1);
1250 m_DeltaRecoSWTSSW2DInvPt = new TH1F("DeltaRecoSWTSSW2DInvPt",
1251 "difference between reconstructed and simulated neuro Pt; #Delta p_{T}^{-1} [GeV^{-1}]",
1252 100, -10, 10);
1253 m_DeltaRecoSWTSSW2DPhi = new TH1F("DeltaRecoSWTSSW2DPhi",
1254 "difference between reconstructed and simulated neuro phi;#Delta #phi [#circ]",
1255 80, -180, 180);
1256 }
1257
1258 // cd back to root directory
1259 oldDir->cd();
1260}

◆ endRun()

void endRun ( void  )
overridevirtual

Function to process end_run record.

Reimplemented from HistoModule.

Definition at line 3262 of file CDCTriggerNeuroDQMModule.cc.

3263{
3264}

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 96 of file Module.cc.

97{
98 if (m_conditions.empty()) return false;
99
100 //okay, a condition was set for this Module...
101 if (!m_hasReturnValue) {
102 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
103 }
104
105 for (const auto& condition : m_conditions) {
106 if (condition.evaluate(m_returnValue)) {
107 return true;
108 }
109 }
110 return false;
111}
int m_returnValue
The return value.
Definition: Module.h:519
bool m_hasReturnValue
True, if the return value is set.
Definition: Module.h:518

◆ event()

void event ( void  )
overridevirtual

Function to process event record.

,(x," + padto(intomega.str(), 2) + "," + padto(intphi.str(), 3) + "," + padto(inttheta.str(), 3) + "," + padto(intz.str(), 3) + "),

Reimplemented from HistoModule.

Definition at line 1795 of file CDCTriggerNeuroDQMModule.cc.

1796{
1797 double phinorm ; /* intermediate name for phi to transfrom zo 0->360 */
1799 //if (m_unpackedNeuroInputSegments.getEntries() == 0) {
1800 B2DEBUG(150, "No unpacked TS found, skipping event.");
1801 return;
1802 }
1804 B2DEBUG(150, "Wrong track multiplicity " << m_RecoTracks.getEntries() << ", skipping event.");
1805 return;
1806 }
1807
1808 StoreObjPtr<EventMetaData> eventMetaData;
1809
1810 if (m_recoTracksName != "") {
1811 // a RecoTrack has multiple representations for different particle hypothesis
1812 // -> just take the first one that does not give errors.
1814 bool foundValidRep = false;
1815
1816 for (RecoTrack& recoTrack : m_RecoTracks) {
1817 int nhwmatched = 0;
1818 int nswmatched = 0;
1819 int nswtssw2dmatched = 0;
1820 double phi0Target = 0;
1821 double invptTarget = 0;
1822 double cosThetaTarget = 0;
1823 double zTarget = 0;
1824 double d0Target = 0;
1825 for (genfit::AbsTrackRep* rep : recoTrack.getRepresentations()) {
1826 if (!recoTrack.wasFitSuccessful(rep))
1827 continue;
1828 // get state (position, momentum etc.) from hit closest to IP and
1829 // extrapolate to z-axis (may throw an exception -> continue to next representation)
1830 try {
1831 genfit::MeasuredStateOnPlane state =
1832 recoTrack.getMeasuredStateOnPlaneClosestTo(ROOT::Math::XYZVector(0, 0, 0), rep);
1833 rep->extrapolateToLine(state, TVector3(0, 0, -1000), TVector3(0, 0, 2000));
1834 // TODO check after matching
1835 // // flip tracks if necessary, such that trigger tracks and reco tracks
1836 // // point in the same direction
1837 // if (state.getMom().Dot(m_tracks[itrack]->getDirection()) < 0) {
1838 // state.setPosMom(state.getPos(), -state.getMom());
1839 // state.setChargeSign(-state.getCharge());
1840 // }
1841 // get track parameters
1842 phi0Target = state.getMom().Phi() * 180. / M_PI ;
1843 if (phi0Target < 0.) {phi0Target = phi0Target + 360. ;}
1844 invptTarget = state.getCharge() * state.getMom().Pt();
1845 cosThetaTarget = state.getMom().CosTheta();
1846 zTarget = state.getPos().Z();
1847 d0Target = state.getPos().Perp();
1848 } catch (...) {
1849 continue;
1850 }
1851 // break loop
1852 foundValidRep = true;
1853 break;
1854 }
1855 if (!foundValidRep) {
1856 B2DEBUG(150, "No valid representation found for RecoTrack, skipping.");
1857 continue;
1858 } else {
1859 if (m_maxRecoZDist != -1.0 and abs(zTarget) > m_maxRecoZDist) {
1860 B2DEBUG(150, "RecoTrack not close to IP (maxRecoZDist), zReco = " << zTarget);
1861 continue;
1862 }
1863 if (m_maxRecoD0Dist != -1.0 and abs(d0Target) > m_maxRecoD0Dist) {
1864 B2DEBUG(150, "RecoTrack not close to the z axis (maxRecoD0Dist), d0Reco = " << d0Target);
1865 continue;
1866 }
1867 m_RecoZ->Fill(zTarget);
1868 m_RecoCosTheta->Fill(cosThetaTarget);
1869 m_RecoPhi->Fill(phi0Target);
1870 m_RecoD0->Fill(d0Target);
1871 m_RecoInvPt->Fill(invptTarget);
1872 if (m_unpackedNeuroTracksName != "") {
1873 CDCTriggerTrack* neuroHWTrack = recoTrack.getRelatedTo<CDCTriggerTrack>(m_unpackedNeuroTracksName);
1874
1875 if (neuroHWTrack) {
1876 bool valtrack = false;
1877 try {
1878 valtrack = neuroHWTrack->getValidStereoBit();
1879 } catch (...) {
1880 B2WARNING("HWTrack doesn't have 'valid bit', get it from relations now... ");
1881 unsigned checkpattern = getPattern(neuroHWTrack, m_unpackedNeuroInputSegmentsName);
1882 valtrack = isValidPattern(checkpattern);
1883 }
1884 if (!valtrack) {
1885 continue;
1886 }
1887
1888 m_RecoHWZ->Fill(zTarget);
1889 m_RecoHWCosTheta->Fill(cosThetaTarget);
1890 m_RecoHWPhi->Fill(phi0Target);
1891 m_RecoHWD0->Fill(d0Target);
1892 m_RecoHWInvPt->Fill(invptTarget);
1893
1894 double neuroHWZ = neuroHWTrack->getZ0() ;
1895 m_neuroRecoHWOutZ->Fill(neuroHWZ);
1896 double cotTh = neuroHWTrack->getCotTheta() ;
1897 double cosTh = copysign(1.0, cotTh) / sqrt(1. / (cotTh * cotTh) + 1);
1898 double neuroHWcosTh = cosTh ;
1899 m_neuroRecoHWOutCosTheta->Fill(neuroHWcosTh);
1900 double neuroHWPt = neuroHWTrack->getPt() ;
1901 m_neuroRecoHWOutInvPt->Fill(neuroHWPt);
1902 phinorm = neuroHWTrack->getPhi0() * 180 / M_PI ;
1903 if (phinorm < 0.) {phinorm = phinorm + 360. ;}
1904 double neuroHWPhi0 = phinorm;
1905 m_neuroRecoHWOutPhi0->Fill(neuroHWPhi0);
1907 nhwmatched++;
1908 unsigned hwMatchedSector =
1909 neuroHWTrack->getRelatedTo<CDCTriggerMLPInput>(m_unpackedNeuroInputVectorName)->getSector();
1910 m_neuroRecoHWSector->Fill(hwMatchedSector);
1911
1912 m_DeltaRecoHWZ->Fill(zTarget - neuroHWZ);
1913 m_DeltaRecoHWCosTheta->Fill(cosThetaTarget - neuroHWcosTh);
1914 m_DeltaRecoHWPhi->Fill(phi0Target - neuroHWPhi0);
1915 m_DeltaRecoHWInvPt->Fill(invptTarget - neuroHWPt);
1916 if (!m_limitedoutput) {
1917 m_RecoHWZScatter->Fill(zTarget, neuroHWZ);
1918 }
1919 }
1920 if (!m_limitedoutput && m_simNeuroTracksName != "") {
1921 CDCTriggerTrack* neuroSWTrack = recoTrack.getRelatedTo<CDCTriggerTrack>(m_simNeuroTracksName);
1922 if (neuroSWTrack) {
1923 bool valtrack = false;
1924 try {
1925 valtrack = neuroSWTrack->getValidStereoBit();
1926 } catch (...) {
1927 B2INFO("SWTrack doesn't have 'valid bit', get it from relations now... ");
1928 unsigned checkpattern = getPattern(neuroSWTrack, m_unpackedNeuroInputSegmentsName);
1929 valtrack = isValidPattern(checkpattern);
1930 }
1931 if (!valtrack) {
1932 continue;
1933 }
1934
1935 m_RecoSWZ->Fill(zTarget);
1936 m_RecoSWCosTheta->Fill(cosThetaTarget);
1937 m_RecoSWPhi->Fill(phi0Target);
1938 m_RecoSWD0->Fill(d0Target);
1939 m_RecoSWInvPt->Fill(invptTarget);
1940
1941 double neuroSWZ = neuroSWTrack->getZ0() ;
1942 m_neuroRecoSWOutZ->Fill(neuroSWZ);
1943 double cotTh = neuroSWTrack->getCotTheta() ;
1944 double cosTh = copysign(1.0, cotTh) / sqrt(1. / (cotTh * cotTh) + 1);
1945 double neuroSWcosTh = cosTh ;
1946 m_neuroRecoSWOutCosTheta->Fill(neuroSWcosTh);
1947 double neuroSWPt = neuroSWTrack->getPt() ;
1948 m_neuroRecoSWOutInvPt->Fill(neuroSWPt);
1949 phinorm = neuroSWTrack->getPhi0() * 180 / M_PI ;
1950 if (phinorm < 0.) {phinorm = phinorm + 360. ;}
1951 double neuroSWPhi0 = phinorm ;
1952 m_neuroRecoSWOutPhi0->Fill(neuroSWPhi0);
1954 nswmatched++;
1955 unsigned swMatchedSector =
1956 neuroSWTrack->getRelatedTo<CDCTriggerMLPInput>(m_simNeuroInputVectorName)->getSector();
1957 m_neuroRecoSWSector->Fill(swMatchedSector);
1958
1959 m_DeltaRecoSWZ->Fill(zTarget - neuroSWZ);
1960 m_DeltaRecoSWCosTheta->Fill(cosThetaTarget - neuroSWcosTh);
1961 m_DeltaRecoSWPhi->Fill(phi0Target - neuroSWPhi0);
1962 m_DeltaRecoSWInvPt->Fill(invptTarget - neuroSWPt);
1963 m_RecoSWZScatter->Fill(zTarget, neuroSWZ);
1964 }
1965 }
1967 CDCTriggerTrack* neuroSWTSSW2DTrack = recoTrack.getRelatedTo<CDCTriggerTrack>(m_simNeuroTracksSWTSSW2DName);
1968 if (neuroSWTSSW2DTrack) {
1969 m_RecoSWTSSW2DZ->Fill(zTarget);
1970 m_RecoSWTSSW2DCosTheta->Fill(cosThetaTarget);
1971 m_RecoSWTSSW2DPhi->Fill(phi0Target);
1972 m_RecoSWTSSW2DD0->Fill(d0Target);
1973 m_RecoSWTSSW2DInvPt->Fill(invptTarget);
1974
1975 m_neuroRecoSWTSSW2DOutZ->Fill(neuroSWTSSW2DTrack->getZ0());
1976
1977 double cotTh = neuroSWTSSW2DTrack->getCotTheta();
1978 double cosTh = copysign(1.0, cotTh) / sqrt(1. / (cotTh * cotTh) + 1);
1979 m_neuroRecoSWTSSW2DOutCosTheta->Fill(cosTh);
1980 phinorm = neuroSWTSSW2DTrack->getPhi0() * 180 / M_PI;
1981 if (phinorm < 0.) {phinorm = phinorm + 360. ;}
1982 double phiNeuro = phinorm ;
1983 double invptNeuro = neuroSWTSSW2DTrack->getPt() ;
1984 m_neuroRecoSWTSSW2DOutInvPt->Fill(invptNeuro);
1985 m_neuroRecoSWTSSW2DOutPhi0->Fill(phiNeuro);
1987 nswtssw2dmatched++;
1988 unsigned swtssw2dMatchedSector =
1989 neuroSWTSSW2DTrack->getRelatedTo<CDCTriggerMLPInput>(m_simNeuroInputVectorSWTSSW2DName)->getSector();
1990 m_neuroRecoSWTSSW2DSector->Fill(swtssw2dMatchedSector);
1991
1992 m_DeltaRecoSWTSSW2DZ->Fill(zTarget - neuroSWTSSW2DTrack->getZ0());
1993
1994
1995 m_DeltaRecoSWTSSW2DCosTheta->Fill(cosThetaTarget - cosTh);
1996 phinorm = neuroSWTSSW2DTrack->getPhi0() * 180. / M_PI ;
1997 if (phinorm < 0.) {phinorm = phinorm + 360. ;}
1998 m_DeltaRecoSWTSSW2DPhi->Fill(phi0Target - phinorm);
1999 m_DeltaRecoSWTSSW2DInvPt->Fill(invptTarget - neuroSWTSSW2DTrack->getPt());
2000 m_RecoSWTSSW2DZScatter->Fill(zTarget, neuroSWTSSW2DTrack->getZ0());
2001 }
2002 }
2003 }
2004 }
2005 if (m_unpackedNeuroTracksName != "") {
2006 m_neuroRecoHWOutTrackCount->Fill(nhwmatched);
2007 if (!m_limitedoutput && m_simNeuroTracksName != "") {
2008 m_neuroRecoSWOutTrackCount->Fill(nswmatched);
2009 }
2011 m_neuroRecoSWTSSW2DOutTrackCount->Fill(nswtssw2dmatched);
2012 }
2013 }
2014 }
2015 }
2016
2019 for (CDCTriggerTrack& neuroswTrack : m_simNeuroTracksSWTSSW2D) {
2020 m_neuroSWTSSW2DOutZ->Fill(neuroswTrack.getZ0());
2021 double cotThSW = neuroswTrack.getCotTheta();
2022 double cosThSW = copysign(1.0, cotThSW) / sqrt(1. / (cotThSW * cotThSW) + 1);
2023 m_neuroSWTSSW2DOutCosTheta->Fill(cosThSW);
2024 phinorm = neuroswTrack.getPhi0() * 180. / M_PI ;
2025 if (phinorm < 0.) {
2026 phinorm = phinorm + 360. ;
2027 }
2028 m_neuroSWTSSW2DOutPhi0->Fill(phinorm);
2029 m_neuroSWTSSW2DOutInvPt->Fill(neuroswTrack.getPt());
2030 unsigned simSWTSSW2DSector =
2031 neuroswTrack.getRelatedTo<CDCTriggerMLPInput>(m_simNeuroInputVectorSWTSSW2DName)->getSector();
2032 m_neuroSWTSSW2DSector->Fill(simSWTSSW2DSector);
2033
2034 // sw NN selected sw ts
2035 unsigned pattern = 0;
2036 for (const CDCTriggerSegmentHit& hit :
2038 m_neuroSWTSSW2DSelTSID->Fill(hit.getSegmentID());
2039 unsigned int sl = hit.getISuperLayer();
2040 m_neuroSWTSSW2DSelTSCount->Fill(sl);
2041 float neuroTime = neuroswTrack.getTime();
2042
2043 // find first occurence of hit (used to debug the selcted TS field)
2044 CDCTriggerSegmentHit firstHit = hit;
2045 for (CDCTriggerSegmentHit compare : m_simSegmentHits) {
2046 if (compare.getISuperLayer() == hit.getISuperLayer() &&
2047 compare.getIWireCenter() == hit.getIWireCenter() &&
2048 compare.getPriorityPosition() == hit.getPriorityPosition() &&
2049 compare.getLeftRight() == hit.getLeftRight() &&
2050 compare.priorityTime() == hit.priorityTime() &&
2051 compare.foundTime() < firstHit.foundTime()) {
2052 firstHit = compare;
2053 }
2054 }
2055
2056 switch (sl) {
2057 case 0: m_neuroSWTSSW2DSelTSPrioT_Layer0->Fill(hit.priorityTime());
2058 m_neuroSWTSSW2DSelTSFoundT_Layer0->Fill(firstHit.foundTime() - neuroTime);
2059 m_neuroSWTSSW2DSelTSPrioB_Layer0->Fill(hit.getPriorityPosition());
2060 m_neuroSWTSSW2DSelTSLR_Layer0->Fill(hit.getLeftRight());
2061 break;
2062 case 1: m_neuroSWTSSW2DSelTSPrioT_Layer1->Fill(hit.priorityTime());
2063 m_neuroSWTSSW2DSelTSFoundT_Layer1->Fill(firstHit.foundTime() - neuroTime);
2064 m_neuroSWTSSW2DSelTSPrioB_Layer1->Fill(hit.getPriorityPosition());
2065 m_neuroSWTSSW2DSelTSLR_Layer1->Fill(hit.getLeftRight());
2066 break;
2067 case 2: m_neuroSWTSSW2DSelTSPrioT_Layer2->Fill(hit.priorityTime());
2068 m_neuroSWTSSW2DSelTSFoundT_Layer2->Fill(firstHit.foundTime() - neuroTime);
2069 m_neuroSWTSSW2DSelTSPrioB_Layer2->Fill(hit.getPriorityPosition());
2070 m_neuroSWTSSW2DSelTSLR_Layer2->Fill(hit.getLeftRight());
2071 break;
2072 case 3: m_neuroSWTSSW2DSelTSPrioT_Layer3->Fill(hit.priorityTime());
2073 m_neuroSWTSSW2DSelTSFoundT_Layer3->Fill(firstHit.foundTime() - neuroTime);
2074 m_neuroSWTSSW2DSelTSPrioB_Layer3->Fill(hit.getPriorityPosition());
2075 m_neuroSWTSSW2DSelTSLR_Layer3->Fill(hit.getLeftRight());
2076 break;
2077 case 4: m_neuroSWTSSW2DSelTSPrioT_Layer4->Fill(hit.priorityTime());
2078 m_neuroSWTSSW2DSelTSFoundT_Layer4->Fill(firstHit.foundTime() - neuroTime);
2079 m_neuroSWTSSW2DSelTSPrioB_Layer4->Fill(hit.getPriorityPosition());
2080 m_neuroSWTSSW2DSelTSLR_Layer4->Fill(hit.getLeftRight());
2081 break;
2082 case 5: m_neuroSWTSSW2DSelTSPrioT_Layer5->Fill(hit.priorityTime());
2083 m_neuroSWTSSW2DSelTSFoundT_Layer5->Fill(firstHit.foundTime() - neuroTime);
2084 m_neuroSWTSSW2DSelTSPrioB_Layer5->Fill(hit.getPriorityPosition());
2085 m_neuroSWTSSW2DSelTSLR_Layer5->Fill(hit.getLeftRight());
2086 break;
2087 case 6: m_neuroSWTSSW2DSelTSPrioT_Layer6->Fill(hit.priorityTime());
2088 m_neuroSWTSSW2DSelTSFoundT_Layer6->Fill(firstHit.foundTime() - neuroTime);
2089 m_neuroSWTSSW2DSelTSPrioB_Layer6->Fill(hit.getPriorityPosition());
2090 m_neuroSWTSSW2DSelTSLR_Layer6->Fill(hit.getLeftRight());
2091 break;
2092 case 7: m_neuroSWTSSW2DSelTSPrioT_Layer7->Fill(hit.priorityTime());
2093 m_neuroSWTSSW2DSelTSFoundT_Layer7->Fill(firstHit.foundTime() - neuroTime);
2094 m_neuroSWTSSW2DSelTSPrioB_Layer7->Fill(hit.getPriorityPosition());
2095 m_neuroSWTSSW2DSelTSLR_Layer7->Fill(hit.getLeftRight());
2096 break;
2097 case 8: m_neuroSWTSSW2DSelTSPrioT_Layer8->Fill(hit.priorityTime());
2098 m_neuroSWTSSW2DSelTSFoundT_Layer8->Fill(firstHit.foundTime() - neuroTime);
2099 m_neuroSWTSSW2DSelTSPrioB_Layer8->Fill(hit.getPriorityPosition());
2100 m_neuroSWTSSW2DSelTSLR_Layer8->Fill(hit.getLeftRight());
2101 break;
2102 }
2103 if (sl % 2 == 1) pattern |= (1 << ((sl - 1) / 2));
2104 }
2105 m_neuroSWTSSW2DOutHitPattern->Fill(pattern);
2106
2107 // plot input vector
2108 vector<float> nnInput =
2109 neuroswTrack.getRelatedTo<CDCTriggerMLPInput>(m_simNeuroInputVectorSWTSSW2DName)->getInput();
2137 }
2138 }
2139 if (!m_limitedoutput && m_simNeuroTracksName != "") {
2141 for (CDCTriggerTrack& neuroswTrack : m_simNeuroTracks) {
2142 bool valtrack = false;
2143 try {
2144 valtrack = neuroswTrack.getValidStereoBit();
2145 } catch (...) {
2146 B2INFO("HWTrack doesn't have 'valid bit', get it from relations now... ");
2147 unsigned checkpattern = getPattern(&neuroswTrack, m_unpackedNeuroInputSegmentsName);
2148 valtrack = isValidPattern(checkpattern);
2149 }
2150 if (!valtrack) {
2151 continue;
2152 }
2153
2154 m_neuroSWOutZ->Fill(neuroswTrack.getZ0());
2155 double cotThSW = neuroswTrack.getCotTheta();
2156 double cosThSW = copysign(1.0, cotThSW) / sqrt(1. / (cotThSW * cotThSW) + 1);
2157 m_neuroSWOutCosTheta->Fill(cosThSW);
2158 phinorm = neuroswTrack.getPhi0() * 180. / M_PI ;
2159 if (phinorm < 0.) {phinorm = phinorm + 360. ;}
2160 m_neuroSWOutPhi0->Fill(phinorm);
2161 m_neuroSWOutInvPt->Fill(neuroswTrack.getPt());
2162
2163 unsigned simSector =
2164 neuroswTrack.getRelatedTo<CDCTriggerMLPInput>(m_simNeuroInputVectorName)->getSector();
2165 m_neuroSWSector->Fill(simSector);
2166
2167 // sw NN selected sw ts
2168 unsigned pattern = 0;
2169 for (const CDCTriggerSegmentHit& hit :
2171 m_neuroSWSelTSID->Fill(hit.getSegmentID());
2172 unsigned int sl = hit.getISuperLayer();
2173 m_neuroSWSelTSCount->Fill(sl);
2174 float neuroTime = neuroswTrack.getTime();
2175
2176 // find first occurence of hit (used to debug the selcted TS field)
2177 CDCTriggerSegmentHit firstHit = hit;
2178 for (CDCTriggerSegmentHit compare : m_simSegmentHits) {
2179 if (compare.getISuperLayer() == hit.getISuperLayer() &&
2180 compare.getIWireCenter() == hit.getIWireCenter() &&
2181 compare.getPriorityPosition() == hit.getPriorityPosition() &&
2182 compare.getLeftRight() == hit.getLeftRight() &&
2183 compare.priorityTime() == hit.priorityTime() &&
2184 compare.foundTime() < firstHit.foundTime()) {
2185 firstHit = compare;
2186 }
2187 }
2188
2189 switch (sl) {
2190 case 0: m_neuroSWSelTSPrioT_Layer0->Fill(hit.priorityTime());
2191 m_neuroSWSelTSFoundT_Layer0->Fill(firstHit.foundTime() - neuroTime);
2192 m_neuroSWSelTSPrioB_Layer0->Fill(hit.getPriorityPosition());
2193 m_neuroSWSelTSLR_Layer0->Fill(hit.getLeftRight());
2194 break;
2195 case 1: m_neuroSWSelTSPrioT_Layer1->Fill(hit.priorityTime());
2196 m_neuroSWSelTSFoundT_Layer1->Fill(firstHit.foundTime() - neuroTime);
2197 m_neuroSWSelTSPrioB_Layer1->Fill(hit.getPriorityPosition());
2198 m_neuroSWSelTSLR_Layer1->Fill(hit.getLeftRight());
2199 break;
2200 case 2: m_neuroSWSelTSPrioT_Layer2->Fill(hit.priorityTime());
2201 m_neuroSWSelTSFoundT_Layer2->Fill(firstHit.foundTime() - neuroTime);
2202 m_neuroSWSelTSPrioB_Layer2->Fill(hit.getPriorityPosition());
2203 m_neuroSWSelTSLR_Layer2->Fill(hit.getLeftRight());
2204 break;
2205 case 3: m_neuroSWSelTSPrioT_Layer3->Fill(hit.priorityTime());
2206 m_neuroSWSelTSFoundT_Layer3->Fill(firstHit.foundTime() - neuroTime);
2207 m_neuroSWSelTSPrioB_Layer3->Fill(hit.getPriorityPosition());
2208 m_neuroSWSelTSLR_Layer3->Fill(hit.getLeftRight());
2209 break;
2210 case 4: m_neuroSWSelTSPrioT_Layer4->Fill(hit.priorityTime());
2211 m_neuroSWSelTSFoundT_Layer4->Fill(firstHit.foundTime() - neuroTime);
2212 m_neuroSWSelTSPrioB_Layer4->Fill(hit.getPriorityPosition());
2213 m_neuroSWSelTSLR_Layer4->Fill(hit.getLeftRight());
2214 break;
2215 case 5: m_neuroSWSelTSPrioT_Layer5->Fill(hit.priorityTime());
2216 m_neuroSWSelTSFoundT_Layer5->Fill(firstHit.foundTime() - neuroTime);
2217 m_neuroSWSelTSPrioB_Layer5->Fill(hit.getPriorityPosition());
2218 m_neuroSWSelTSLR_Layer5->Fill(hit.getLeftRight());
2219 break;
2220 case 6: m_neuroSWSelTSPrioT_Layer6->Fill(hit.priorityTime());
2221 m_neuroSWSelTSFoundT_Layer6->Fill(firstHit.foundTime() - neuroTime);
2222 m_neuroSWSelTSPrioB_Layer6->Fill(hit.getPriorityPosition());
2223 m_neuroSWSelTSLR_Layer6->Fill(hit.getLeftRight());
2224 break;
2225 case 7: m_neuroSWSelTSPrioT_Layer7->Fill(hit.priorityTime());
2226 m_neuroSWSelTSFoundT_Layer7->Fill(firstHit.foundTime() - neuroTime);
2227 m_neuroSWSelTSPrioB_Layer7->Fill(hit.getPriorityPosition());
2228 m_neuroSWSelTSLR_Layer7->Fill(hit.getLeftRight());
2229 break;
2230 case 8: m_neuroSWSelTSPrioT_Layer8->Fill(hit.priorityTime());
2231 m_neuroSWSelTSFoundT_Layer8->Fill(firstHit.foundTime() - neuroTime);
2232 m_neuroSWSelTSPrioB_Layer8->Fill(hit.getPriorityPosition());
2233 m_neuroSWSelTSLR_Layer8->Fill(hit.getLeftRight());
2234 break;
2235 }
2236 if (sl % 2 == 1) pattern |= (1 << ((sl - 1) / 2));
2237 }
2238 m_neuroSWOutHitPattern->Fill(pattern);
2239
2240
2241 // plot input vector
2242 vector<float> nnInput =
2243 neuroswTrack.getRelatedTo<CDCTriggerMLPInput>(m_simNeuroInputVectorName)->getInput();
2244 condFill(m_neuroSWInputID_Layer0, nnInput[0]);
2245 condFill(m_neuroSWInputT_Layer0, nnInput[1]);
2247 condFill(m_neuroSWInputID_Layer1, nnInput[3]);
2248 condFill(m_neuroSWInputT_Layer1, nnInput[4]);
2250 condFill(m_neuroSWInputID_Layer2, nnInput[6]);
2251 condFill(m_neuroSWInputT_Layer2, nnInput[7]);
2253 condFill(m_neuroSWInputID_Layer3, nnInput[9]);
2254 condFill(m_neuroSWInputT_Layer3, nnInput[10]);
2256 condFill(m_neuroSWInputID_Layer4, nnInput[12]);
2257 condFill(m_neuroSWInputT_Layer4, nnInput[13]);
2259 condFill(m_neuroSWInputID_Layer5, nnInput[15]);
2260 condFill(m_neuroSWInputT_Layer5, nnInput[16]);
2262 condFill(m_neuroSWInputID_Layer6, nnInput[18]);
2263 condFill(m_neuroSWInputT_Layer6, nnInput[19]);
2265 condFill(m_neuroSWInputID_Layer7, nnInput[21]);
2266 condFill(m_neuroSWInputT_Layer7, nnInput[22]);
2268 condFill(m_neuroSWInputID_Layer8, nnInput[24]);
2269 condFill(m_neuroSWInputT_Layer8, nnInput[25]);
2271 }
2272 }
2273
2274 int nofintracks = 0;
2275 if (m_unpackedNeuroTracksName != "") {
2276 int nofouttracks = 0;
2277 int nofinsegments = 0;
2278 // fill neurotrigger histograms
2279 for (CDCTriggerTrack& neuroTrack : m_unpackedNeuroTracks) {
2280 bool valtrack = false;
2281 try {
2282 valtrack = neuroTrack.getValidStereoBit();
2283 } catch (...) {
2284 B2WARNING("NeuroTrack doesn't have 'valid bit', get it from relations now... ");
2285 unsigned checkpattern = getPattern(&neuroTrack, m_unpackedNeuroInputSegmentsName);
2286 valtrack = isValidPattern(checkpattern);
2287 }
2288 if (!valtrack) {
2289 continue;
2290 }
2291 // count number of tracks
2292 ++nofouttracks;
2293 // fill raw distributions
2294 m_neuroHWOutZ->Fill(neuroTrack.getZ0());
2295 double cotTh = neuroTrack.getCotTheta();
2296 double cosTh = copysign(1.0, cotTh) / sqrt(1. / (cotTh * cotTh) + 1);
2297 m_neuroHWOutCosTheta->Fill(cosTh);
2298 phinorm = neuroTrack.getPhi0() * 180. / M_PI ;
2299 if (phinorm < 0.) {phinorm = phinorm + 360. ;}
2300 m_neuroHWOutPhi0->Fill(phinorm);
2301 m_neuroHWOutInvPt->Fill(neuroTrack.getPt());
2302 m_neuroHWOutPt->Fill(neuroTrack.getPt());
2303 m_neuroHWOutm_time->Fill(neuroTrack.getTime());
2304
2305 unsigned hwSector =
2306 neuroTrack.getRelatedTo<CDCTriggerMLPInput>(m_unpackedNeuroInputVectorName)->getSector();
2307 m_neuroHWSector->Fill(hwSector);
2308
2309 // fill hists per quadrant
2310 if (!m_limitedoutput) {
2311 switch (neuroTrack.getQuadrant()) {
2312 case -1:
2313 m_neuroHWOutQuad5Z->Fill(neuroTrack.getZ0());
2314 m_neuroHWOutQuad5CosTheta->Fill(cosTh);
2315 phinorm = neuroTrack.getPhi0() * 180. / M_PI ;
2316 if (phinorm < 0.) { phinorm = phinorm + 360. ;}
2317 m_neuroHWOutQuad5Phi0->Fill(phinorm);
2318 m_neuroHWOutQuad5InvPt->Fill(neuroTrack.getPt());
2319 break;
2320 case 0:
2321 m_neuroHWOutQuad0Z->Fill(neuroTrack.getZ0());
2322 m_neuroHWOutQuad0CosTheta->Fill(cosTh);
2323 phinorm = neuroTrack.getPhi0() * 180. / M_PI ;
2324 if (phinorm < 0.) { phinorm = phinorm + 360. ;}
2325 m_neuroHWOutQuad0Phi0->Fill(phinorm);
2326 m_neuroHWOutQuad0InvPt->Fill(neuroTrack.getPt());
2327 break;
2328 case 1:
2329 m_neuroHWOutQuad1Z->Fill(neuroTrack.getZ0());
2330 m_neuroHWOutQuad1CosTheta->Fill(cosTh);
2331 phinorm = neuroTrack.getPhi0() * 180. / M_PI ;
2332 if (phinorm < 0.) { phinorm = phinorm + 360. ;}
2333 m_neuroHWOutQuad1Phi0->Fill(phinorm);
2334 m_neuroHWOutQuad1InvPt->Fill(neuroTrack.getPt());
2335 break;
2336 case 2:
2337 m_neuroHWOutQuad2Z->Fill(neuroTrack.getZ0());
2338 m_neuroHWOutQuad2CosTheta->Fill(cosTh);
2339 phinorm = neuroTrack.getPhi0() * 180. / M_PI ;
2340 if (phinorm < 0.) { phinorm = phinorm + 360. ;}
2341 m_neuroHWOutQuad2Phi0->Fill(phinorm);
2342 m_neuroHWOutQuad2InvPt->Fill(neuroTrack.getPt());
2343 break;
2344 case 3:
2345 m_neuroHWOutQuad3Z->Fill(neuroTrack.getZ0());
2346 m_neuroHWOutQuad3CosTheta->Fill(cosTh);
2347 phinorm = neuroTrack.getPhi0() * 180. / M_PI ;
2348 if (phinorm < 0.) { phinorm = phinorm + 360. ;}
2349 m_neuroHWOutQuad3Phi0->Fill(phinorm);
2350 m_neuroHWOutQuad3InvPt->Fill(neuroTrack.getPt());
2351 break;
2352 }
2353 }
2354
2355 // get related stereo hits
2356 unsigned pattern = 0;
2357 for (const CDCTriggerSegmentHit& hit :
2359 m_neuroHWSelTSID->Fill(hit.getSegmentID());
2360 unsigned int sl = hit.getISuperLayer();
2361 m_neuroHWSelTSCount->Fill(sl);
2362 float neuroTime = neuroTrack.getTime();
2363 // find first occurence of hit (used to debug the selcted TS field)
2364 CDCTriggerSegmentHit firstHit = hit;
2366 if (compare.getISuperLayer() == hit.getISuperLayer() &&
2367 compare.getIWireCenter() == hit.getIWireCenter() &&
2368 compare.getPriorityPosition() == hit.getPriorityPosition() &&
2369 compare.getLeftRight() == hit.getLeftRight() &&
2370 compare.priorityTime() == hit.priorityTime() &&
2371 compare.foundTime() < firstHit.foundTime()) {
2372 firstHit = compare;
2373 }
2374 }
2375
2376 if (!m_limitedoutput) {
2377 switch (sl) {
2378 case 0: m_neuroHWSelTSPrioT_Layer0->Fill(hit.priorityTime());
2379 m_neuroHWSelTSFoundT_Layer0->Fill(firstHit.foundTime() - neuroTime);
2380 m_neuroHWSelTSPrioB_Layer0->Fill(hit.getPriorityPosition());
2381 m_neuroHWSelTSLR_Layer0->Fill(hit.getLeftRight());
2382 break;
2383 case 1: m_neuroHWSelTSPrioT_Layer1->Fill(hit.priorityTime());
2384 m_neuroHWSelTSFoundT_Layer1->Fill(firstHit.foundTime() - neuroTime);
2385 m_neuroHWSelTSPrioB_Layer1->Fill(hit.getPriorityPosition());
2386 m_neuroHWSelTSLR_Layer1->Fill(hit.getLeftRight());
2387 break;
2388 case 2: m_neuroHWSelTSPrioT_Layer2->Fill(hit.priorityTime());
2389 m_neuroHWSelTSFoundT_Layer2->Fill(firstHit.foundTime() - neuroTime);
2390 m_neuroHWSelTSPrioB_Layer2->Fill(hit.getPriorityPosition());
2391 m_neuroHWSelTSLR_Layer2->Fill(hit.getLeftRight());
2392 break;
2393 case 3: m_neuroHWSelTSPrioT_Layer3->Fill(hit.priorityTime());
2394 m_neuroHWSelTSFoundT_Layer3->Fill(firstHit.foundTime() - neuroTime);
2395 m_neuroHWSelTSPrioB_Layer3->Fill(hit.getPriorityPosition());
2396 m_neuroHWSelTSLR_Layer3->Fill(hit.getLeftRight());
2397 break;
2398 case 4: m_neuroHWSelTSPrioT_Layer4->Fill(hit.priorityTime());
2399 m_neuroHWSelTSFoundT_Layer4->Fill(firstHit.foundTime() - neuroTime);
2400 m_neuroHWSelTSPrioB_Layer4->Fill(hit.getPriorityPosition());
2401 m_neuroHWSelTSLR_Layer4->Fill(hit.getLeftRight());
2402 break;
2403 case 5: m_neuroHWSelTSPrioT_Layer5->Fill(hit.priorityTime());
2404 m_neuroHWSelTSFoundT_Layer5->Fill(firstHit.foundTime() - neuroTime);
2405 m_neuroHWSelTSPrioB_Layer5->Fill(hit.getPriorityPosition());
2406 m_neuroHWSelTSLR_Layer5->Fill(hit.getLeftRight());
2407 break;
2408 case 6: m_neuroHWSelTSPrioT_Layer6->Fill(hit.priorityTime());
2409 m_neuroHWSelTSFoundT_Layer6->Fill(firstHit.foundTime() - neuroTime);
2410 m_neuroHWSelTSPrioB_Layer6->Fill(hit.getPriorityPosition());
2411 m_neuroHWSelTSLR_Layer6->Fill(hit.getLeftRight());
2412 break;
2413 case 7: m_neuroHWSelTSPrioT_Layer7->Fill(hit.priorityTime());
2414 m_neuroHWSelTSFoundT_Layer7->Fill(firstHit.foundTime() - neuroTime);
2415 m_neuroHWSelTSPrioB_Layer7->Fill(hit.getPriorityPosition());
2416 m_neuroHWSelTSLR_Layer7->Fill(hit.getLeftRight());
2417 break;
2418 case 8: m_neuroHWSelTSPrioT_Layer8->Fill(hit.priorityTime());
2419 m_neuroHWSelTSFoundT_Layer8->Fill(firstHit.foundTime() - neuroTime);
2420 m_neuroHWSelTSPrioB_Layer8->Fill(hit.getPriorityPosition());
2421 m_neuroHWSelTSLR_Layer8->Fill(hit.getLeftRight());
2422 break;
2423 }
2424 }
2425 if (sl % 2 == 1) pattern |= (1 << ((sl - 1) / 2));
2426 }
2427 m_neuroHWOutHitPattern->Fill(pattern);
2428
2429 // plot input vector
2430 if (!m_limitedoutput) {
2431 vector<float> nnInput =
2432 neuroTrack.getRelatedTo<CDCTriggerMLPInput>(m_unpackedNeuroInputVectorName)->getInput();
2433 condFill(m_neuroHWInputID_Layer0, nnInput[0]);
2434 condFill(m_neuroHWInputT_Layer0, nnInput[1]);
2436 condFill(m_neuroHWInputID_Layer1, nnInput[3]);
2437 condFill(m_neuroHWInputT_Layer1, nnInput[4]);
2439 condFill(m_neuroHWInputID_Layer2, nnInput[6]);
2440 condFill(m_neuroHWInputT_Layer2, nnInput[7]);
2442 condFill(m_neuroHWInputID_Layer3, nnInput[9]);
2443 condFill(m_neuroHWInputT_Layer3, nnInput[10]);
2445 condFill(m_neuroHWInputID_Layer4, nnInput[12]);
2446 condFill(m_neuroHWInputT_Layer4, nnInput[13]);
2448 condFill(m_neuroHWInputID_Layer5, nnInput[15]);
2449 condFill(m_neuroHWInputT_Layer5, nnInput[16]);
2451 condFill(m_neuroHWInputID_Layer6, nnInput[18]);
2452 condFill(m_neuroHWInputT_Layer6, nnInput[19]);
2454 condFill(m_neuroHWInputID_Layer7, nnInput[21]);
2455 condFill(m_neuroHWInputT_Layer7, nnInput[22]);
2457 condFill(m_neuroHWInputID_Layer8, nnInput[24]);
2458 condFill(m_neuroHWInputT_Layer8, nnInput[25]);
2460
2461
2462 if (m_simNeuroTracksName != "") {
2463 // get related track from TSIM (via 2D finder track)
2464 CDCTriggerTrack* finderTrack =
2465 neuroTrack.getRelatedFrom<CDCTriggerTrack>(m_unpackedNeuroInput2DTracksName);
2466 if (finderTrack) {
2467 CDCTriggerTrack* neuroSimTrack =
2468 finderTrack->getRelatedTo<CDCTriggerTrack>(m_simNeuroTracksName);
2469 if (neuroSimTrack) {
2470 // check if they same TS are selected in the unpacked and TSIM track
2471 int nsameTS = 0;
2472 int ndiffTS = 0;
2473 for (const CDCTriggerSegmentHit& simhit :
2474 neuroSimTrack->getRelationsTo<CDCTriggerSegmentHit>(m_unpackedNeuroInputSegmentsName)) {
2475 unsigned int simsl = simhit.getISuperLayer();
2476 for (const CDCTriggerSegmentHit& hit :
2478 unsigned int sl = hit.getISuperLayer();
2479 if (sl == simsl) {
2480 m_neuroDeltaTSID->Fill(hit.getSegmentID() - simhit.getSegmentID());
2481 if (simhit.getSegmentID() == hit.getSegmentID() &&
2482 simhit.getPriorityPosition() == hit.getPriorityPosition() &&
2483 simhit.getLeftRight() == hit.getLeftRight() &&
2484 simhit.priorityTime() == hit.priorityTime()
2485 ) {
2486 nsameTS += 1;
2487 } else {
2488 ndiffTS += 1;
2489 }
2490 }
2491 }
2492 }
2493 m_simSameTS->Fill(nsameTS);
2494 m_simDiffTS->Fill(ndiffTS);
2495 // only calculate deltas if the same TS are selected in unpacker and TSIM
2496
2497
2498 if (nsameTS >= m_nsamets) {
2499 if (abs(neuroTrack.getZ0() - neuroSimTrack->getZ0()) > 1) {
2500 neuroSimTrack->setQualityVector(2);
2501 neuroTrack.setQualityVector(2);
2502 }
2503 m_neuroDeltaZ->Fill(neuroTrack.getZ0() - neuroSimTrack->getZ0());
2504 double nnHWtheta = neuroTrack.getDirection().Theta() * 180. / M_PI;
2505 double nnSWtheta = neuroSimTrack->getDirection().Theta() * 180. / M_PI;
2506 m_neuroDeltaTheta->Fill(nnHWtheta - nnSWtheta);
2507 m_neuroScatterZ->Fill(neuroTrack.getZ0(), neuroSimTrack->getZ0());
2508 m_neuroScatterTheta->Fill(nnHWtheta, nnSWtheta);
2509 vector<float> unpackedInput =
2510 neuroTrack.getRelatedTo<CDCTriggerMLPInput>(m_unpackedNeuroInputVectorName)->getInput();
2511 vector<float> simInput =
2512 neuroSimTrack->getRelatedTo<CDCTriggerMLPInput>(m_simNeuroInputVectorName)->getInput();
2513 unsigned unpackedSector =
2514 neuroTrack.getRelatedTo<CDCTriggerMLPInput>(m_unpackedNeuroInputVectorName)->getSector();
2515 unsigned simSector =
2516 neuroSimTrack->getRelatedTo<CDCTriggerMLPInput>(m_simNeuroInputVectorName)->getSector();
2517 m_neuroDeltaSector->Fill(unpackedSector - simSector);
2518 bool sameInputId = true;
2519 bool sameInputAlpha = true;
2520 bool scaleErr = false;
2521 bool missingTS = false;
2522 bool timeErr = false;
2523 for (unsigned ii = 0; ii < unpackedInput.size(); ii += 3) {
2524 m_neuroDeltaInputID->Fill(unpackedInput[ii] - simInput[ii]);
2525 m_neuroDeltaInputT->Fill(unpackedInput[ii + 1] - simInput[ii + 1]);
2526 m_neuroDeltaInputAlpha->Fill(unpackedInput[ii + 2] - simInput[ii + 2]);
2527 bool hwZero = false;
2528 bool hwSimZero = false;
2529 if (unpackedInput[ii] != simInput[ii]) {sameInputId = false;}
2530 if (unpackedInput[ii + 2] != simInput[ii + 2]) {sameInputAlpha = false;}
2531 if (unpackedInput[ii + 1] != simInput[ii + 1]) {timeErr = true;}
2532 if (unpackedInput[ii + 1] == 0 && fabs(simInput[ii + 1] > 0.99)) {scaleErr = true;}
2533 if (simInput[ii + 1] == 0 && fabs(unpackedInput[ii + 1] > 0.99)) {scaleErr = true;}
2534 if (unpackedInput[ii] == 0 && unpackedInput[ii + 1] == 0 && unpackedInput[ii + 2] == 0) {hwZero = true;}
2535 if (simInput[ii] == 0 && simInput[ii + 1] == 0 && simInput[ii + 2] == 0) {hwSimZero = true;}
2536 if (hwZero != hwSimZero) {missingTS = true;}
2537 }
2538 if (!sameInputId) {neuroTrack.setQualityVector(4);}
2539 if (!sameInputAlpha) {neuroTrack.setQualityVector(8);}
2540 if (scaleErr) {neuroTrack.setQualityVector(16);}
2541 if (missingTS) {neuroTrack.setQualityVector(32);}
2542 if (timeErr) {neuroTrack.setQualityVector(64);}
2543
2544 }
2545 }
2546 }
2547 }
2548 }
2549 }
2550 for (CDCTriggerTrack& neuroinput2dtrack : m_unpackedNeuroInput2DTracks) {
2551 nofintracks ++;
2552 phinorm = neuroinput2dtrack.getPhi0() * 180. / M_PI ;
2553 if (phinorm < 0.) { phinorm = phinorm + 360. ;}
2554 m_neuroHWInPhi0->Fill(phinorm);
2555 m_neuroHWInm_time->Fill(neuroinput2dtrack.getTime());
2556 m_neuroHWInInvPt->Fill(neuroinput2dtrack.getPt());
2557 }
2558 if (nofintracks > 0 || nofouttracks > 0) {
2559 m_neuroHWInTrackCount->Fill(nofintracks);
2560 m_neuroHWOutTrackCount->Fill(nofouttracks);
2561 m_neuroHWOutVsInTrackCount->Fill((nofouttracks - nofintracks));
2562 }
2563 for (CDCTriggerSegmentHit& neuroinputsegment : m_unpackedNeuroInputSegments) {
2564 ++nofinsegments;
2565 m_neuroHWInTSID->Fill(neuroinputsegment.getSegmentID());
2566 if (!m_limitedoutput) {
2567 unsigned int sl = neuroinputsegment.getISuperLayer();
2568 switch (sl) {
2569 case 0: m_neuroHWInTSPrioT_Layer0->Fill(neuroinputsegment.priorityTime());
2570 m_neuroHWInTSFoundT_Layer0->Fill(neuroinputsegment.foundTime());
2571 m_neuroHWInTSPrioB_Layer0->Fill(neuroinputsegment.getPriorityPosition());
2572 m_neuroHWInTSLR_Layer0->Fill(neuroinputsegment.getLeftRight());
2573 break;
2574 case 1: m_neuroHWInTSPrioT_Layer1->Fill(neuroinputsegment.priorityTime());
2575 m_neuroHWInTSFoundT_Layer1->Fill(neuroinputsegment.foundTime());
2576 m_neuroHWInTSPrioB_Layer1->Fill(neuroinputsegment.getPriorityPosition());
2577 m_neuroHWInTSLR_Layer1->Fill(neuroinputsegment.getLeftRight());
2578 break;
2579 case 2: m_neuroHWInTSPrioT_Layer2->Fill(neuroinputsegment.priorityTime());
2580 m_neuroHWInTSFoundT_Layer2->Fill(neuroinputsegment.foundTime());
2581 m_neuroHWInTSPrioB_Layer2->Fill(neuroinputsegment.getPriorityPosition());
2582 m_neuroHWInTSLR_Layer2->Fill(neuroinputsegment.getLeftRight());
2583 break;
2584 case 3: m_neuroHWInTSPrioT_Layer3->Fill(neuroinputsegment.priorityTime());
2585 m_neuroHWInTSFoundT_Layer3->Fill(neuroinputsegment.foundTime());
2586 m_neuroHWInTSPrioB_Layer3->Fill(neuroinputsegment.getPriorityPosition());
2587 m_neuroHWInTSLR_Layer3->Fill(neuroinputsegment.getLeftRight());
2588 break;
2589 case 4: m_neuroHWInTSPrioT_Layer4->Fill(neuroinputsegment.priorityTime());
2590 m_neuroHWInTSFoundT_Layer4->Fill(neuroinputsegment.foundTime());
2591 m_neuroHWInTSPrioB_Layer4->Fill(neuroinputsegment.getPriorityPosition());
2592 m_neuroHWInTSLR_Layer4->Fill(neuroinputsegment.getLeftRight());
2593 break;
2594 case 5: m_neuroHWInTSPrioT_Layer5->Fill(neuroinputsegment.priorityTime());
2595 m_neuroHWInTSFoundT_Layer5->Fill(neuroinputsegment.foundTime());
2596 m_neuroHWInTSPrioB_Layer5->Fill(neuroinputsegment.getPriorityPosition());
2597 m_neuroHWInTSLR_Layer5->Fill(neuroinputsegment.getLeftRight());
2598 break;
2599 case 6: m_neuroHWInTSPrioT_Layer6->Fill(neuroinputsegment.priorityTime());
2600 m_neuroHWInTSFoundT_Layer6->Fill(neuroinputsegment.foundTime());
2601 m_neuroHWInTSPrioB_Layer6->Fill(neuroinputsegment.getPriorityPosition());
2602 m_neuroHWInTSLR_Layer6->Fill(neuroinputsegment.getLeftRight());
2603 break;
2604 case 7: m_neuroHWInTSPrioT_Layer7->Fill(neuroinputsegment.priorityTime());
2605 m_neuroHWInTSFoundT_Layer7->Fill(neuroinputsegment.foundTime());
2606 m_neuroHWInTSPrioB_Layer7->Fill(neuroinputsegment.getPriorityPosition());
2607 m_neuroHWInTSLR_Layer7->Fill(neuroinputsegment.getLeftRight());
2608 break;
2609 case 8: m_neuroHWInTSPrioT_Layer8->Fill(neuroinputsegment.priorityTime());
2610 m_neuroHWInTSFoundT_Layer8->Fill(neuroinputsegment.foundTime());
2611 m_neuroHWInTSPrioB_Layer8->Fill(neuroinputsegment.getPriorityPosition());
2612 m_neuroHWInTSLR_Layer8->Fill(neuroinputsegment.getLeftRight());
2613 break;
2614 }
2615 }
2616 }
2617 if (nofinsegments > 0) {
2618 m_neuroHWInTSCount->Fill(nofinsegments);
2619 }
2620 }
2621
2622
2625 for (CDCTriggerTrack& sim2dtrack : m_sim2DTracksSWTS) {
2626 phinorm = sim2dtrack.getPhi0() * 180. / M_PI ;
2627 if (phinorm < 0.) { phinorm = phinorm + 360. ;}
2628 m_2DSWOutPhi0->Fill(phinorm);
2629 m_2DSWOutm_time->Fill(sim2dtrack.getTime());
2630 m_2DSWOutInvPt->Fill(sim2dtrack.getPt());
2631 }
2632 }
2633 if (m_unpacked2DTracksName != "") {
2634 int nof2douttracks = 0;
2635 for (CDCTriggerTrack& finder2dtrack : m_unpacked2DTracks) {
2636 ++nof2douttracks;
2637 phinorm = finder2dtrack.getPhi0() * 180. / M_PI ;
2638 if (phinorm < 0.) {phinorm = phinorm + 360. ;}
2639 m_2DHWOutPhi0->Fill(phinorm);
2640 m_2DHWOutm_time->Fill(finder2dtrack.getTime());
2641 m_2DHWOutInvPt->Fill(finder2dtrack.getPt());
2642 }
2643 if (nof2douttracks > 0) {
2644 m_2DHWOutTrackCount->Fill(nof2douttracks);
2645 if (m_unpackedNeuroTracksName != "") {
2646 m_neuroHWInVs2DOutTrackCount->Fill((nofintracks - nof2douttracks));
2647 }
2648 }
2649
2650 int nof2dinsegments = 0;
2651
2653 ++nof2dinsegments;
2654 if (!m_limitedoutput) {
2655 unsigned int sl = hit.getISuperLayer();
2656 switch (sl) {
2657 case 0: m_2DHWInTSPrioT_Layer0->Fill(hit.priorityTime());
2658 m_2DHWInTSFoundT_Layer0->Fill(hit.foundTime());
2659 m_2DHWInTSPrioB_Layer0->Fill(hit.getPriorityPosition());
2660 m_2DHWInTSLR_Layer0->Fill(hit.getLeftRight());
2661 break;
2662 case 2: m_2DHWInTSPrioT_Layer2->Fill(hit.priorityTime());
2663 m_2DHWInTSFoundT_Layer2->Fill(hit.foundTime());
2664 m_2DHWInTSPrioB_Layer2->Fill(hit.getPriorityPosition());
2665 m_2DHWInTSLR_Layer2->Fill(hit.getLeftRight());
2666 break;
2667 case 4: m_2DHWInTSPrioT_Layer4->Fill(hit.priorityTime());
2668 m_2DHWInTSFoundT_Layer4->Fill(hit.foundTime());
2669 m_2DHWInTSPrioB_Layer4->Fill(hit.getPriorityPosition());
2670 m_2DHWInTSLR_Layer4->Fill(hit.getLeftRight());
2671 break;
2672 case 6: m_2DHWInTSPrioT_Layer6->Fill(hit.priorityTime());
2673 m_2DHWInTSFoundT_Layer6->Fill(hit.foundTime());
2674 m_2DHWInTSPrioB_Layer6->Fill(hit.getPriorityPosition());
2675 m_2DHWInTSLR_Layer6->Fill(hit.getLeftRight());
2676 break;
2677 case 8: m_2DHWInTSPrioT_Layer8->Fill(hit.priorityTime());
2678 m_2DHWInTSFoundT_Layer8->Fill(hit.foundTime());
2679 m_2DHWInTSPrioB_Layer8->Fill(hit.getPriorityPosition());
2680 m_2DHWInTSLR_Layer8->Fill(hit.getLeftRight());
2681 break;
2682 }
2683 }
2684 }
2685 if (nof2dinsegments > 0) {
2686 }
2687 }
2688
2689
2690 // sw TS
2694 m_neuroSWTSSW2DInTSID->Fill(hit.getSegmentID());
2695 unsigned int sl = hit.getISuperLayer();
2696 switch (sl) {
2697 case 0: m_neuroSWTSSW2DInTSPrioT_Layer0->Fill(hit.priorityTime());
2698 m_neuroSWTSSW2DInTSFoundT_Layer0->Fill(hit.foundTime());
2699 m_neuroSWTSSW2DInTSPrioB_Layer0->Fill(hit.getPriorityPosition());
2700 m_neuroSWTSSW2DInTSLR_Layer0->Fill(hit.getLeftRight());
2701 break;
2702 case 1: m_neuroSWTSSW2DInTSPrioT_Layer1->Fill(hit.priorityTime());
2703 m_neuroSWTSSW2DInTSFoundT_Layer1->Fill(hit.foundTime());
2704 m_neuroSWTSSW2DInTSPrioB_Layer1->Fill(hit.getPriorityPosition());
2705 m_neuroSWTSSW2DInTSLR_Layer1->Fill(hit.getLeftRight());
2706 break;
2707 case 2: m_neuroSWTSSW2DInTSPrioT_Layer2->Fill(hit.priorityTime());
2708 m_neuroSWTSSW2DInTSFoundT_Layer2->Fill(hit.foundTime());
2709 m_neuroSWTSSW2DInTSPrioB_Layer2->Fill(hit.getPriorityPosition());
2710 m_neuroSWTSSW2DInTSLR_Layer2->Fill(hit.getLeftRight());
2711 break;
2712 case 3: m_neuroSWTSSW2DInTSPrioT_Layer3->Fill(hit.priorityTime());
2713 m_neuroSWTSSW2DInTSFoundT_Layer3->Fill(hit.foundTime());
2714 m_neuroSWTSSW2DInTSPrioB_Layer3->Fill(hit.getPriorityPosition());
2715 m_neuroSWTSSW2DInTSLR_Layer3->Fill(hit.getLeftRight());
2716 break;
2717 case 4: m_neuroSWTSSW2DInTSPrioT_Layer4->Fill(hit.priorityTime());
2718 m_neuroSWTSSW2DInTSFoundT_Layer4->Fill(hit.foundTime());
2719 m_neuroSWTSSW2DInTSPrioB_Layer4->Fill(hit.getPriorityPosition());
2720 m_neuroSWTSSW2DInTSLR_Layer4->Fill(hit.getLeftRight());
2721 break;
2722 case 5: m_neuroSWTSSW2DInTSPrioT_Layer5->Fill(hit.priorityTime());
2723 m_neuroSWTSSW2DInTSFoundT_Layer5->Fill(hit.foundTime());
2724 m_neuroSWTSSW2DInTSPrioB_Layer5->Fill(hit.getPriorityPosition());
2725 m_neuroSWTSSW2DInTSLR_Layer5->Fill(hit.getLeftRight());
2726 break;
2727 case 6: m_neuroSWTSSW2DInTSPrioT_Layer6->Fill(hit.priorityTime());
2728 m_neuroSWTSSW2DInTSFoundT_Layer6->Fill(hit.foundTime());
2729 m_neuroSWTSSW2DInTSPrioB_Layer6->Fill(hit.getPriorityPosition());
2730 m_neuroSWTSSW2DInTSLR_Layer6->Fill(hit.getLeftRight());
2731 break;
2732 case 7: m_neuroSWTSSW2DInTSPrioT_Layer7->Fill(hit.priorityTime());
2733 m_neuroSWTSSW2DInTSFoundT_Layer7->Fill(hit.foundTime());
2734 m_neuroSWTSSW2DInTSPrioB_Layer7->Fill(hit.getPriorityPosition());
2735 m_neuroSWTSSW2DInTSLR_Layer7->Fill(hit.getLeftRight());
2736 break;
2737 case 8: m_neuroSWTSSW2DInTSPrioT_Layer8->Fill(hit.priorityTime());
2738 m_neuroSWTSSW2DInTSFoundT_Layer8->Fill(hit.foundTime());
2739 m_neuroSWTSSW2DInTSPrioB_Layer8->Fill(hit.getPriorityPosition());
2740 m_neuroSWTSSW2DInTSLR_Layer8->Fill(hit.getLeftRight());
2741 break;
2742 }
2743 }
2744 }
2745
2746 static constexpr std::array<int, 9> nWiresInSuperLayer = {
2747 160, 160, 192, 224, 256, 288, 320, 352, 384
2748 };
2749 unsigned axhwts = 0;
2750 unsigned sthwts = 0;
2751 unsigned axswts = 0;
2752 unsigned stswts = 0;
2753
2754 std::vector<TSLine> hwtsoutput;
2755 std::vector<TSLine> swtsoutput;
2756 if (m_unpackedSegmentHitsName != "") {
2758 if (xhit.getISuperLayer() % 2 == 0) {
2759 axhwts ++;
2760 } else {
2761 sthwts ++;
2762 }
2763 int iSL = xhit.getISuperLayer();
2764 int iTS = xhit.getIWire();
2765 int nwires = nWiresInSuperLayer[ iSL ];
2766 if (iSL == 8) {
2767 iTS += 16;
2768 if (iTS > nwires) {
2769 iTS -= nwires;
2770 }
2771 }
2772 int tsIDInTracker = iTS - nwires * xhit.getQuadrant() / 4;
2773 if (tsIDInTracker < 0) {
2774 tsIDInTracker += nwires;
2775 }
2776 TSLine l(xhit);
2777 l.strline = "("
2778 + padto(std::to_string(xhit.getISuperLayer()), 2) + ", "
2779 + padto(std::to_string(xhit.getQuadrant()), 1) + ", "
2780 + padto(std::to_string(xhit.getSegmentID()), 4) + ", "
2781 + padto(std::to_string(xhit.getIWire()), 5) + ", "
2782 + padto(std::to_string(xhit.getPriorityPosition()), 2) + ", "
2783 + padto(std::to_string(xhit.getLeftRight()), 2) + ", "
2784 + padto(std::to_string(xhit.priorityTime()), 4) + ", "
2785 + padto(std::to_string(xhit.foundTime()), 3) + ", "
2786 + padto(std::to_string(tsIDInTracker), 4) + ") | ";
2787
2788 if (m_unpackedNeuroTracksName != "") {
2789 unsigned count2d = 0;
2791 count2d++;
2792 if (have_relation(track, xhit, m_unpackedNeuroInputSegmentsName)) {
2793 l.strline += std::to_string(count2d);
2794 } else {
2795 l.strline += ".";
2796 }
2797 }
2798 l.strline += " | ";
2799 unsigned counthwn = 0;
2800 for (CDCTriggerTrack& track : m_unpackedNeuroTracks) {
2801 counthwn++;
2802 if (have_relation(track, xhit, m_unpackedNeuroInputSegmentsName)) {
2803 if (track.getValidStereoBit()) {
2804 l.strline += std::to_string(counthwn);
2805 } else {
2806 l.strline += "x";
2807 }
2808 } else {
2809 l.strline += ".";
2810 }
2811 }
2812 l.strline += " | ";
2813 }
2814 if (m_simNeuroTracksName != "") {
2815 unsigned countswn = 0;
2816 for (CDCTriggerTrack& track : m_simNeuroTracks) {
2817 countswn++;
2818 if (have_relation(track, xhit, m_unpackedNeuroInputSegmentsName)) {
2819 l.strline += std::to_string(countswn);
2820 } else {
2821 l.strline += ".";
2822 }
2823 }
2824 l.strline += " | ";
2825 }
2826 if (m_recoTracksName != "") {
2827 unsigned countreco = 0;
2828 for (const auto& track : m_RecoTracks) {
2829 countreco++;
2830 bool related = false;
2831 for (const CDCTriggerSegmentHit& ts : track.getRelationsTo<CDCTriggerSegmentHit>(m_unpackedNeuroInputSegmentsName)) {
2832 if (&ts == &xhit) {related = true;}
2833 }
2834 if (related) {
2835 l.strline += std::to_string(countreco);
2836 } else {
2837 l.strline += ".";
2838 }
2839 }
2840 l.strline += " | ";
2841 }
2842 if (m_unpackedNeuroTracksName != "") {
2844 } else {
2845 hwtsoutput.push_back(l);
2846 }
2847 }
2848 }
2849 std::string axhw = std::to_string(axhwts) + " / " + std::to_string(sthwts);
2850 if (!m_limitedoutput && m_simSegmentHitsName != "") {
2851 for (const CDCTriggerSegmentHit& xhit : m_simSegmentHits) {
2852 if (xhit.getISuperLayer() % 2 == 0) {
2853 axswts ++;
2854 } else {
2855 stswts ++;
2856 }
2857 int iSL = xhit.getISuperLayer();
2858 int iTS = xhit.getIWire();
2859 int nwires = nWiresInSuperLayer[ iSL ];
2860 if (iSL == 8) {
2861 iTS += 16;
2862 if (iTS > nwires) {
2863 iTS -= nwires;
2864 }
2865 }
2866 int tsIDInTracker = iTS - nwires * xhit.getQuadrant() / 4;
2867 if (tsIDInTracker < 0) {
2868 tsIDInTracker += nwires;
2869 }
2870 TSLine l(xhit);
2871 l.strline = "("
2872 + padto(std::to_string(xhit.getISuperLayer()), 2) + ", "
2873 + padto(std::to_string(xhit.getSegmentID()), 4) + ", "
2874 + padto(std::to_string(xhit.getIWire()), 5) + ", "
2875 + padto(std::to_string(xhit.getPriorityPosition()), 2) + ", "
2876 + padto(std::to_string(xhit.getLeftRight()), 2) + ", "
2877 + padto(std::to_string(xhit.priorityTime()), 4) + ", "
2878 + padto(std::to_string(xhit.foundTime()), 3) + ", "
2879 + padto(std::to_string(tsIDInTracker), 4) + ") ";
2880
2881 if (m_sim2DTracksSWTSName != "") {
2882 unsigned count2d = 0;
2883 for (CDCTriggerTrack& track : m_sim2DTracksSWTS) {
2884 count2d++;
2885 if (have_relation(track, xhit, m_simSegmentHitsName)) {
2886 l.strline += std::to_string(count2d);
2887 } else {
2888 l.strline += ".";
2889 }
2890 }
2891 l.strline += " | ";
2892 }
2893 if (m_simNeuroTracksSWTSSW2DName != "") {
2894 unsigned countswn = 0;
2896 countswn++;
2897 if (have_relation(track, xhit, m_simSegmentHitsName)) {
2898 l.strline += std::to_string(countswn);
2899 } else {
2900 l.strline += ".";
2901 }
2902 }
2903 l.strline += " | ";
2904 }
2905 if (m_recoTracksName != "") {
2906 unsigned countreco = 0;
2907 for (const auto& track : m_RecoTracks) {
2908 countreco++;
2909 bool related = false;
2910 for (const CDCTriggerSegmentHit& ts : track.getRelationsTo<CDCTriggerSegmentHit>(m_simSegmentHitsName)) {
2911 if (&ts == &xhit) {related = true;}
2912 }
2913 if (related) {
2914 l.strline += std::to_string(countreco);
2915 } else {
2916 l.strline += ".";
2917 }
2918 }
2919 l.strline += " | ";
2920 }
2921 if (m_simNeuroTracksSWTSSW2DName != "") {
2923 } else {
2924 swtsoutput.push_back(l);
2925 }
2926 }
2927 }
2928 std::string hwtsstring = "(SL, Q, SID , WID , PP, LR, pT , fT , TSID) | HWNNIn2D | HWNeuro | SWNeuro | ";
2929 std::string swtsstring = "(SL, Q, SID , WID , PP, LR, pT , fT , TSID) | SW2D | SWNeuro | ";
2930 if (m_recoTracksName != "") {
2931 hwtsstring += "Reco | ";
2932 swtsstring += "Reco | ";
2933 }
2934 B2DEBUG(10, padright(" ", 100));
2935 B2DEBUG(10, "----------------------------------------------------------------------------------------------------");
2936 B2DEBUG(10, padright(" ", 100));
2937 std::string experimentstring = "Experiment " + std::to_string(eventMetaData->getExperiment()) + " Run " +
2938 std::to_string(eventMetaData->getRun()) + " Event " + std::to_string(eventMetaData->getEvent());
2939 B2DEBUG(10, padright(experimentstring, 100));
2940 B2DEBUG(10, padright(" ", 100));
2941 B2DEBUG(10, padright(" ", 100));
2943 B2DEBUG(10, padright("Number of NN HW TS (Axial/Stereo): ", 40) << padright(axhw, 60));
2944 B2DEBUG(10, padright("Number of HW 2DFinderTracks: ", 40) << padright(std::to_string(m_unpacked2DTracks.getEntries()),
2945 60));
2946 unsigned f2dtrn = 0;
2947 for (CDCTriggerTrack& ltrack : m_unpacked2DTracks) {
2948 f2dtrn++;
2949 std::stringstream strpt;
2950 std::stringstream stromega;
2951 std::stringstream strphi;
2952 strpt << std::fixed << std::setprecision(2) << ltrack.getPt();
2953 stromega << std::fixed << std::setprecision(2) << ltrack.getOmega();
2954 strphi << std::fixed << std::setprecision(2) << (ltrack.getPhi0() * 180. / M_PI);
2955 std::string trs = " HW2DFinderTrack Nr. " + std::to_string(f2dtrn) + " (pt, omega, phi) = ";
2956 trs += padto(strpt.str(), 6) + ", " + padto(stromega.str(), 6) + ", " + padto(strphi.str(), 6) + ")";
2957 B2DEBUG(15, padright(trs, 100));
2958 }
2959 B2DEBUG(10, padright("Number of HW NNInput2DFinderTracks: ",
2960 40) << padright(std::to_string(m_unpackedNeuroInput2DTracks.getEntries()), 60));
2961 unsigned n2dtrn = 0;
2963 n2dtrn++;
2964 std::stringstream strpt;
2965 std::stringstream stromega;
2966 std::stringstream strphi;
2967 strpt << std::fixed << std::setprecision(2) << ltrack.getPt();
2968 stromega << std::fixed << std::setprecision(2) << ltrack.getOmega();
2969 strphi << std::fixed << std::setprecision(2) << (ltrack.getPhi0() * 180. / M_PI);
2970 std::string trs = " HWNeuroInput2DTrack Nr. " + std::to_string(n2dtrn) + " (pt, omega, phi) = ";
2971 trs += padto(strpt.str(), 6) + ", " + padto(stromega.str(), 6) + ", " + padto(strphi.str(), 6) + ", " + ")";
2972 B2DEBUG(15, padright(trs, 100));
2973 }
2974 B2DEBUG(10, padright("Number of HW NeuroTracks: ",
2975 40) << padright(std::to_string(m_unpackedNeuroTracks.getEntries()), 60));
2976 unsigned hwntrn = 0;
2977 for (CDCTriggerTrack& ltrack : m_unpackedNeuroTracks) {
2978 hwntrn++;
2979 std::stringstream strpt;
2980 std::stringstream stromega;
2981 std::stringstream strphi;
2982 std::stringstream strtheta;
2983 std::stringstream strz;
2984 std::stringstream hwomega;
2985 std::stringstream hwphi;
2986 std::stringstream hwtheta;
2987 std::stringstream hwz;
2988 strpt << std::fixed << std::setprecision(2) << ltrack.getPt();
2989 stromega << std::fixed << std::setprecision(2) << ltrack.getOmega();
2990 strphi << std::fixed << std::setprecision(2) << (ltrack.getPhi0() * 180. / M_PI);
2991 strtheta << std::fixed << std::setprecision(2) << (ltrack.getDirection().Theta() * 180. / M_PI);
2992 strz << std::fixed << std::setprecision(2) << ltrack.getZ0();
2993 hwomega << std::fixed << std::setprecision(0) << ltrack.getRawOmega();
2994 hwphi << std::fixed << std::setprecision(0) << ltrack.getRawPhi0();
2995 hwtheta << std::fixed << std::setprecision(0) << ltrack.getRawTheta();
2996 hwz << std::fixed << std::setprecision(0) << ltrack.getRawZ();
2997 std::string trs = " HWNeuroTrack Nr. " + std::to_string(hwntrn) + " (pt,om,phi,theta,z)=(";
2998 trs += padto(strpt.str(), 4) + "," + padto(stromega.str(), 6) + "," + padto(strphi.str(), 6) + "," + padto(strtheta.str(),
2999 6) + "," + padto(strz.str(), 6) + "),(x," + padto(hwomega.str(), 3) + "," + padto(hwphi.str(), 3) + "," + padto(hwtheta.str(),
3000 3) + "," + padto(hwz.str(), 3) + ")";
3001 B2DEBUG(15, padright(trs, 100));
3002 std::string infostr = ", Found old track: ( ";
3003 for (bool x : ltrack.getFoundOldTrack()) {
3004 infostr += std::to_string(x);
3005 }
3006 infostr += "), ";
3007 infostr = padright(infostr, 50);
3008 infostr += "Drift threshold: ( ";
3009 for (bool x : ltrack.getDriftThreshold()) {
3010 infostr += std::to_string(x);
3011 }
3012 infostr += ")";
3013 infostr += (ltrack.getValidStereoBit()) ? " valid" : " NOT valid";
3014 B2DEBUG(15, padright(infostr, 100));
3015 std::string infostr2 = " std. ETF vld:";
3016 infostr2 += std::to_string(m_eventTime.isValid());
3017 infostr2 += ", ETFT0: ";
3018 if (m_eventTime.isValid()) {
3019 infostr2 += std::to_string(m_eventTime->getBinnedEventT0(Const::CDC));
3020 } else {
3021 infostr2 += " ";
3022 }
3023 infostr2 += ", ETF in CC: ";
3024 infostr2 += std::to_string(ltrack.getETF_unpacked());
3025 infostr2 += ", ETF recalculated: ";
3026 infostr2 += std::to_string(ltrack.getETF_recalced());
3027 B2DEBUG(15, padright(infostr2, 100));
3028 std::string info2str = " Expert Network Number: " + std::to_string(ltrack.getExpert());
3029 info2str += ", TSVector: (";
3030 for (unsigned x : ltrack.getTSVector()) {
3031 info2str += std::to_string(x) + " ";
3032 }
3033 info2str += ")";
3034 info2str += ", Quality=";
3035 info2str += std::to_string(ltrack.getQualityVector());
3036 B2DEBUG(15, padright(info2str, 100));
3037 CDCTriggerTrack* ftrack = ltrack.getRelatedFrom<CDCTriggerTrack>(m_unpackedNeuroInput2DTracksName);
3038 CDCTriggerTrack* strack = ftrack->getRelatedTo<CDCTriggerTrack>(m_simNeuroTracksName);
3039 if (strack) {
3040 vector<float> unpackedInput =
3041 ltrack.getRelatedTo<CDCTriggerMLPInput>(m_unpackedNeuroInputVectorName)->getInput();
3042 // vector<float> simInput = ltrack.getRelatedTo<CDCTriggerMLPInput>(m_unpackedNeuroInputVectorName)->getInput();
3043 vector<float> simInput =
3044 strack->getRelatedTo<CDCTriggerMLPInput>(m_simNeuroInputVectorName)->getInput();
3045 B2DEBUG(20, padright(" Input Vector unpacked (id, t, alpha), sim (id, t, alpha), delta (id, t, alpha):", 100));
3046 for (unsigned ii = 0; ii < unpackedInput.size(); ii += 3) {
3047 std::string lla = " " + std::to_string(ii / 3) + ")";
3048 std::string llb = " " + std::to_string(ii / 3) + ")";
3049 lla += "(" + padright(std::to_string(unpackedInput[ii]), 8) + " " + padright(std::to_string(unpackedInput[ii + 1]),
3050 8) + " " + padright(std::to_string(unpackedInput[ii + 2]), 8) + "),(" + padright(std::to_string(simInput[ii]),
3051 8) + " " + padright(std::to_string(simInput[ii + 1]), 8) + " " + padright(std::to_string(simInput[ii + 2]),
3052 8) + "),(" + padright(std::to_string(unpackedInput[ii] - simInput[ii]),
3053 8) + " " + padright(std::to_string(unpackedInput[ii + 1] - simInput[ii + 1]),
3054 8) + " " + padright(std::to_string(unpackedInput[ii + 2] - simInput[ii + 2]), 8) + ")";
3055 llb += " (" + padright(std::to_string(int(unpackedInput[ii] * 4096)),
3056 8) + " " + padright(std::to_string(int(unpackedInput[ii + 1] * 4096)),
3057 8) + " " + padright(std::to_string(int(unpackedInput[ii + 2] * 4096)),
3058 8) + "),(" + padright(std::to_string(int(simInput[ii] * 4096)), 8) + " " + padright(std::to_string(int(simInput[ii + 1] * 4096)),
3059 8) + " " + padright(std::to_string(int(simInput[ii + 2] * 4096)),
3060 8) + "),(" + padright(std::to_string(int(unpackedInput[ii] * 4096 - simInput[ii] * 4096)),
3061 8) + " " + padright(std::to_string(int(unpackedInput[ii + 1] * 4096 - simInput[ii + 1] * 4096)),
3062 8) + " " + padright(std::to_string(int(unpackedInput[ii + 2] * 4096 - simInput[ii + 2] * 4096)), 8) + ")";
3063
3064 // cout << hex;
3065 // cout.setf(ios::showbase);
3066 // cout << " (" << setw(11) << (int)(unpackedInput[ii] * 4096) << ", " << setw(11) << (int)(
3067 // unpackedInput[ii + 1] * 4096) << ", " << setw(11) << (int)(unpackedInput[ii + 2] * 4096) << "), ";
3068 // cout << "(" << setw(11) << (int)(simInput[ii] * 4096) << ", " << setw(11) << (int)(
3069 // simInput[ii + 1] * 4096) << ", " << setw(11) << (int)(simInput[ii + 2] * 4096) << "), ";
3070 // cout << "(" << setw(11) << (int)(unpackedInput[ii] * 4096 - simInput[ii] * 4096) << ", " << setw(11) << (int)(
3071 // unpackedInput[ii + 1] * 4096 - simInput[ii + 1] * 4096) << ", " << setw(11) << (int)(unpackedInput[ii + 2] * 4096 - simInput[ii +
3072 // 2] * 4096) << "), " << endl;
3073 // cout.unsetf(ios::showbase);
3074 // cout << dec;
3075 //std::cout << " (" << simInput[ii] / unpackedInput[ii] << std::endl << ", " << simInput[ii + 1] / unpackedInput[ii + 1] << ", " <<
3076 // simInput[ii + 2] / unpackedInput[ii + 2] << ")" << std::endl;
3077 B2DEBUG(30, padright(lla, 100));
3078 B2DEBUG(20, padright(llb, 100));
3079 }
3080 }
3081 }
3082
3083
3084 }
3085 if (!m_limitedoutput && m_simNeuroTracksName != "") {
3086 B2DEBUG(10, padright("Number of SW NeuroTracks: ", 40) << padright(std::to_string(m_simNeuroTracks.getEntries()), 60));
3087 unsigned swntrn = 0;
3088 for (CDCTriggerTrack& ltrack : m_simNeuroTracks) {
3089 swntrn++;
3090 std::stringstream strpt;
3091 std::stringstream stromega;
3092 std::stringstream strphi;
3093 std::stringstream strtheta;
3094 std::stringstream strz;
3095 std::stringstream strquality;
3096 strpt << std::fixed << std::setprecision(2) << ltrack.getPt();
3097 stromega << std::fixed << std::setprecision(2) << ltrack.getOmega();
3098 strphi << std::fixed << std::setprecision(2) << (ltrack.getPhi0() * 180. / M_PI);
3099 strtheta << std::fixed << std::setprecision(2) << (ltrack.getDirection().Theta() * 180. / M_PI);
3100 strz << std::fixed << std::setprecision(2) << ltrack.getZ0();
3101 strquality << std::fixed << ltrack.getQualityVector();
3102
3103 std::string trs = " SWNeuroTrack Nr. " + std::to_string(swntrn) + " (pt,om,phi,theta,z)=(";
3104 trs += padto(strpt.str(), 5) + "," + padto(stromega.str(), 5) + "," + padto(strphi.str(), 6) + "," + padto(strtheta.str(),
3105 6) + ", " + padto(strz.str(), 6) + ")"
3106 + " Q=" + strquality.str();
3108 B2DEBUG(15, padright(trs, 100));
3109 }
3110 }
3111 if (!m_limitedoutput && m_simSegmentHitsName != "") {
3112 std::string axsw = std::to_string(axswts) + " / " + std::to_string(stswts);
3113 B2DEBUG(10, padright("Number of AllSW TS (Axial/Stereo): ", 40) << padright(axsw, 60));
3115 B2DEBUG(10, padright("Number of SW 2DFinderSWTSTracks: ", 40) << padright(std::to_string(m_sim2DTracksSWTS.getEntries()),
3116 60));
3117 unsigned sf2dtrn = 0;
3118 for (CDCTriggerTrack& ltrack : m_sim2DTracksSWTS) {
3119 sf2dtrn++;
3120 std::stringstream strpt;
3121 std::stringstream stromega;
3122 std::stringstream strphi;
3123 strpt << std::fixed << std::setprecision(2) << ltrack.getPt();
3124 stromega << std::fixed << std::setprecision(2) << ltrack.getOmega();
3125 strphi << std::fixed << std::setprecision(2) << (ltrack.getPhi0() * 180. / M_PI);
3126 std::string trs = " SW2DFinderSWTSTrack Nr. " + std::to_string(sf2dtrn) + " (pt, omega, phi) = ";
3127 trs += padto(strpt.str(), 6) + ", " + padto(stromega.str(), 6) + ", " + padto(strphi.str(), 6) + ")";
3128 B2DEBUG(15, padright(trs, 100));
3129 }
3130 B2DEBUG(10, padright("Number of SW NeuroSWTSSW2DTracks: ",
3131 40) << padright(std::to_string(m_simNeuroTracksSWTSSW2D.getEntries()), 60));
3132 unsigned aswntrn = 0;
3134 aswntrn++;
3135 std::stringstream strpt;
3136 std::stringstream stromega;
3137 std::stringstream strphi;
3138 std::stringstream strtheta;
3139 std::stringstream strz;
3140 strpt << std::fixed << std::setprecision(2) << ltrack.getPt();
3141 stromega << std::fixed << std::setprecision(2) << ltrack.getOmega();
3142 strphi << std::fixed << std::setprecision(2) << (ltrack.getPhi0() * 180. / M_PI);
3143 strtheta << std::fixed << std::setprecision(2) << (ltrack.getDirection().Theta() * 180. / M_PI);
3144 strz << std::fixed << std::setprecision(2) << ltrack.getZ0();
3145 std::string trs = " SWNeuroSWTSSW2DTrack Nr. " + std::to_string(aswntrn) + " (pt, omega, phi, theta, z) = ";
3146 trs += padto(strpt.str(), 6) + ", " + padto(stromega.str(), 6) + ", " + padto(strphi.str(), 6) + ", " + padto(strtheta.str(),
3147 6) + ", " + padto(strz.str(), 6) + ")";
3148 B2DEBUG(15, padright(trs, 100));
3149 vector<float> simInputSWTSSW2D =
3150 ltrack.getRelatedTo<CDCTriggerMLPInput>(m_simNeuroInputVectorSWTSSW2DName)->getInput();
3151 B2DEBUG(20, padright(" Input Vector simulated (id, t, alpha):", 100));
3152 for (unsigned ii = 0; ii < simInputSWTSSW2D.size(); ii += 3) {
3153 std::string lla = " " + std::to_string(ii / 3) + ")";
3154 std::string llb = " " + std::to_string(ii / 3) + ")";
3155 lla += "(" + padright(std::to_string(simInputSWTSSW2D[ii]),
3156 8) + " " + padright(std::to_string(simInputSWTSSW2D[ii + 1]), 8) + " " + padright(std::to_string(simInputSWTSSW2D[ii + 2]),
3157 8) + ")";
3158 llb += " (" + padright(std::to_string(int(simInputSWTSSW2D[ii] * 4096)),
3159 8) + " " + padright(std::to_string(int(simInputSWTSSW2D[ii + 1] * 4096)),
3160 8) + " " + padright(std::to_string(int(simInputSWTSSW2D[ii + 2] * 4096)),
3161 8) + ")";
3162 B2DEBUG(30, padright(lla, 100));
3163 B2DEBUG(20, padright(llb, 100));
3164 }
3165
3166 }
3167 }
3168 }
3169 if (m_recoTracksName != "") {
3170 B2DEBUG(10, padright("Number of RecoTracks: ", 40) << padright(std::to_string(m_RecoTracks.getEntries()), 60));
3171 unsigned recotrn = 0;
3172 for (RecoTrack& ltrack : m_RecoTracks) {
3173 double phi0Target = 0;
3174 double invptTarget = 0;
3175 double thetaTarget = 0;
3176 double zTarget = 0;
3177 double d0Target = 0;
3178 bool foundValidRep = false;
3179 for (genfit::AbsTrackRep* rep : ltrack.getRepresentations()) {
3180 if (!ltrack.wasFitSuccessful(rep))
3181 continue;
3182 // get state (position, momentum etc.) from hit closest to IP and
3183 // extrapolate to z-axis (may throw an exception -> continue to next representation)
3184 try {
3185 genfit::MeasuredStateOnPlane state =
3186 ltrack.getMeasuredStateOnPlaneClosestTo(ROOT::Math::XYZVector(0, 0, 0), rep);
3187 rep->extrapolateToLine(state, TVector3(0, 0, -1000), TVector3(0, 0, 2000));
3188 // TODO check after matching
3189 // // flip tracks if necessary, such that trigger tracks and reco tracks
3190 // // point in the same direction
3191 // if (state.getMom().Dot(m_tracks[itrack]->getDirection()) < 0) {
3192 // state.setPosMom(state.getPos(), -state.getMom());
3193 // state.setChargeSign(-state.getCharge());
3194 // }
3195 // get track parameters
3196 phi0Target = state.getMom().Phi() * 180. / M_PI ;
3197 if (phi0Target < 0.) {phi0Target = phi0Target + 360. ;}
3198 invptTarget = state.getCharge() * state.getMom().Pt();
3199 thetaTarget = acos(state.getMom().CosTheta()) * 180 / M_PI;
3200 zTarget = state.getPos().Z();
3201 d0Target = state.getPos().Perp();
3202 } catch (...) {
3203 continue;
3204 }
3205 // break loop
3206 foundValidRep = true;
3207 break;
3208 }
3209 if (!foundValidRep) {
3210 B2DEBUG(150, "No valid representation found for RecoTrack, skipping.");
3211 continue;
3212 } else {
3213 if (m_maxRecoZDist != -1.0 and abs(zTarget) > m_maxRecoZDist) {
3214 B2DEBUG(150, "RecoTrack not close to IP (maxRecoZDist), zReco = " << zTarget);
3215 continue;
3216 }
3217 if (m_maxRecoD0Dist != -1.0 and abs(d0Target) > m_maxRecoD0Dist) {
3218 B2DEBUG(150, "RecoTrack not close to the z axis (maxRecoD0Dist), d0Reco = " << d0Target);
3219 continue;
3220 }
3221 }
3222 recotrn++;
3223 std::stringstream strpt;
3224 std::stringstream stromega;
3225 std::stringstream strphi;
3226 std::stringstream strtheta;
3227 std::stringstream strz;
3228 strpt << std::fixed << std::setprecision(2) << invptTarget;
3229 stromega << std::fixed << std::setprecision(2) << d0Target;
3230 strphi << std::fixed << std::setprecision(2) << phi0Target;
3231 strtheta << std::fixed << std::setprecision(2) << thetaTarget;
3232 strz << std::fixed << std::setprecision(2) << zTarget;
3233 std::string trs = " RecoTrack Nr. " + std::to_string(recotrn) + " (invpt, d0, phi, theta, z) = ";
3234 trs += padto(strpt.str(), 6) + ", " + padto(stromega.str(), 6) + ", " + padto(strphi.str(), 6) + ", " + padto(strtheta.str(),
3235 6) + ", " + padto(strz.str(), 6) + ")";
3236 B2DEBUG(15, padright(trs, 100));
3237 }
3238 }
3239 B2DEBUG(10, padright(" ", 100));
3240 B2DEBUG(10, padright(" ", 100));
3241 if (m_unpackedSegmentHitsName != "") {
3242 B2DEBUG(15, padright("Detailed information about HW TS ", 100));
3243 B2DEBUG(15, padright(" ", 100));
3244 B2DEBUG(15, padright(hwtsstring, 100));
3245 for (auto x : hwtsoutput) {
3246 B2DEBUG(15, padright(x.strline, 100));
3247 }
3248 B2DEBUG(15, padright(" ", 100));
3249 }
3250 if (!m_limitedoutput && m_simSegmentHitsName != "") {
3251 B2DEBUG(15, padright(" ", 100));
3252 B2DEBUG(15, padright("Detailed information about SW TS ", 100));
3253 B2DEBUG(15, padright(" ", 100));
3254 B2DEBUG(15, padright(swtsstring, 100));
3255 for (auto x : swtsoutput) {
3256 B2DEBUG(15, padright(x.strline, 100));
3257 }
3258 }
3259}
int getBinnedEventT0(const Const::EDetector detector) const
Return the stored binned event t0 for the given detector or 0 if nothing stored.
Class to hold some intermediate information for the monitoring of the neurotrigger.
StoreArray< CDCTriggerSegmentHit > m_unpackedNeuroInputSegments
StoreArray for neuro input Track segments.
StoreArray< CDCTriggerTrack > m_unpackedNeuroInput2DTracks
StoreArray for neuro input 2dfinder tracks.
StoreArray< CDCTriggerTrack > m_unpackedNeuroTracks
StoreArray for neuro tracks from unpacker.
void condFill(TH1F *histo, float value)
Fill a histogram only with non-zero values.
StoreArray< CDCTriggerSegmentHit > m_simSegmentHits
StoreArray for simulated TS hits.
StoreArray< CDCTriggerTrack > m_simNeuroTracks
StoreArray for neuro tracks from TSIM.
std::string m_simNeuroInputVectorName
Name for simulated neuro input vector using HW TS, HW 2D.
StoreArray< CDCTriggerSegmentHit > m_unpackedSegmentHits
StoreArray for TS hits from unpacker.
StoreArray< CDCTriggerTrack > m_sim2DTracksSWTS
StoreArray for simulated 2D finder tracks using simulated TS.
std::string m_simNeuroInputVectorSWTSSW2DName
Name for neuro input vector using simulated TS and simulated 2D.
unsigned getPattern(CDCTriggerTrack *track, std::string hitCollectionName)
get pattern of the track
std::string m_unpackedNeuroInputVectorName
Name for neuro input vector from unpacker.
bool isValidPattern(unsigned pattern)
Validity of the pattern.
StoreObjPtr< BinnedEventT0 > m_eventTime
storeobjpointer for event time
StoreArray< CDCTriggerTrack > m_unpacked2DTracks
StoreArray for 2D finder tracks from unpacker.
StoreArray< RecoTrack > m_RecoTracks
StoreArray for RecoTracks.
StoreArray< CDCTriggerTrack > m_simNeuroTracksSWTSSW2D
StoreArray for neuro tracks using simulated TS and simulated 2D.
Combination of several CDCHits to a track segment hit for the trigger.
short foundTime() const
get time when segment hit was found in trigger clocks
Track created by the CDC trigger.
bool getValidStereoBit() const
returns true, if at least 3 stereo ts were found
void setQualityVector(const unsigned newbits)
setter and getter for the quality vector.
double getPt() const
get the absolute value of the transverse momentum at the perigee assuming d0 = 0
This is the Reconstruction Event-Data Model Track.
Definition: RecoTrack.h:79
RelationVector< TO > getRelationsTo(const std::string &name="", const std::string &namedRelation="") const
Get the relations that point from this object to another store array.
int getEntries() const
Get the number of objects in the array.
Definition: StoreArray.h:216
Type-safe access to single objects in the data store.
Definition: StoreObjPtr.h:96
bool isValid() const
Check whether the object was created.
Definition: StoreObjPtr.h:111
double sqrt(double a)
sqrt for double
Definition: beamHelpers.h:28

◆ exposePythonAPI()

void exposePythonAPI ( )
staticinherited

Exposes methods of the Module class to Python.

Definition at line 325 of file Module.cc.

326{
327 // to avoid confusion between std::arg and boost::python::arg we want a shorthand namespace as well
328 namespace bp = boost::python;
329
330 docstring_options options(true, true, false); //userdef, py sigs, c++ sigs
331
332 void (Module::*setReturnValueInt)(int) = &Module::setReturnValue;
333
334 enum_<Module::EAfterConditionPath>("AfterConditionPath",
335 R"(Determines execution behaviour after a conditional path has been executed:
336
337.. attribute:: END
338
339 End processing of this path after the conditional path. (this is the default for if_value() etc.)
340
341.. attribute:: CONTINUE
342
343 After the conditional path, resume execution after this module.)")
344 .value("END", Module::EAfterConditionPath::c_End)
345 .value("CONTINUE", Module::EAfterConditionPath::c_Continue)
346 ;
347
348 /* Do not change the names of >, <, ... we use them to serialize conditional pathes */
349 enum_<Belle2::ModuleCondition::EConditionOperators>("ConditionOperator")
356 ;
357
358 enum_<Module::EModulePropFlags>("ModulePropFlags",
359 R"(Flags to indicate certain low-level features of modules, see :func:`Module.set_property_flags()`, :func:`Module.has_properties()`. Most useful flags are:
360
361.. attribute:: PARALLELPROCESSINGCERTIFIED
362
363 This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)
364
365.. attribute:: HISTOGRAMMANAGER
366
367 This module is used to manage histograms accumulated by other modules
368
369.. attribute:: TERMINATEINALLPROCESSES
370
371 When using parallel processing, call this module's terminate() function in all processes. This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.
372)")
373 .value("INPUT", Module::EModulePropFlags::c_Input)
374 .value("OUTPUT", Module::EModulePropFlags::c_Output)
375 .value("PARALLELPROCESSINGCERTIFIED", Module::EModulePropFlags::c_ParallelProcessingCertified)
376 .value("HISTOGRAMMANAGER", Module::EModulePropFlags::c_HistogramManager)
377 .value("INTERNALSERIALIZER", Module::EModulePropFlags::c_InternalSerializer)
378 .value("TERMINATEINALLPROCESSES", Module::EModulePropFlags::c_TerminateInAllProcesses)
379 ;
380
381 //Python class definition
382 class_<Module, PyModule> module("Module", R"(
383Base class for Modules.
384
385A module is the smallest building block of the framework.
386A typical event processing chain consists of a Path containing
387modules. By inheriting from this base class, various types of
388modules can be created. To use a module, please refer to
389:func:`Path.add_module()`. A list of modules is available by running
390``basf2 -m`` or ``basf2 -m package``, detailed information on parameters is
391given by e.g. ``basf2 -m RootInput``.
392
393The 'Module Development' section in the manual provides detailed information
394on how to create modules, setting parameters, or using return values/conditions:
395https://xwiki.desy.de/xwiki/rest/p/f4fa4/#HModuleDevelopment
396
397)");
398 module
399 .def("__str__", &Module::getPathString)
400 .def("name", &Module::getName, return_value_policy<copy_const_reference>(),
401 "Returns the name of the module. Can be changed via :func:`set_name() <Module.set_name()>`, use :func:`type() <Module.type()>` for identifying a particular module class.")
402 .def("type", &Module::getType, return_value_policy<copy_const_reference>(),
403 "Returns the type of the module (i.e. class name minus 'Module')")
404 .def("set_name", &Module::setName, args("name"), R"(
405Set custom name, e.g. to distinguish multiple modules of the same type.
406
407>>> path.add_module('EventInfoSetter')
408>>> ro = path.add_module('RootOutput', branchNames=['EventMetaData'])
409>>> ro.set_name('RootOutput_metadata_only')
410>>> print(path)
411[EventInfoSetter -> RootOutput_metadata_only]
412
413)")
414 .def("description", &Module::getDescription, return_value_policy<copy_const_reference>(),
415 "Returns the description of this module.")
416 .def("package", &Module::getPackage, return_value_policy<copy_const_reference>(),
417 "Returns the package this module belongs to.")
418 .def("available_params", &_getParamInfoListPython,
419 "Return list of all module parameters as `ModuleParamInfo` instances")
420 .def("has_properties", &Module::hasProperties, (bp::arg("properties")),
421 R"DOCSTRING(Allows to check if the module has the given properties out of `ModulePropFlags` set.
422
423>>> if module.has_properties(ModulePropFlags.PARALLELPROCESSINGCERTIFIED):
424>>> ...
425
426Parameters:
427 properties (int): bitmask of `ModulePropFlags` to check for.
428)DOCSTRING")
429 .def("set_property_flags", &Module::setPropertyFlags, args("property_mask"),
430 "Set module properties in the form of an OR combination of `ModulePropFlags`.");
431 {
432 // python signature is too crowded, make ourselves
433 docstring_options subOptions(true, false, false); //userdef, py sigs, c++ sigs
434 module
435 .def("if_value", &Module::if_value,
436 (bp::arg("expression"), bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
437 R"DOCSTRING(if_value(expression, condition_path, after_condition_path=AfterConditionPath.END)
438
439Sets a conditional sub path which will be executed after this
440module if the return value set in the module passes the given ``expression``.
441
442Modules can define a return value (int or bool) using ``setReturnValue()``,
443which can be used in the steering file to split the Path based on this value, for example
444
445>>> module_with_condition.if_value("<1", another_path)
446
447In case the return value of the ``module_with_condition`` for a given event is
448less than 1, the execution will be diverted into ``another_path`` for this event.
449
450You could for example set a special return value if an error occurs, and divert
451the execution into a path containing :b2:mod:`RootOutput` if it is found;
452saving only the data producing/produced by the error.
453
454After a conditional path has executed, basf2 will by default stop processing
455the path for this event. This behaviour can be changed by setting the
456``after_condition_path`` argument.
457
458Parameters:
459 expression (str): Expression to determine if the conditional path should be executed.
460 This should be one of the comparison operators ``<``, ``>``, ``<=``,
461 ``>=``, ``==``, or ``!=`` followed by a numerical value for the return value
462 condition_path (Path): path to execute in case the expression is fulfilled
463 after_condition_path (AfterConditionPath): What to do once the ``condition_path`` has been executed.
464)DOCSTRING")
465 .def("if_false", &Module::if_false,
466 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
467 R"DOC(if_false(condition_path, after_condition_path=AfterConditionPath.END)
468
469Sets a conditional sub path which will be executed after this module if
470the return value of the module evaluates to False. This is equivalent to
471calling `if_value` with ``expression=\"<1\"``)DOC")
472 .def("if_true", &Module::if_true,
473 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
474 R"DOC(if_true(condition_path, after_condition_path=AfterConditionPath.END)
475
476Sets a conditional sub path which will be executed after this module if
477the return value of the module evaluates to True. It is equivalent to
478calling `if_value` with ``expression=\">=1\"``)DOC");
479 }
480 module
481 .def("has_condition", &Module::hasCondition,
482 "Return true if a conditional path has been set for this module "
483 "using `if_value`, `if_true` or `if_false`")
484 .def("get_all_condition_paths", &_getAllConditionPathsPython,
485 "Return a list of all conditional paths set for this module using "
486 "`if_value`, `if_true` or `if_false`")
487 .def("get_all_conditions", &_getAllConditionsPython,
488 "Return a list of all conditional path expressions set for this module using "
489 "`if_value`, `if_true` or `if_false`")
490 .add_property("logging", make_function(&Module::getLogConfig, return_value_policy<reference_existing_object>()),
@ c_GE
Greater or equal than: ">=".
@ c_SE
Smaller or equal than: "<=".
@ c_GT
Greater than: ">"
@ c_NE
Not equal: "!=".
@ c_EQ
Equal: "=" or "=="
@ c_ST
Smaller than: "<"
Base class for Modules.
Definition: Module.h:72
LogConfig & getLogConfig()
Returns the log system configuration.
Definition: Module.h:225
void if_value(const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
Add a condition to the module.
Definition: Module.cc:79
void if_true(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to set the condition of the module.
Definition: Module.cc:90
void setReturnValue(int value)
Sets the return value for this module as integer.
Definition: Module.cc:220
void setLogConfig(const LogConfig &logConfig)
Set the log system configuration.
Definition: Module.h:230
const std::string & getDescription() const
Returns the description of the module.
Definition: Module.h:202
void if_false(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to add a condition to the module.
Definition: Module.cc:85
bool hasCondition() const
Returns true if at least one condition was set for the module.
Definition: Module.h:311
const std::string & getPackage() const
Returns the package this module is in.
Definition: Module.h:197
void setName(const std::string &name)
Set the name of the module.
Definition: Module.h:214
bool hasProperties(unsigned int propertyFlags) const
Returns true if all specified property flags are available in this module.
Definition: Module.cc:160
std::string getPathString() const override
return the module name.
Definition: Module.cc:192

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 133 of file Module.cc.

134{
135 if (m_conditions.empty()) return EAfterConditionPath::c_End;
136
137 //okay, a condition was set for this Module...
138 if (!m_hasReturnValue) {
139 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
140 }
141
142 for (const auto& condition : m_conditions) {
143 if (condition.evaluate(m_returnValue)) {
144 return condition.getAfterConditionPath();
145 }
146 }
147
148 return EAfterConditionPath::c_End;
149}

◆ getAllConditionPaths()

std::vector< std::shared_ptr< Path > > getAllConditionPaths ( ) const
inherited

Return all condition paths currently set (no matter if the condition is true or not).

Definition at line 150 of file Module.cc.

151{
152 std::vector<std::shared_ptr<Path>> allConditionPaths;
153 for (const auto& condition : m_conditions) {
154 allConditionPaths.push_back(condition.getPath());
155 }
156
157 return allConditionPaths;
158}

◆ getAllConditions()

const std::vector< ModuleCondition > & getAllConditions ( ) const
inlineinherited

Return all set conditions for this module.

Definition at line 324 of file Module.h.

325 {
326 return m_conditions;
327 }

◆ getCondition()

const ModuleCondition * getCondition ( ) const
inlineinherited

Return a pointer to the first condition (or nullptr, if none was set)

Definition at line 314 of file Module.h.

315 {
316 if (m_conditions.empty()) {
317 return nullptr;
318 } else {
319 return &m_conditions.front();
320 }
321 }

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 113 of file Module.cc.

114{
115 PathPtr p;
116 if (m_conditions.empty()) return p;
117
118 //okay, a condition was set for this Module...
119 if (!m_hasReturnValue) {
120 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
121 }
122
123 for (const auto& condition : m_conditions) {
124 if (condition.evaluate(m_returnValue)) {
125 return condition.getPath();
126 }
127 }
128
129 // if none of the conditions were true, return a null pointer.
130 return p;
131}
std::shared_ptr< Path > PathPtr
Defines a pointer to a path object as a boost shared pointer.
Definition: Path.h:35

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Returns the description of the module.

Definition at line 202 of file Module.h.

202{return m_description;}
std::string m_description
The description of the module.
Definition: Module.h:511

◆ getFileNames()

virtual std::vector< std::string > getFileNames ( bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Reimplemented in RootInputModule, StorageRootOutputModule, and RootOutputModule.

Definition at line 134 of file Module.h.

135 {
136 return std::vector<std::string>();
137 }

◆ getLogConfig()

LogConfig & getLogConfig ( )
inlineinherited

Returns the log system configuration.

Definition at line 225 of file Module.h.

225{return m_logConfig;}

◆ getModules()

std::list< ModulePtr > getModules ( ) const
inlineoverrideprivatevirtualinherited

no submodules, return empty list

Implements PathElement.

Definition at line 506 of file Module.h.

506{ return std::list<ModulePtr>(); }

◆ getName()

const std::string & getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 187 of file Module.h.

187{return m_name;}
std::string m_name
The name of the module, saved as a string (user-modifiable)
Definition: Module.h:508

◆ getPackage()

const std::string & getPackage ( ) const
inlineinherited

Returns the package this module is in.

Definition at line 197 of file Module.h.

197{return m_package;}

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 279 of file Module.cc.

280{
282}
std::shared_ptr< boost::python::list > getParamInfoListPython() const
Returns a python list of all parameters.
ModuleParamList m_moduleParamList
List storing and managing all parameter of the module.
Definition: Module.h:516

◆ getParamList()

const ModuleParamList & getParamList ( ) const
inlineinherited

Return module param list.

Definition at line 363 of file Module.h.

363{ return m_moduleParamList; }

◆ getPathString()

std::string getPathString ( ) const
overrideprivatevirtualinherited

return the module name.

Implements PathElement.

Definition at line 192 of file Module.cc.

193{
194
195 std::string output = getName();
196
197 for (const auto& condition : m_conditions) {
198 output += condition.getString();
199 }
200
201 return output;
202}

◆ getPattern()

unsigned getPattern ( CDCTriggerTrack track,
std::string  hitCollectionName 
)
inlineprivate

get pattern of the track

Definition at line 72 of file CDCTriggerNeuroDQMModule.h.

73 {
74 unsigned pattern = 0;
75 for (const CDCTriggerSegmentHit& hit : track->getRelationsTo<CDCTriggerSegmentHit>(hitCollectionName)) {
76 unsigned sl = hit.getISuperLayer();
77 if (sl % 2 == 1) pattern |= (1 << ((sl - 1) / 2));
78 }
79 return pattern;
80 }

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 381 of file Module.h.

381{ return m_returnValue; }

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 41 of file Module.cc.

42{
43 if (m_type.empty())
44 B2FATAL("Module type not set for " << getName());
45 return m_type;
46}
std::string m_type
The type of the module, saved as a string.
Definition: Module.h:509

◆ hasCondition()

bool hasCondition ( ) const
inlineinherited

Returns true if at least one condition was set for the module.

Definition at line 311 of file Module.h.

311{ return not m_conditions.empty(); };

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 160 of file Module.cc.

161{
162 return (propertyFlags & m_propertyFlags) == propertyFlags;
163}

◆ hasReturnValue()

bool hasReturnValue ( ) const
inlineinherited

Return true if this module has a valid return value set.

Definition at line 378 of file Module.h.

378{ return m_hasReturnValue; }

◆ hasUnsetForcedParams()

bool hasUnsetForcedParams ( ) const
inherited

Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.

Definition at line 166 of file Module.cc.

167{
169 std::string allMissing = "";
170 for (const auto& s : missing)
171 allMissing += s + " ";
172 if (!missing.empty())
173 B2ERROR("The following required parameters of Module '" << getName() << "' were not specified: " << allMissing <<
174 "\nPlease add them to your steering file.");
175 return !missing.empty();
176}
std::vector< std::string > getUnsetForcedParams() const
Returns list of unset parameters (if they are required to have a value.

◆ have_relation()

bool have_relation ( const CDCTriggerTrack track,
const CDCTriggerSegmentHit hit,
std::string &  arrayname 
)
inlineprivate

Definition at line 109 of file CDCTriggerNeuroDQMModule.h.

110 {
111 bool related = false;
112 for (const CDCTriggerSegmentHit& ts : track.getRelationsTo<CDCTriggerSegmentHit>(arrayname)) {
113 if (&ts == &hit) {related = true;}
114 }
115 return related;
116 }

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 85 of file Module.cc.

86{
87 if_value("<1", path, afterConditionPath);
88}

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 90 of file Module.cc.

91{
92 if_value(">=1", path, afterConditionPath);
93}

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://xwiki.desy.de/xwiki/rest/p/a94f2 or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 79 of file Module.cc.

80{
81 m_conditions.emplace_back(expression, path, afterConditionPath);
82}

◆ initialize()

void initialize ( void  )
overridevirtual

Module functions.

Reimplemented from HistoModule.

Definition at line 1263 of file CDCTriggerNeuroDQMModule.cc.

1264{
1265 // Register histograms (calls back defineHisto)
1266 REG_HISTOGRAM
1267 m_eventTime.isRequired("CDCTriggerNeuroETFT0");
1268 if (m_showRecoTracks && m_recoTracksName == "") {
1269 m_recoTracksName = "RecoTracks";
1270 }
1271 if (m_unpackedSegmentHitsName != "") {
1273 }
1274 if (m_unpacked2DTracksName != "") {
1276 }
1277 if (m_unpackedNeuroTracksName != "") {
1286 }
1287
1288 if (!m_limitedoutput && m_simNeuroTracksName != "") {
1295 }
1305 }
1306 if (m_recoTracksName != "") {
1307 m_RecoTracks.isRequired("RecoTracks");
1309 }
1310 if (!m_limitedoutput && m_recoTracksName != "" && m_simNeuroTracksName != "") {
1312 }
1315 }
1316}
StoreArray< CDCTriggerMLPInput > m_simNeuroInputVector
StoreArray for neuro input vector from TSIM.
StoreArray< CDCTriggerMLPInput > m_unpackedNeuroInputVector
StoreArray for neuro input vector from unpacker.
StoreArray< CDCTriggerMLPInput > m_simNeuroInputVectorSWTSSW2D
StoreArray for neuro input vector using simulated TS and simulated 2D.
bool isRequired(const std::string &name="")
Ensure this array/object has been registered previously.
bool requireRelationTo(const StoreArray< TO > &toArray, DataStore::EDurability durability=DataStore::c_Event, const std::string &namedRelation="") const
Produce error if no relation from this array to 'toArray' has been registered.
Definition: StoreArray.h:155

◆ isValidPattern()

bool isValidPattern ( unsigned  pattern)
inlineprivate

Validity of the pattern.

Definition at line 82 of file CDCTriggerNeuroDQMModule.h.

83 {
84 bool valid = false;
85 switch (pattern) {
86 case 7:
87 case 11:
88 case 13:
89 case 14:
90 case 15:
91 valid = true;
92 }
93 return valid;
94 }

◆ padright()

std::string padright ( std::string  s,
unsigned  l 
)
inlineprivate

Definition at line 102 of file CDCTriggerNeuroDQMModule.h.

103 {
104 if (s.size() < l) {
105 s.insert(s.end(), l - s.size(), ' ');
106 }
107 return s;
108 }

◆ padto()

std::string padto ( std::string  s,
unsigned  l 
)
inlineprivate

Definition at line 95 of file CDCTriggerNeuroDQMModule.h.

96 {
97 if (s.size() < l) {
98 s.insert(s.begin(), l - s.size(), ' ');
99 }
100 return s;
101 }

◆ setAbortLevel()

void setAbortLevel ( int  abortLevel)
inherited

Configure the abort log level.

Definition at line 67 of file Module.cc.

68{
69 m_logConfig.setAbortLevel(static_cast<LogConfig::ELogLevel>(abortLevel));
70}
ELogLevel
Definition of the supported log levels.
Definition: LogConfig.h:26
void setAbortLevel(ELogLevel abortLevel)
Configure the abort level.
Definition: LogConfig.h:112

◆ setDebugLevel()

void setDebugLevel ( int  debugLevel)
inherited

Configure the debug messaging level.

Definition at line 61 of file Module.cc.

62{
63 m_logConfig.setDebugLevel(debugLevel);
64}
void setDebugLevel(int debugLevel)
Configure the debug messaging level.
Definition: LogConfig.h:98

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 214 of file Module.cc.

215{
216 m_description = description;
217}

◆ setLogConfig()

void setLogConfig ( const LogConfig logConfig)
inlineinherited

Set the log system configuration.

Definition at line 230 of file Module.h.

230{m_logConfig = logConfig;}

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 73 of file Module.cc.

74{
75 m_logConfig.setLogInfo(static_cast<LogConfig::ELogLevel>(logLevel), logInfo);
76}
void setLogInfo(ELogLevel logLevel, unsigned int logInfo)
Configure the printed log information for the given level.
Definition: LogConfig.h:127

◆ setLogLevel()

void setLogLevel ( int  logLevel)
inherited

Configure the log level.

Definition at line 55 of file Module.cc.

56{
57 m_logConfig.setLogLevel(static_cast<LogConfig::ELogLevel>(logLevel));
58}
void setLogLevel(ELogLevel logLevel)
Configure the log level.
Definition: LogConfig.cc:25

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 214 of file Module.h.

214{ m_name = name; };

◆ setParamList()

void setParamList ( const ModuleParamList params)
inlineprotectedinherited

Replace existing parameter list.

Definition at line 501 of file Module.h.

501{ m_moduleParamList = params; }

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 234 of file Module.cc.

235{
236 LogSystem& logSystem = LogSystem::Instance();
237 logSystem.updateModule(&(getLogConfig()), getName());
238 try {
240 } catch (std::runtime_error& e) {
241 throw std::runtime_error("Cannot set parameter '" + name + "' for module '"
242 + m_name + "': " + e.what());
243 }
244
245 logSystem.updateModule(nullptr);
246}
Class for logging debug, info and error messages.
Definition: LogSystem.h:46
void updateModule(const LogConfig *moduleLogConfig=nullptr, const std::string &moduleName="")
Sets the log configuration to the given module log configuration and sets the module name This method...
Definition: LogSystem.h:191
static LogSystem & Instance()
Static method to get a reference to the LogSystem instance.
Definition: LogSystem.cc:31
void setParamPython(const std::string &name, const PythonObject &pyObj)
Implements a method for setting boost::python objects.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 249 of file Module.cc.

250{
251
252 LogSystem& logSystem = LogSystem::Instance();
253 logSystem.updateModule(&(getLogConfig()), getName());
254
255 boost::python::list dictKeys = dictionary.keys();
256 int nKey = boost::python::len(dictKeys);
257
258 //Loop over all keys in the dictionary
259 for (int iKey = 0; iKey < nKey; ++iKey) {
260 boost::python::object currKey = dictKeys[iKey];
261 boost::python::extract<std::string> keyProxy(currKey);
262
263 if (keyProxy.check()) {
264 const boost::python::object& currValue = dictionary[currKey];
265 setParamPython(keyProxy, currValue);
266 } else {
267 B2ERROR("Setting the module parameters from a python dictionary: invalid key in dictionary!");
268 }
269 }
270
271 logSystem.updateModule(nullptr);
272}
void setParamPython(const std::string &name, const boost::python::object &pyObj)
Implements a method for setting boost::python objects.
Definition: Module.cc:234

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 208 of file Module.cc.

209{
210 m_propertyFlags = propertyFlags;
211}

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 227 of file Module.cc.

228{
229 m_hasReturnValue = true;
230 m_returnValue = value;
231}

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 220 of file Module.cc.

221{
222 m_hasReturnValue = true;
223 m_returnValue = value;
224}

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 48 of file Module.cc.

49{
50 if (!m_type.empty())
51 B2FATAL("Trying to change module type from " << m_type << " is not allowed, the value is assumed to be fixed.");
52 m_type = type;
53}

◆ sorted_insert()

void sorted_insert ( TSLines &  lines,
TSLine line,
std::string &  arrayname,
std::string &  firstsortarray,
std::string &  secondsortarray 
)
inlineprivate

Definition at line 117 of file CDCTriggerNeuroDQMModule.h.

118 {
119 bool inserted = false;
120 bool related = false;
121 TSLines::iterator it = lines.begin();
122 for (const CDCTriggerTrack& track : line.hit->getRelationsFrom<CDCTriggerTrack>(firstsortarray)) {
123 if (!inserted) {
124 for (TSLines::iterator i = lines.begin(); i < lines.end(); ++i) {
125 if (i->hit->getISuperLayer() % 2 != line.hit->getISuperLayer() % 2) {
126 continue;
127 }
128 if (have_relation(track, *(i->hit), arrayname)) {
129 it = i;
130 related = true;
131 if (i->hit->getSegmentID() > line.hit->getSegmentID()) {
132 inserted = true;
133 break;
134 }
135 }
136 }
137 } else { break; }
138 }
139 if (related) {
140 if (!inserted) {++it; }
141 lines.insert(it, line);
142 } else {
143 for (const CDCTriggerTrack& track : line.hit->getRelationsFrom<CDCTriggerTrack>(secondsortarray)) {
144 if (!inserted) {
145 for (TSLines::iterator i = it; i < lines.end(); ++i) {
146 if (i->hit->getISuperLayer() % 2 != line.hit->getISuperLayer() % 2) {
147 continue;
148 }
149 if (have_relation(track, *(i->hit), arrayname)) {
150 it = i;
151 related = true;
152 if (i->hit->getSegmentID() > line.hit->getSegmentID()) {
153 inserted = true;
154 break;
155 }
156 }
157 }
158 } else { break; }
159 }
160 if (related) {
161 if (!inserted) {++it; }
162 lines.insert(it, line);
163 } else {
164 lines.push_back(line);
165 }
166 }
167 }

◆ terminate()

void terminate ( void  )
overridevirtual

Function to terminate module.

Reimplemented from HistoModule.

Definition at line 3267 of file CDCTriggerNeuroDQMModule.cc.

3268{
3269}

Member Data Documentation

◆ m_2DHWInTSFoundT_Layer0

TH1F* m_2DHWInTSFoundT_Layer0 = nullptr
private

Found time of 2D track segments in layer 0.

Definition at line 423 of file CDCTriggerNeuroDQMModule.h.

◆ m_2DHWInTSFoundT_Layer2

TH1F* m_2DHWInTSFoundT_Layer2 = nullptr
private

Found time of 2D track segments in layer 2.

Definition at line 424 of file CDCTriggerNeuroDQMModule.h.

◆ m_2DHWInTSFoundT_Layer4

TH1F* m_2DHWInTSFoundT_Layer4 = nullptr
private

Found time of 2D track segments in layer 4.

Definition at line 425 of file CDCTriggerNeuroDQMModule.h.

◆ m_2DHWInTSFoundT_Layer6

TH1F* m_2DHWInTSFoundT_Layer6 = nullptr
private

Found time of 2D track segments in layer 6.

Definition at line 426 of file CDCTriggerNeuroDQMModule.h.

◆ m_2DHWInTSFoundT_Layer8

TH1F* m_2DHWInTSFoundT_Layer8 = nullptr
private

Found time of 2D track segments in layer 8.

Definition at line 427 of file CDCTriggerNeuroDQMModule.h.

◆ m_2DHWInTSLR_Layer0

TH1F* m_2DHWInTSLR_Layer0 = nullptr
private

Left/Right of 2D track segments in layer 0.

Definition at line 434 of file CDCTriggerNeuroDQMModule.h.

◆ m_2DHWInTSLR_Layer2

TH1F* m_2DHWInTSLR_Layer2 = nullptr
private

Left/Right of 2D track segments in layer 2.

Definition at line 435 of file CDCTriggerNeuroDQMModule.h.

◆ m_2DHWInTSLR_Layer4

TH1F* m_2DHWInTSLR_Layer4 = nullptr
private

Left/Right of 2D track segments in layer 4.

Definition at line 436 of file CDCTriggerNeuroDQMModule.h.

◆ m_2DHWInTSLR_Layer6

TH1F* m_2DHWInTSLR_Layer6 = nullptr
private

Left/Right of 2D track segments in layer 6.

Definition at line 437 of file CDCTriggerNeuroDQMModule.h.

◆ m_2DHWInTSLR_Layer8

TH1F* m_2DHWInTSLR_Layer8 = nullptr
private

Left/Right of 2D track segments in layer 8.

Definition at line 438 of file CDCTriggerNeuroDQMModule.h.

◆ m_2DHWInTSPrioB_Layer0

TH1F* m_2DHWInTSPrioB_Layer0 = nullptr
private

Priority bits of 2D track segments in layer 0.

Definition at line 429 of file CDCTriggerNeuroDQMModule.h.

◆ m_2DHWInTSPrioB_Layer2

TH1F* m_2DHWInTSPrioB_Layer2 = nullptr
private

Priority bits of 2D track segments in layer 2.

Definition at line 430 of file CDCTriggerNeuroDQMModule.h.

◆ m_2DHWInTSPrioB_Layer4

TH1F* m_2DHWInTSPrioB_Layer4 = nullptr
private

Priority bits of 2D track segments in layer 4.

Definition at line 431 of file CDCTriggerNeuroDQMModule.h.

◆ m_2DHWInTSPrioB_Layer6

TH1F* m_2DHWInTSPrioB_Layer6 = nullptr
private

Priority bits of 2D track segments in layer 6.

Definition at line 432 of file CDCTriggerNeuroDQMModule.h.

◆ m_2DHWInTSPrioB_Layer8

TH1F* m_2DHWInTSPrioB_Layer8 = nullptr
private

Priority bits of 2D track segments in layer 8.

Definition at line 433 of file CDCTriggerNeuroDQMModule.h.

◆ m_2DHWInTSPrioT_Layer0

TH1F* m_2DHWInTSPrioT_Layer0 = nullptr
private

Priority time of 2D track segments in layer 0.

Definition at line 418 of file CDCTriggerNeuroDQMModule.h.

◆ m_2DHWInTSPrioT_Layer2

TH1F* m_2DHWInTSPrioT_Layer2 = nullptr
private

Priority time of 2D track segments in layer 2.

Definition at line 419 of file CDCTriggerNeuroDQMModule.h.

◆ m_2DHWInTSPrioT_Layer4

TH1F* m_2DHWInTSPrioT_Layer4 = nullptr
private

Priority time of 2D track segments in layer 4.

Definition at line 420 of file CDCTriggerNeuroDQMModule.h.

◆ m_2DHWInTSPrioT_Layer6

TH1F* m_2DHWInTSPrioT_Layer6 = nullptr
private

Priority time of 2D track segments in layer 6.

Definition at line 421 of file CDCTriggerNeuroDQMModule.h.

◆ m_2DHWInTSPrioT_Layer8

TH1F* m_2DHWInTSPrioT_Layer8 = nullptr
private

Priority time of 2D track segments in layer 8.

Definition at line 422 of file CDCTriggerNeuroDQMModule.h.

◆ m_2DHWOutInvPt

TH1F* m_2DHWOutInvPt = nullptr
private

Inverse Pt of 2dtracks.

Definition at line 264 of file CDCTriggerNeuroDQMModule.h.

◆ m_2DHWOutm_time

TH1F* m_2DHWOutm_time = nullptr
private

m_time 2dtracks

Definition at line 266 of file CDCTriggerNeuroDQMModule.h.

◆ m_2DHWOutPhi0

TH1F* m_2DHWOutPhi0 = nullptr
private

Phi0 of 2dtracks.

Definition at line 265 of file CDCTriggerNeuroDQMModule.h.

◆ m_2DHWOutTrackCount

TH1F* m_2DHWOutTrackCount = nullptr
private

number of 2dtracks per event

Definition at line 267 of file CDCTriggerNeuroDQMModule.h.

◆ m_2DSWOutInvPt

TH1F* m_2DSWOutInvPt = nullptr
private

Inverse Pt of 2dtracks (sw TS sw 2D)

Definition at line 280 of file CDCTriggerNeuroDQMModule.h.

◆ m_2DSWOutm_time

TH1F* m_2DSWOutm_time = nullptr
private

m_time 2dtracks (sw TS sw 2D)

Definition at line 282 of file CDCTriggerNeuroDQMModule.h.

◆ m_2DSWOutPhi0

TH1F* m_2DSWOutPhi0 = nullptr
private

Phi0 of 2dtracks (sw TS sw 2D)

Definition at line 281 of file CDCTriggerNeuroDQMModule.h.

◆ m_2DSWOutTrackCount

TH1F* m_2DSWOutTrackCount = nullptr
private

number of 2dtracks per event (sw TS sw 2D)

Definition at line 283 of file CDCTriggerNeuroDQMModule.h.

◆ m_conditions

std::vector<ModuleCondition> m_conditions
privateinherited

Module condition, only non-null if set.

Definition at line 521 of file Module.h.

◆ m_DeltaRecoHWCosTheta

TH1F* m_DeltaRecoHWCosTheta = nullptr
private

matched to HW reconstructed cos(theta)

Definition at line 685 of file CDCTriggerNeuroDQMModule.h.

◆ m_DeltaRecoHWInvPt

TH1F* m_DeltaRecoHWInvPt = nullptr
private

matched to HW reconstructed inverse Pt

Definition at line 686 of file CDCTriggerNeuroDQMModule.h.

◆ m_DeltaRecoHWPhi

TH1F* m_DeltaRecoHWPhi = nullptr
private

matched to HW reconstructed phi

Definition at line 687 of file CDCTriggerNeuroDQMModule.h.

◆ m_DeltaRecoHWZ

TH1F* m_DeltaRecoHWZ = nullptr
private

matched to HW reconstructed z

Definition at line 684 of file CDCTriggerNeuroDQMModule.h.

◆ m_DeltaRecoSWCosTheta

TH1F* m_DeltaRecoSWCosTheta = nullptr
private

matched to SW reconstructed cos(theta)

Definition at line 708 of file CDCTriggerNeuroDQMModule.h.

◆ m_DeltaRecoSWInvPt

TH1F* m_DeltaRecoSWInvPt = nullptr
private

matched to SW reconstructed inverse Pt

Definition at line 709 of file CDCTriggerNeuroDQMModule.h.

◆ m_DeltaRecoSWPhi

TH1F* m_DeltaRecoSWPhi = nullptr
private

matched to SW reconstructed phi

Definition at line 710 of file CDCTriggerNeuroDQMModule.h.

◆ m_DeltaRecoSWTSSW2DCosTheta

TH1F* m_DeltaRecoSWTSSW2DCosTheta = nullptr
private

matched to SWTSSW2DSWNN reconstructed cos(theta)

Definition at line 732 of file CDCTriggerNeuroDQMModule.h.

◆ m_DeltaRecoSWTSSW2DInvPt

TH1F* m_DeltaRecoSWTSSW2DInvPt = nullptr
private

matched to SWTSSW2DSWNN reconstructed inverse Pt

Definition at line 733 of file CDCTriggerNeuroDQMModule.h.

◆ m_DeltaRecoSWTSSW2DPhi

TH1F* m_DeltaRecoSWTSSW2DPhi = nullptr
private

matched to SWTSSW2DSWNN reconstructed phi

Definition at line 734 of file CDCTriggerNeuroDQMModule.h.

◆ m_DeltaRecoSWTSSW2DZ

TH1F* m_DeltaRecoSWTSSW2DZ = nullptr
private

matched to SWTSSW2DSWNN reconstructed z

Definition at line 731 of file CDCTriggerNeuroDQMModule.h.

◆ m_DeltaRecoSWZ

TH1F* m_DeltaRecoSWZ = nullptr
private

matched to SW reconstructed z

Definition at line 707 of file CDCTriggerNeuroDQMModule.h.

◆ m_description

std::string m_description
privateinherited

The description of the module.

Definition at line 511 of file Module.h.

◆ m_eventTime

StoreObjPtr<BinnedEventT0> m_eventTime
private

storeobjpointer for event time

Definition at line 246 of file CDCTriggerNeuroDQMModule.h.

◆ m_hasReturnValue

bool m_hasReturnValue
privateinherited

True, if the return value is set.

Definition at line 518 of file Module.h.

◆ m_histogramDirectoryName

std::string m_histogramDirectoryName
private

Name of the histogram directory in ROOT file.

Definition at line 169 of file CDCTriggerNeuroDQMModule.h.

◆ m_limitedoutput

bool m_limitedoutput
private

Switch to supress output for dqm online module.

Definition at line 171 of file CDCTriggerNeuroDQMModule.h.

◆ m_logConfig

LogConfig m_logConfig
privateinherited

The log system configuration of the module.

Definition at line 514 of file Module.h.

◆ m_maxRecoD0Dist

double m_maxRecoD0Dist
private

Select only RecoTracks with a maximum d0 distance to the z axis.

-1 for all tracks

Definition at line 202 of file CDCTriggerNeuroDQMModule.h.

◆ m_maxRecoZDist

double m_maxRecoZDist
private

Select only RecoTracks with a maximum z distance to the IP.

-1 for all tracks

Definition at line 200 of file CDCTriggerNeuroDQMModule.h.

◆ m_moduleParamList

ModuleParamList m_moduleParamList
privateinherited

List storing and managing all parameter of the module.

Definition at line 516 of file Module.h.

◆ m_name

std::string m_name
privateinherited

The name of the module, saved as a string (user-modifiable)

Definition at line 508 of file Module.h.

◆ m_neuroDeltaInputAlpha

TH1F* m_neuroDeltaInputAlpha = nullptr
private

unpacked alpha input - TSIM alpha input

Definition at line 302 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroDeltaInputID

TH1F* m_neuroDeltaInputID = nullptr
private

unpacked ID input - TSIM ID input

Definition at line 300 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroDeltaInputT

TH1F* m_neuroDeltaInputT = nullptr
private

unpacked time input - TSIM time input

Definition at line 301 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroDeltaSector

TH1F* m_neuroDeltaSector = nullptr
private

unpacked sector - TSIM sector

Definition at line 304 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroDeltaTheta

TH1F* m_neuroDeltaTheta = nullptr
private

unpacked theta - TSIM theta

Definition at line 296 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroDeltaTSID

TH1F* m_neuroDeltaTSID = nullptr
private

unpacked selected TSID - TSIM selected TSID

Definition at line 303 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroDeltaZ

TH1F* m_neuroDeltaZ = nullptr
private

unpacked z - TSIM z

Definition at line 295 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInInvPt

TH1F* m_neuroHWInInvPt = nullptr
private

Inverse Pt distribution from incoming 2dtrack.

Definition at line 258 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInm_time

TH1F* m_neuroHWInm_time = nullptr
private

m_time distribution from incoming 2dtracks

Definition at line 260 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInPhi0

TH1F* m_neuroHWInPhi0 = nullptr
private

Phi0 of incoming 2dtrack.

Definition at line 259 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInputAlpha_Layer0

TH1F* m_neuroHWInputAlpha_Layer0 = nullptr
private

unpacked alpha input in layer 0

Definition at line 573 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInputAlpha_Layer1

TH1F* m_neuroHWInputAlpha_Layer1 = nullptr
private

unpacked alpha input in layer 1

Definition at line 576 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInputAlpha_Layer2

TH1F* m_neuroHWInputAlpha_Layer2 = nullptr
private

unpacked alpha input in layer 2

Definition at line 579 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInputAlpha_Layer3

TH1F* m_neuroHWInputAlpha_Layer3 = nullptr
private

unpacked alpha input in layer 3

Definition at line 582 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInputAlpha_Layer4

TH1F* m_neuroHWInputAlpha_Layer4 = nullptr
private

unpacked alpha input in layer 4

Definition at line 585 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInputAlpha_Layer5

TH1F* m_neuroHWInputAlpha_Layer5 = nullptr
private

unpacked alpha input in layer 5

Definition at line 588 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInputAlpha_Layer6

TH1F* m_neuroHWInputAlpha_Layer6 = nullptr
private

unpacked alpha input in layer 6

Definition at line 591 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInputAlpha_Layer7

TH1F* m_neuroHWInputAlpha_Layer7 = nullptr
private

unpacked alpha input in layer 7

Definition at line 594 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInputAlpha_Layer8

TH1F* m_neuroHWInputAlpha_Layer8 = nullptr
private

unpacked alpha input in layer 8

Definition at line 597 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInputID_Layer0

TH1F* m_neuroHWInputID_Layer0 = nullptr
private

unpacked id input in layer 0

Definition at line 571 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInputID_Layer1

TH1F* m_neuroHWInputID_Layer1 = nullptr
private

unpacked id input in layer 1

Definition at line 574 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInputID_Layer2

TH1F* m_neuroHWInputID_Layer2 = nullptr
private

unpacked id input in layer 2

Definition at line 577 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInputID_Layer3

TH1F* m_neuroHWInputID_Layer3 = nullptr
private

unpacked id input in layer 3

Definition at line 580 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInputID_Layer4

TH1F* m_neuroHWInputID_Layer4 = nullptr
private

unpacked id input in layer 4

Definition at line 583 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInputID_Layer5

TH1F* m_neuroHWInputID_Layer5 = nullptr
private

unpacked id input in layer 5

Definition at line 586 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInputID_Layer6

TH1F* m_neuroHWInputID_Layer6 = nullptr
private

unpacked id input in layer 6

Definition at line 589 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInputID_Layer7

TH1F* m_neuroHWInputID_Layer7 = nullptr
private

unpacked id input in layer 7

Definition at line 592 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInputID_Layer8

TH1F* m_neuroHWInputID_Layer8 = nullptr
private

unpacked id input in layer 8

Definition at line 595 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInputT_Layer0

TH1F* m_neuroHWInputT_Layer0 = nullptr
private

unpacked time input in layer 0

Definition at line 572 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInputT_Layer1

TH1F* m_neuroHWInputT_Layer1 = nullptr
private

unpacked time input in layer 1

Definition at line 575 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInputT_Layer2

TH1F* m_neuroHWInputT_Layer2 = nullptr
private

unpacked time input in layer 2

Definition at line 578 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInputT_Layer3

TH1F* m_neuroHWInputT_Layer3 = nullptr
private

unpacked time input in layer 3

Definition at line 581 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInputT_Layer4

TH1F* m_neuroHWInputT_Layer4 = nullptr
private

unpacked time input in layer 4

Definition at line 584 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInputT_Layer5

TH1F* m_neuroHWInputT_Layer5 = nullptr
private

unpacked time input in layer 5

Definition at line 587 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInputT_Layer6

TH1F* m_neuroHWInputT_Layer6 = nullptr
private

unpacked time input in layer 6

Definition at line 590 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInputT_Layer7

TH1F* m_neuroHWInputT_Layer7 = nullptr
private

unpacked time input in layer 7

Definition at line 593 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInputT_Layer8

TH1F* m_neuroHWInputT_Layer8 = nullptr
private

unpacked time input in layer 8

Definition at line 596 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTrackCount

TH1F* m_neuroHWInTrackCount = nullptr
private

number of neuro input 2dtracks per event

Definition at line 261 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSCount

TH1F* m_neuroHWInTSCount = nullptr
private

number of TS per track

Definition at line 332 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSFoundT_Layer0

TH1F* m_neuroHWInTSFoundT_Layer0 = nullptr
private

Found time of track segments in layer 0.

Definition at line 342 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSFoundT_Layer1

TH1F* m_neuroHWInTSFoundT_Layer1 = nullptr
private

Found time of track segments in layer 1.

Definition at line 343 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSFoundT_Layer2

TH1F* m_neuroHWInTSFoundT_Layer2 = nullptr
private

Found time of track segments in layer 2.

Definition at line 344 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSFoundT_Layer3

TH1F* m_neuroHWInTSFoundT_Layer3 = nullptr
private

Found time of track segments in layer 3.

Definition at line 345 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSFoundT_Layer4

TH1F* m_neuroHWInTSFoundT_Layer4 = nullptr
private

Found time of track segments in layer 4.

Definition at line 346 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSFoundT_Layer5

TH1F* m_neuroHWInTSFoundT_Layer5 = nullptr
private

Found time of track segments in layer 5.

Definition at line 347 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSFoundT_Layer6

TH1F* m_neuroHWInTSFoundT_Layer6 = nullptr
private

Found time of track segments in layer 6.

Definition at line 348 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSFoundT_Layer7

TH1F* m_neuroHWInTSFoundT_Layer7 = nullptr
private

Found time of track segments in layer 7.

Definition at line 349 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSFoundT_Layer8

TH1F* m_neuroHWInTSFoundT_Layer8 = nullptr
private

Found time of track segments in layer 8.

Definition at line 350 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSID

TH1F* m_neuroHWInTSID = nullptr
private

ID of incoming track segments.

Definition at line 331 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSLR_Layer0

TH1F* m_neuroHWInTSLR_Layer0 = nullptr
private

Left/Right of track segments in layer 0.

Definition at line 362 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSLR_Layer1

TH1F* m_neuroHWInTSLR_Layer1 = nullptr
private

Left/Right of track segments in layer 1.

Definition at line 363 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSLR_Layer2

TH1F* m_neuroHWInTSLR_Layer2 = nullptr
private

Left/Right of track segments in layer 2.

Definition at line 364 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSLR_Layer3

TH1F* m_neuroHWInTSLR_Layer3 = nullptr
private

Left/Right of track segments in layer 3.

Definition at line 365 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSLR_Layer4

TH1F* m_neuroHWInTSLR_Layer4 = nullptr
private

Left/Right of track segments in layer 4.

Definition at line 366 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSLR_Layer5

TH1F* m_neuroHWInTSLR_Layer5 = nullptr
private

Left/Right of track segments in layer 5.

Definition at line 367 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSLR_Layer6

TH1F* m_neuroHWInTSLR_Layer6 = nullptr
private

Left/Right of track segments in layer 6.

Definition at line 368 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSLR_Layer7

TH1F* m_neuroHWInTSLR_Layer7 = nullptr
private

Left/Right of track segments in layer 7.

Definition at line 369 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSLR_Layer8

TH1F* m_neuroHWInTSLR_Layer8 = nullptr
private

Left/Right of track segments in layer 8.

Definition at line 370 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSPrioB_Layer0

TH1F* m_neuroHWInTSPrioB_Layer0 = nullptr
private

Priority bits of track segments in layer 0.

Definition at line 352 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSPrioB_Layer1

TH1F* m_neuroHWInTSPrioB_Layer1 = nullptr
private

Priority bits of track segments in layer 1.

Definition at line 353 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSPrioB_Layer2

TH1F* m_neuroHWInTSPrioB_Layer2 = nullptr
private

Priority bits of track segments in layer 2.

Definition at line 354 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSPrioB_Layer3

TH1F* m_neuroHWInTSPrioB_Layer3 = nullptr
private

Priority bits of track segments in layer 3.

Definition at line 355 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSPrioB_Layer4

TH1F* m_neuroHWInTSPrioB_Layer4 = nullptr
private

Priority bits of track segments in layer 4.

Definition at line 356 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSPrioB_Layer5

TH1F* m_neuroHWInTSPrioB_Layer5 = nullptr
private

Priority bits of track segments in layer 5.

Definition at line 357 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSPrioB_Layer6

TH1F* m_neuroHWInTSPrioB_Layer6 = nullptr
private

Priority bits of track segments in layer 6.

Definition at line 358 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSPrioB_Layer7

TH1F* m_neuroHWInTSPrioB_Layer7 = nullptr
private

Priority bits of track segments in layer 7.

Definition at line 359 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSPrioB_Layer8

TH1F* m_neuroHWInTSPrioB_Layer8 = nullptr
private

Priority bits of track segments in layer 8.

Definition at line 360 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSPrioT_Layer0

TH1F* m_neuroHWInTSPrioT_Layer0 = nullptr
private

Priority time of track segments in layer 0.

Definition at line 333 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSPrioT_Layer1

TH1F* m_neuroHWInTSPrioT_Layer1 = nullptr
private

Priority time of track segments in layer 1.

Definition at line 334 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSPrioT_Layer2

TH1F* m_neuroHWInTSPrioT_Layer2 = nullptr
private

Priority time of track segments in layer 2.

Definition at line 335 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSPrioT_Layer3

TH1F* m_neuroHWInTSPrioT_Layer3 = nullptr
private

Priority time of track segments in layer 3.

Definition at line 336 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSPrioT_Layer4

TH1F* m_neuroHWInTSPrioT_Layer4 = nullptr
private

Priority time of track segments in layer 4.

Definition at line 337 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSPrioT_Layer5

TH1F* m_neuroHWInTSPrioT_Layer5 = nullptr
private

Priority time of track segments in layer 5.

Definition at line 338 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSPrioT_Layer6

TH1F* m_neuroHWInTSPrioT_Layer6 = nullptr
private

Priority time of track segments in layer 6.

Definition at line 339 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSPrioT_Layer7

TH1F* m_neuroHWInTSPrioT_Layer7 = nullptr
private

Priority time of track segments in layer 7.

Definition at line 340 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInTSPrioT_Layer8

TH1F* m_neuroHWInTSPrioT_Layer8 = nullptr
private

Priority time of track segments in layer 8.

Definition at line 341 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWInVs2DOutTrackCount

TH1F* m_neuroHWInVs2DOutTrackCount = nullptr
private

neuroHWInTrackCount - 2DHWOutTrackCountput

Definition at line 268 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWOutCosTheta

TH1F* m_neuroHWOutCosTheta = nullptr
private

cos theta distribution of unpacked neuro tracks

Definition at line 249 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWOutHitPattern

TH1F* m_neuroHWOutHitPattern = nullptr
private

stereo hit pattern of simulated neuro tracks (hw TS hw 2D sw NN)

Definition at line 253 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWOutInvPt

TH1F* m_neuroHWOutInvPt = nullptr
private

Inverse Pt distribution of unpacked neuro tracks.

Definition at line 250 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWOutm_time

TH1F* m_neuroHWOutm_time = nullptr
private

m_time distribution of unpacked neuro tracks

Definition at line 254 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWOutPhi0

TH1F* m_neuroHWOutPhi0 = nullptr
private

phi distribution of unpacked neuro tracks

Definition at line 252 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWOutPt

TH1F* m_neuroHWOutPt = nullptr
private

Pt distribution of unpacked neuro tracks.

Definition at line 251 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWOutQuad0CosTheta

TH1F* m_neuroHWOutQuad0CosTheta = nullptr
private

cos theta distribution from unpacker (quadrant 0)

Definition at line 314 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWOutQuad0InvPt

TH1F* m_neuroHWOutQuad0InvPt = nullptr
private

Inverse Pt distribution from unpacker (quadrant 0)

Definition at line 316 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWOutQuad0Phi0

TH1F* m_neuroHWOutQuad0Phi0 = nullptr
private

phi distribution from unpacker (quadrant 0)

Definition at line 315 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWOutQuad0Z

TH1F* m_neuroHWOutQuad0Z = nullptr
private

z distribution from unpacker (quadrant 0)

Definition at line 313 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWOutQuad1CosTheta

TH1F* m_neuroHWOutQuad1CosTheta = nullptr
private

cos theta distribution from unpacker (quadrant 1)

Definition at line 318 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWOutQuad1InvPt

TH1F* m_neuroHWOutQuad1InvPt = nullptr
private

Inverse Pt distribution from unpacker (quadrant 1)

Definition at line 320 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWOutQuad1Phi0

TH1F* m_neuroHWOutQuad1Phi0 = nullptr
private

phi distribution from unpacker (quadrant 1)

Definition at line 319 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWOutQuad1Z

TH1F* m_neuroHWOutQuad1Z = nullptr
private

z distribution from unpacker (quadrant 1)

Definition at line 317 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWOutQuad2CosTheta

TH1F* m_neuroHWOutQuad2CosTheta = nullptr
private

cos theta distribution from unpacker (quadrant 2)

Definition at line 322 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWOutQuad2InvPt

TH1F* m_neuroHWOutQuad2InvPt = nullptr
private

Inverse Pt distribution from unpacker (quadrant 2)

Definition at line 324 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWOutQuad2Phi0

TH1F* m_neuroHWOutQuad2Phi0 = nullptr
private

phi distribution from unpacker (quadrant 2)

Definition at line 323 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWOutQuad2Z

TH1F* m_neuroHWOutQuad2Z = nullptr
private

z distribution from unpacker (quadrant 2)

Definition at line 321 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWOutQuad3CosTheta

TH1F* m_neuroHWOutQuad3CosTheta = nullptr
private

cos theta distribution from unpacker (quadrant 3)

Definition at line 326 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWOutQuad3InvPt

TH1F* m_neuroHWOutQuad3InvPt = nullptr
private

Inverse Pt distribution from unpacker (quadrant 3)

Definition at line 328 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWOutQuad3Phi0

TH1F* m_neuroHWOutQuad3Phi0 = nullptr
private

phi distribution from unpacker (quadrant 3)

Definition at line 327 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWOutQuad3Z

TH1F* m_neuroHWOutQuad3Z = nullptr
private

z distribution from unpacker (quadrant 3)

Definition at line 325 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWOutQuad5CosTheta

TH1F* m_neuroHWOutQuad5CosTheta = nullptr
private

cos theta distribution from unpacker (no quadrant set)

Definition at line 310 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWOutQuad5InvPt

TH1F* m_neuroHWOutQuad5InvPt = nullptr
private

Inverse Pt distribution from unpacker (no quadrant set)

Definition at line 312 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWOutQuad5Phi0

TH1F* m_neuroHWOutQuad5Phi0 = nullptr
private

phi distribution from unpacker (no quadrant set)

Definition at line 311 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWOutQuad5Z

TH1F* m_neuroHWOutQuad5Z = nullptr
private

z distribution from unpacker (no quadrant set)

Definition at line 309 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWOutTrackCount

TH1F* m_neuroHWOutTrackCount = nullptr
private

number of unpacked tracks per event

Definition at line 255 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWOutVsInTrackCount

TH1F* m_neuroHWOutVsInTrackCount = nullptr
private

neuroHWOutTracks - neuroHWInTrackCount

Definition at line 262 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWOutZ

TH1F* m_neuroHWOutZ = nullptr
private

z distribution of unpacked neuro tracks

Definition at line 248 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSector

TH1F* m_neuroHWSector = nullptr
private

sector of unpacked neuro tracks

Definition at line 256 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSCount

TH1F* m_neuroHWSelTSCount = nullptr
private

number of selected TS per SL

Definition at line 374 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSFoundT_Layer0

TH1F* m_neuroHWSelTSFoundT_Layer0 = nullptr
private

Found time of selected track segments in layer 0.

Definition at line 384 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSFoundT_Layer1

TH1F* m_neuroHWSelTSFoundT_Layer1 = nullptr
private

Found time of selected track segments in layer 1.

Definition at line 385 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSFoundT_Layer2

TH1F* m_neuroHWSelTSFoundT_Layer2 = nullptr
private

Found time of selected track segments in layer 2.

Definition at line 386 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSFoundT_Layer3

TH1F* m_neuroHWSelTSFoundT_Layer3 = nullptr
private

Found time of selected track segments in layer 3.

Definition at line 387 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSFoundT_Layer4

TH1F* m_neuroHWSelTSFoundT_Layer4 = nullptr
private

Found time of selected track segments in layer 4.

Definition at line 388 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSFoundT_Layer5

TH1F* m_neuroHWSelTSFoundT_Layer5 = nullptr
private

Found time of selected track segments in layer 5.

Definition at line 389 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSFoundT_Layer6

TH1F* m_neuroHWSelTSFoundT_Layer6 = nullptr
private

Found time of selected track segments in layer 6.

Definition at line 390 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSFoundT_Layer7

TH1F* m_neuroHWSelTSFoundT_Layer7 = nullptr
private

Found time of selected track segments in layer 7.

Definition at line 391 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSFoundT_Layer8

TH1F* m_neuroHWSelTSFoundT_Layer8 = nullptr
private

Found time of selected track segments in layer 8.

Definition at line 392 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSID

TH1F* m_neuroHWSelTSID = nullptr
private

ID of selected track segments.

Definition at line 373 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSLR_Layer0

TH1F* m_neuroHWSelTSLR_Layer0 = nullptr
private

Left/Right of track segments in layer 0.

Definition at line 404 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSLR_Layer1

TH1F* m_neuroHWSelTSLR_Layer1 = nullptr
private

Left/Right of track segments in layer 1.

Definition at line 405 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSLR_Layer2

TH1F* m_neuroHWSelTSLR_Layer2 = nullptr
private

Left/Right of track segments in layer 2.

Definition at line 406 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSLR_Layer3

TH1F* m_neuroHWSelTSLR_Layer3 = nullptr
private

Left/Right of track segments in layer 3.

Definition at line 407 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSLR_Layer4

TH1F* m_neuroHWSelTSLR_Layer4 = nullptr
private

Left/Right of track segments in layer 4.

Definition at line 408 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSLR_Layer5

TH1F* m_neuroHWSelTSLR_Layer5 = nullptr
private

Left/Right of track segments in layer 5.

Definition at line 409 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSLR_Layer6

TH1F* m_neuroHWSelTSLR_Layer6 = nullptr
private

Left/Right of track segments in layer 6.

Definition at line 410 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSLR_Layer7

TH1F* m_neuroHWSelTSLR_Layer7 = nullptr
private

Left/Right of track segments in layer 7.

Definition at line 411 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSLR_Layer8

TH1F* m_neuroHWSelTSLR_Layer8 = nullptr
private

Left/Right of track segments in layer 8.

Definition at line 412 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSPrioB_Layer0

TH1F* m_neuroHWSelTSPrioB_Layer0 = nullptr
private

Priority bits of track segments in layer 0.

Definition at line 394 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSPrioB_Layer1

TH1F* m_neuroHWSelTSPrioB_Layer1 = nullptr
private

Priority bits of track segments in layer 1.

Definition at line 395 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSPrioB_Layer2

TH1F* m_neuroHWSelTSPrioB_Layer2 = nullptr
private

Priority bits of track segments in layer 2.

Definition at line 396 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSPrioB_Layer3

TH1F* m_neuroHWSelTSPrioB_Layer3 = nullptr
private

Priority bits of track segments in layer 3.

Definition at line 397 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSPrioB_Layer4

TH1F* m_neuroHWSelTSPrioB_Layer4 = nullptr
private

Priority bits of track segments in layer 4.

Definition at line 398 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSPrioB_Layer5

TH1F* m_neuroHWSelTSPrioB_Layer5 = nullptr
private

Priority bits of track segments in layer 5.

Definition at line 399 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSPrioB_Layer6

TH1F* m_neuroHWSelTSPrioB_Layer6 = nullptr
private

Priority bits of track segments in layer 6.

Definition at line 400 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSPrioB_Layer7

TH1F* m_neuroHWSelTSPrioB_Layer7 = nullptr
private

Priority bits of track segments in layer 7.

Definition at line 401 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSPrioB_Layer8

TH1F* m_neuroHWSelTSPrioB_Layer8 = nullptr
private

Priority bits of track segments in layer 8.

Definition at line 402 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSPrioT_Layer0

TH1F* m_neuroHWSelTSPrioT_Layer0 = nullptr
private

Priority time of selected track segments in layer 0.

Definition at line 375 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSPrioT_Layer1

TH1F* m_neuroHWSelTSPrioT_Layer1 = nullptr
private

Priority time of selected track segments in layer 1.

Definition at line 376 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSPrioT_Layer2

TH1F* m_neuroHWSelTSPrioT_Layer2 = nullptr
private

Priority time of selected track segments in layer 2.

Definition at line 377 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSPrioT_Layer3

TH1F* m_neuroHWSelTSPrioT_Layer3 = nullptr
private

Priority time of selected track segments in layer 3.

Definition at line 378 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSPrioT_Layer4

TH1F* m_neuroHWSelTSPrioT_Layer4 = nullptr
private

Priority time of selected track segments in layer 4.

Definition at line 379 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSPrioT_Layer5

TH1F* m_neuroHWSelTSPrioT_Layer5 = nullptr
private

Priority time of selected track segments in layer 5.

Definition at line 380 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSPrioT_Layer6

TH1F* m_neuroHWSelTSPrioT_Layer6 = nullptr
private

Priority time of selected track segments in layer 6.

Definition at line 381 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSPrioT_Layer7

TH1F* m_neuroHWSelTSPrioT_Layer7 = nullptr
private

Priority time of selected track segments in layer 7.

Definition at line 382 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroHWSelTSPrioT_Layer8

TH1F* m_neuroHWSelTSPrioT_Layer8 = nullptr
private

Priority time of selected track segments in layer 8.

Definition at line 383 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroRecoHWOutCosTheta

TH1F* m_neuroRecoHWOutCosTheta = nullptr
private

reco matched cos theta distribution from unpacker

Definition at line 676 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroRecoHWOutHitPattern

TH1F* m_neuroRecoHWOutHitPattern = nullptr
private

reco matched stereo hit pattern from unpacker

Definition at line 679 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroRecoHWOutInvPt

TH1F* m_neuroRecoHWOutInvPt = nullptr
private

reco matched Inverse Pt distribution from unpacker

Definition at line 677 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroRecoHWOutPhi0

TH1F* m_neuroRecoHWOutPhi0 = nullptr
private

reco matched phi distribution from unpacker

Definition at line 678 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroRecoHWOutTrackCount

TH1F* m_neuroRecoHWOutTrackCount = nullptr
private

reco matched number of unpacked and matched tracks per event

Definition at line 680 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroRecoHWOutZ

TH1F* m_neuroRecoHWOutZ = nullptr
private

reco matched z distribution from unpacker

Definition at line 675 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroRecoHWSector

TH1F* m_neuroRecoHWSector = nullptr
private

reco matched NN sector from unpacker

Definition at line 681 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroRecoSWOutCosTheta

TH1F* m_neuroRecoSWOutCosTheta = nullptr
private

reco matched cos theta distribution from simulation (hw TS hw 2D sw NN)

Definition at line 699 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroRecoSWOutHitPattern

TH1F* m_neuroRecoSWOutHitPattern = nullptr
private

reco matched stereo hit pattern of simulated neuro tracks (hw TS hw 2D sw NN)

Definition at line 702 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroRecoSWOutInvPt

TH1F* m_neuroRecoSWOutInvPt = nullptr
private

reco matched Inverse Pt distribution from simulation (hw TS hw 2D sw NN)

Definition at line 700 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroRecoSWOutPhi0

TH1F* m_neuroRecoSWOutPhi0 = nullptr
private

reco matched phi distribution from simulation (hw TS hw 2D sw NN)

Definition at line 701 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroRecoSWOutTrackCount

TH1F* m_neuroRecoSWOutTrackCount = nullptr
private

reco matched number of simulated tracks per event (hw TS hw 2D sw NN)

Definition at line 703 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroRecoSWOutZ

TH1F* m_neuroRecoSWOutZ = nullptr
private

reco matched z distribution from simulation (hw TS hw 2D sw NN)

Definition at line 698 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroRecoSWSector

TH1F* m_neuroRecoSWSector = nullptr
private

reco matched NN sector from simulation (hw TS hw 2D sw NN)

Definition at line 704 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroRecoSWTSSW2DOutCosTheta

TH1F* m_neuroRecoSWTSSW2DOutCosTheta = nullptr
private

reco matched cos theta distribution from simulation (sw TS sw 2D sw NN)

Definition at line 722 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroRecoSWTSSW2DOutHitPattern

TH1F* m_neuroRecoSWTSSW2DOutHitPattern
private
Initial value:
=
nullptr

reco matched stereo hit pattern of simulated neuro tracks (sw TS sw 2D sw NN)

Definition at line 725 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroRecoSWTSSW2DOutInvPt

TH1F* m_neuroRecoSWTSSW2DOutInvPt = nullptr
private

reco matched Inverse Pt distribution from simulation (sw TS sw 2D sw NN)

Definition at line 723 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroRecoSWTSSW2DOutPhi0

TH1F* m_neuroRecoSWTSSW2DOutPhi0 = nullptr
private

reco matched phi distribution from simulation (sw TS sw 2D sw NN)

Definition at line 724 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroRecoSWTSSW2DOutTrackCount

TH1F* m_neuroRecoSWTSSW2DOutTrackCount = nullptr
private

reco matched number of simulated tracks per event (sw TS sw 2D sw NN)

Definition at line 727 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroRecoSWTSSW2DOutZ

TH1F* m_neuroRecoSWTSSW2DOutZ = nullptr
private

reco matched z distribution from simulation (sw TS sw 2D sw NN)

Definition at line 721 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroRecoSWTSSW2DSector

TH1F* m_neuroRecoSWTSSW2DSector = nullptr
private

reco matched NN sector from simulation (sw TS sw 2D sw NN)

Definition at line 728 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroScatterTheta

TH2F* m_neuroScatterTheta = nullptr
private

unpacked theta vs TSIM theta, scatter plot

Definition at line 298 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroScatterZ

TH2F* m_neuroScatterZ = nullptr
private

unpacked z vs TSIM z, scatter plot

Definition at line 297 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWInputAlpha_Layer0

TH1F* m_neuroSWInputAlpha_Layer0 = nullptr
private

simulated alpha input in layer 0

Definition at line 602 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWInputAlpha_Layer1

TH1F* m_neuroSWInputAlpha_Layer1 = nullptr
private

simulated alpha input in layer 1

Definition at line 605 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWInputAlpha_Layer2

TH1F* m_neuroSWInputAlpha_Layer2 = nullptr
private

simulated alpha input in layer 2

Definition at line 608 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWInputAlpha_Layer3

TH1F* m_neuroSWInputAlpha_Layer3 = nullptr
private

simulated alpha input in layer 3

Definition at line 611 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWInputAlpha_Layer4

TH1F* m_neuroSWInputAlpha_Layer4 = nullptr
private

simulated alpha input in layer 4

Definition at line 614 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWInputAlpha_Layer5

TH1F* m_neuroSWInputAlpha_Layer5 = nullptr
private

simulated alpha input in layer 5

Definition at line 617 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWInputAlpha_Layer6

TH1F* m_neuroSWInputAlpha_Layer6 = nullptr
private

simulated alpha input in layer 6

Definition at line 620 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWInputAlpha_Layer7

TH1F* m_neuroSWInputAlpha_Layer7 = nullptr
private

simulated alpha input in layer 7

Definition at line 623 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWInputAlpha_Layer8

TH1F* m_neuroSWInputAlpha_Layer8 = nullptr
private

simulated alpha input in layer 8

Definition at line 626 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWInputID_Layer0

TH1F* m_neuroSWInputID_Layer0 = nullptr
private

simulated id input in layer 0

Definition at line 600 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWInputID_Layer1

TH1F* m_neuroSWInputID_Layer1 = nullptr
private

simulated id input in layer 1

Definition at line 603 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWInputID_Layer2

TH1F* m_neuroSWInputID_Layer2 = nullptr
private

simulated id input in layer 2

Definition at line 606 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWInputID_Layer3

TH1F* m_neuroSWInputID_Layer3 = nullptr
private

simulated id input in layer 3

Definition at line 609 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWInputID_Layer4

TH1F* m_neuroSWInputID_Layer4 = nullptr
private

simulated id input in layer 4

Definition at line 612 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWInputID_Layer5

TH1F* m_neuroSWInputID_Layer5 = nullptr
private

simulated id input in layer 5

Definition at line 615 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWInputID_Layer6

TH1F* m_neuroSWInputID_Layer6 = nullptr
private

simulated id input in layer 6

Definition at line 618 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWInputID_Layer7

TH1F* m_neuroSWInputID_Layer7 = nullptr
private

simulated id input in layer 7

Definition at line 621 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWInputID_Layer8

TH1F* m_neuroSWInputID_Layer8 = nullptr
private

simulated id input in layer 8

Definition at line 624 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWInputT_Layer0

TH1F* m_neuroSWInputT_Layer0 = nullptr
private

simulated time input in layer 0

Definition at line 601 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWInputT_Layer1

TH1F* m_neuroSWInputT_Layer1 = nullptr
private

simulated time input in layer 1

Definition at line 604 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWInputT_Layer2

TH1F* m_neuroSWInputT_Layer2 = nullptr
private

simulated time input in layer 2

Definition at line 607 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWInputT_Layer3

TH1F* m_neuroSWInputT_Layer3 = nullptr
private

simulated time input in layer 3

Definition at line 610 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWInputT_Layer4

TH1F* m_neuroSWInputT_Layer4 = nullptr
private

simulated time input in layer 4

Definition at line 613 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWInputT_Layer5

TH1F* m_neuroSWInputT_Layer5 = nullptr
private

simulated time input in layer 5

Definition at line 616 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWInputT_Layer6

TH1F* m_neuroSWInputT_Layer6 = nullptr
private

simulated time input in layer 6

Definition at line 619 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWInputT_Layer7

TH1F* m_neuroSWInputT_Layer7 = nullptr
private

simulated time input in layer 7

Definition at line 622 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWInputT_Layer8

TH1F* m_neuroSWInputT_Layer8 = nullptr
private

simulated time input in layer 8

Definition at line 625 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWOutCosTheta

TH1F* m_neuroSWOutCosTheta = nullptr
private

cos theta distribution from simulation (hw TS hw 2D sw NN)

Definition at line 272 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWOutHitPattern

TH1F* m_neuroSWOutHitPattern = nullptr
private

stereo hit pattern of simulated neuro tracks (hw TS hw 2D sw NN)

Definition at line 275 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWOutInvPt

TH1F* m_neuroSWOutInvPt = nullptr
private

Inverse Pt distribution from simulation (hw TS hw 2D sw NN)

Definition at line 273 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWOutPhi0

TH1F* m_neuroSWOutPhi0 = nullptr
private

phi distribution from simulation (hw TS hw 2D sw NN)

Definition at line 274 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWOutTrackCount

TH1F* m_neuroSWOutTrackCount = nullptr
private

number of simulated tracks per event (hw TS hw 2D sw NN)

Definition at line 276 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWOutZ

TH1F* m_neuroSWOutZ = nullptr
private

z distribution from simulation (hw TS hw 2D sw NN)

Definition at line 271 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSector

TH1F* m_neuroSWSector = nullptr
private

NN sector from simulation (hw TS hw 2D sw NN)

Definition at line 277 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSCount

TH1F* m_neuroSWSelTSCount = nullptr
private

number of TS per SL

Definition at line 443 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSFoundT_Layer0

TH1F* m_neuroSWSelTSFoundT_Layer0 = nullptr
private

Found time of track segments in layer 0.

Definition at line 453 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSFoundT_Layer1

TH1F* m_neuroSWSelTSFoundT_Layer1 = nullptr
private

Found time of track segments in layer 1.

Definition at line 454 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSFoundT_Layer2

TH1F* m_neuroSWSelTSFoundT_Layer2 = nullptr
private

Found time of track segments in layer 2.

Definition at line 455 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSFoundT_Layer3

TH1F* m_neuroSWSelTSFoundT_Layer3 = nullptr
private

Found time of track segments in layer 3.

Definition at line 456 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSFoundT_Layer4

TH1F* m_neuroSWSelTSFoundT_Layer4 = nullptr
private

Found time of track segments in layer 4.

Definition at line 457 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSFoundT_Layer5

TH1F* m_neuroSWSelTSFoundT_Layer5 = nullptr
private

Found time of track segments in layer 5.

Definition at line 458 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSFoundT_Layer6

TH1F* m_neuroSWSelTSFoundT_Layer6 = nullptr
private

Found time of track segments in layer 6.

Definition at line 459 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSFoundT_Layer7

TH1F* m_neuroSWSelTSFoundT_Layer7 = nullptr
private

Found time of track segments in layer 7.

Definition at line 460 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSFoundT_Layer8

TH1F* m_neuroSWSelTSFoundT_Layer8 = nullptr
private

Found time of track segments in layer 8.

Definition at line 461 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSID

TH1F* m_neuroSWSelTSID = nullptr
private

ID of incoming track segments.

Definition at line 442 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSLR_Layer0

TH1F* m_neuroSWSelTSLR_Layer0 = nullptr
private

Left/Right of track segments in layer 0.

Definition at line 473 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSLR_Layer1

TH1F* m_neuroSWSelTSLR_Layer1 = nullptr
private

Left/Right of track segments in layer 1.

Definition at line 474 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSLR_Layer2

TH1F* m_neuroSWSelTSLR_Layer2 = nullptr
private

Left/Right of track segments in layer 2.

Definition at line 475 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSLR_Layer3

TH1F* m_neuroSWSelTSLR_Layer3 = nullptr
private

Left/Right of track segments in layer 3.

Definition at line 476 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSLR_Layer4

TH1F* m_neuroSWSelTSLR_Layer4 = nullptr
private

Left/Right of track segments in layer 4.

Definition at line 477 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSLR_Layer5

TH1F* m_neuroSWSelTSLR_Layer5 = nullptr
private

Left/Right of track segments in layer 5.

Definition at line 478 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSLR_Layer6

TH1F* m_neuroSWSelTSLR_Layer6 = nullptr
private

Left/Right of track segments in layer 6.

Definition at line 479 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSLR_Layer7

TH1F* m_neuroSWSelTSLR_Layer7 = nullptr
private

Left/Right of track segments in layer 7.

Definition at line 480 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSLR_Layer8

TH1F* m_neuroSWSelTSLR_Layer8 = nullptr
private

Left/Right of track segments in layer 8.

Definition at line 481 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSPrioB_Layer0

TH1F* m_neuroSWSelTSPrioB_Layer0 = nullptr
private

Priority bits of track segments in layer 0.

Definition at line 463 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSPrioB_Layer1

TH1F* m_neuroSWSelTSPrioB_Layer1 = nullptr
private

Priority bits of track segments in layer 1.

Definition at line 464 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSPrioB_Layer2

TH1F* m_neuroSWSelTSPrioB_Layer2 = nullptr
private

Priority bits of track segments in layer 2.

Definition at line 465 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSPrioB_Layer3

TH1F* m_neuroSWSelTSPrioB_Layer3 = nullptr
private

Priority bits of track segments in layer 3.

Definition at line 466 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSPrioB_Layer4

TH1F* m_neuroSWSelTSPrioB_Layer4 = nullptr
private

Priority bits of track segments in layer 4.

Definition at line 467 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSPrioB_Layer5

TH1F* m_neuroSWSelTSPrioB_Layer5 = nullptr
private

Priority bits of track segments in layer 5.

Definition at line 468 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSPrioB_Layer6

TH1F* m_neuroSWSelTSPrioB_Layer6 = nullptr
private

Priority bits of track segments in layer 6.

Definition at line 469 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSPrioB_Layer7

TH1F* m_neuroSWSelTSPrioB_Layer7 = nullptr
private

Priority bits of track segments in layer 7.

Definition at line 470 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSPrioB_Layer8

TH1F* m_neuroSWSelTSPrioB_Layer8 = nullptr
private

Priority bits of track segments in layer 8.

Definition at line 471 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSPrioT_Layer0

TH1F* m_neuroSWSelTSPrioT_Layer0 = nullptr
private

Priority time of track segments in layer 0.

Definition at line 444 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSPrioT_Layer1

TH1F* m_neuroSWSelTSPrioT_Layer1 = nullptr
private

Priority time of track segments in layer 1.

Definition at line 445 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSPrioT_Layer2

TH1F* m_neuroSWSelTSPrioT_Layer2 = nullptr
private

Priority time of track segments in layer 2.

Definition at line 446 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSPrioT_Layer3

TH1F* m_neuroSWSelTSPrioT_Layer3 = nullptr
private

Priority time of track segments in layer 3.

Definition at line 447 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSPrioT_Layer4

TH1F* m_neuroSWSelTSPrioT_Layer4 = nullptr
private

Priority time of track segments in layer 4.

Definition at line 448 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSPrioT_Layer5

TH1F* m_neuroSWSelTSPrioT_Layer5 = nullptr
private

Priority time of track segments in layer 5.

Definition at line 449 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSPrioT_Layer6

TH1F* m_neuroSWSelTSPrioT_Layer6 = nullptr
private

Priority time of track segments in layer 6.

Definition at line 450 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSPrioT_Layer7

TH1F* m_neuroSWSelTSPrioT_Layer7 = nullptr
private

Priority time of track segments in layer 7.

Definition at line 451 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWSelTSPrioT_Layer8

TH1F* m_neuroSWSelTSPrioT_Layer8 = nullptr
private

Priority time of track segments in layer 8.

Definition at line 452 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInputAlpha_Layer0

TH1F* m_neuroSWTSSW2DInputAlpha_Layer0 = nullptr
private

simulated alpha input in layer 0

Definition at line 631 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInputAlpha_Layer1

TH1F* m_neuroSWTSSW2DInputAlpha_Layer1 = nullptr
private

simulated alpha input in layer 1

Definition at line 634 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInputAlpha_Layer2

TH1F* m_neuroSWTSSW2DInputAlpha_Layer2 = nullptr
private

simulated alpha input in layer 2

Definition at line 637 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInputAlpha_Layer3

TH1F* m_neuroSWTSSW2DInputAlpha_Layer3 = nullptr
private

simulated alpha input in layer 3

Definition at line 640 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInputAlpha_Layer4

TH1F* m_neuroSWTSSW2DInputAlpha_Layer4 = nullptr
private

simulated alpha input in layer 4

Definition at line 643 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInputAlpha_Layer5

TH1F* m_neuroSWTSSW2DInputAlpha_Layer5 = nullptr
private

simulated alpha input in layer 5

Definition at line 646 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInputAlpha_Layer6

TH1F* m_neuroSWTSSW2DInputAlpha_Layer6 = nullptr
private

simulated alpha input in layer 6

Definition at line 649 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInputAlpha_Layer7

TH1F* m_neuroSWTSSW2DInputAlpha_Layer7 = nullptr
private

simulated alpha input in layer 7

Definition at line 652 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInputAlpha_Layer8

TH1F* m_neuroSWTSSW2DInputAlpha_Layer8 = nullptr
private

simulated alpha input in layer 8

Definition at line 655 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInputID_Layer0

TH1F* m_neuroSWTSSW2DInputID_Layer0 = nullptr
private

simulated id input in layer 0

Definition at line 629 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInputID_Layer1

TH1F* m_neuroSWTSSW2DInputID_Layer1 = nullptr
private

simulated id input in layer 1

Definition at line 632 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInputID_Layer2

TH1F* m_neuroSWTSSW2DInputID_Layer2 = nullptr
private

simulated id input in layer 2

Definition at line 635 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInputID_Layer3

TH1F* m_neuroSWTSSW2DInputID_Layer3 = nullptr
private

simulated id input in layer 3

Definition at line 638 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInputID_Layer4

TH1F* m_neuroSWTSSW2DInputID_Layer4 = nullptr
private

simulated id input in layer 4

Definition at line 641 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInputID_Layer5

TH1F* m_neuroSWTSSW2DInputID_Layer5 = nullptr
private

simulated id input in layer 5

Definition at line 644 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInputID_Layer6

TH1F* m_neuroSWTSSW2DInputID_Layer6 = nullptr
private

simulated id input in layer 6

Definition at line 647 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInputID_Layer7

TH1F* m_neuroSWTSSW2DInputID_Layer7 = nullptr
private

simulated id input in layer 7

Definition at line 650 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInputID_Layer8

TH1F* m_neuroSWTSSW2DInputID_Layer8 = nullptr
private

simulated id input in layer 8

Definition at line 653 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInputT_Layer0

TH1F* m_neuroSWTSSW2DInputT_Layer0 = nullptr
private

simulated time input in layer 0

Definition at line 630 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInputT_Layer1

TH1F* m_neuroSWTSSW2DInputT_Layer1 = nullptr
private

simulated time input in layer 1

Definition at line 633 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInputT_Layer2

TH1F* m_neuroSWTSSW2DInputT_Layer2 = nullptr
private

simulated time input in layer 2

Definition at line 636 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInputT_Layer3

TH1F* m_neuroSWTSSW2DInputT_Layer3 = nullptr
private

simulated time input in layer 3

Definition at line 639 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInputT_Layer4

TH1F* m_neuroSWTSSW2DInputT_Layer4 = nullptr
private

simulated time input in layer 4

Definition at line 642 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInputT_Layer5

TH1F* m_neuroSWTSSW2DInputT_Layer5 = nullptr
private

simulated time input in layer 5

Definition at line 645 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInputT_Layer6

TH1F* m_neuroSWTSSW2DInputT_Layer6 = nullptr
private

simulated time input in layer 6

Definition at line 648 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInputT_Layer7

TH1F* m_neuroSWTSSW2DInputT_Layer7 = nullptr
private

simulated time input in layer 7

Definition at line 651 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInputT_Layer8

TH1F* m_neuroSWTSSW2DInputT_Layer8 = nullptr
private

simulated time input in layer 8

Definition at line 654 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSCount

TH1F* m_neuroSWTSSW2DInTSCount = nullptr
private

number of TS per event

Definition at line 486 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSFoundT_Layer0

TH1F* m_neuroSWTSSW2DInTSFoundT_Layer0 = nullptr
private

Found time of track segments in layer 0.

Definition at line 496 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSFoundT_Layer1

TH1F* m_neuroSWTSSW2DInTSFoundT_Layer1 = nullptr
private

Found time of track segments in layer 1.

Definition at line 497 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSFoundT_Layer2

TH1F* m_neuroSWTSSW2DInTSFoundT_Layer2 = nullptr
private

Found time of track segments in layer 2.

Definition at line 498 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSFoundT_Layer3

TH1F* m_neuroSWTSSW2DInTSFoundT_Layer3 = nullptr
private

Found time of track segments in layer 3.

Definition at line 499 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSFoundT_Layer4

TH1F* m_neuroSWTSSW2DInTSFoundT_Layer4 = nullptr
private

Found time of track segments in layer 4.

Definition at line 500 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSFoundT_Layer5

TH1F* m_neuroSWTSSW2DInTSFoundT_Layer5 = nullptr
private

Found time of track segments in layer 5.

Definition at line 501 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSFoundT_Layer6

TH1F* m_neuroSWTSSW2DInTSFoundT_Layer6 = nullptr
private

Found time of track segments in layer 6.

Definition at line 502 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSFoundT_Layer7

TH1F* m_neuroSWTSSW2DInTSFoundT_Layer7 = nullptr
private

Found time of track segments in layer 7.

Definition at line 503 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSFoundT_Layer8

TH1F* m_neuroSWTSSW2DInTSFoundT_Layer8 = nullptr
private

Found time of track segments in layer 8.

Definition at line 504 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSID

TH1F* m_neuroSWTSSW2DInTSID = nullptr
private

ID of incoming track segments.

Definition at line 485 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSLR_Layer0

TH1F* m_neuroSWTSSW2DInTSLR_Layer0 = nullptr
private

Left/Right of track segments in layer 0.

Definition at line 516 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSLR_Layer1

TH1F* m_neuroSWTSSW2DInTSLR_Layer1 = nullptr
private

Left/Right of track segments in layer 1.

Definition at line 517 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSLR_Layer2

TH1F* m_neuroSWTSSW2DInTSLR_Layer2 = nullptr
private

Left/Right of track segments in layer 2.

Definition at line 518 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSLR_Layer3

TH1F* m_neuroSWTSSW2DInTSLR_Layer3 = nullptr
private

Left/Right of track segments in layer 3.

Definition at line 519 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSLR_Layer4

TH1F* m_neuroSWTSSW2DInTSLR_Layer4 = nullptr
private

Left/Right of track segments in layer 4.

Definition at line 520 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSLR_Layer5

TH1F* m_neuroSWTSSW2DInTSLR_Layer5 = nullptr
private

Left/Right of track segments in layer 5.

Definition at line 521 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSLR_Layer6

TH1F* m_neuroSWTSSW2DInTSLR_Layer6 = nullptr
private

Left/Right of track segments in layer 6.

Definition at line 522 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSLR_Layer7

TH1F* m_neuroSWTSSW2DInTSLR_Layer7 = nullptr
private

Left/Right of track segments in layer 7.

Definition at line 523 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSLR_Layer8

TH1F* m_neuroSWTSSW2DInTSLR_Layer8 = nullptr
private

Left/Right of track segments in layer 8.

Definition at line 524 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSPrioB_Layer0

TH1F* m_neuroSWTSSW2DInTSPrioB_Layer0 = nullptr
private

Priority bits of track segments in layer 0.

Definition at line 506 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSPrioB_Layer1

TH1F* m_neuroSWTSSW2DInTSPrioB_Layer1 = nullptr
private

Priority bits of track segments in layer 1.

Definition at line 507 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSPrioB_Layer2

TH1F* m_neuroSWTSSW2DInTSPrioB_Layer2 = nullptr
private

Priority bits of track segments in layer 2.

Definition at line 508 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSPrioB_Layer3

TH1F* m_neuroSWTSSW2DInTSPrioB_Layer3 = nullptr
private

Priority bits of track segments in layer 3.

Definition at line 509 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSPrioB_Layer4

TH1F* m_neuroSWTSSW2DInTSPrioB_Layer4 = nullptr
private

Priority bits of track segments in layer 4.

Definition at line 510 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSPrioB_Layer5

TH1F* m_neuroSWTSSW2DInTSPrioB_Layer5 = nullptr
private

Priority bits of track segments in layer 5.

Definition at line 511 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSPrioB_Layer6

TH1F* m_neuroSWTSSW2DInTSPrioB_Layer6 = nullptr
private

Priority bits of track segments in layer 6.

Definition at line 512 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSPrioB_Layer7

TH1F* m_neuroSWTSSW2DInTSPrioB_Layer7 = nullptr
private

Priority bits of track segments in layer 7.

Definition at line 513 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSPrioB_Layer8

TH1F* m_neuroSWTSSW2DInTSPrioB_Layer8 = nullptr
private

Priority bits of track segments in layer 8.

Definition at line 514 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSPrioT_Layer0

TH1F* m_neuroSWTSSW2DInTSPrioT_Layer0 = nullptr
private

Priority time of track segments in layer 0.

Definition at line 487 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSPrioT_Layer1

TH1F* m_neuroSWTSSW2DInTSPrioT_Layer1 = nullptr
private

Priority time of track segments in layer 1.

Definition at line 488 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSPrioT_Layer2

TH1F* m_neuroSWTSSW2DInTSPrioT_Layer2 = nullptr
private

Priority time of track segments in layer 2.

Definition at line 489 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSPrioT_Layer3

TH1F* m_neuroSWTSSW2DInTSPrioT_Layer3 = nullptr
private

Priority time of track segments in layer 3.

Definition at line 490 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSPrioT_Layer4

TH1F* m_neuroSWTSSW2DInTSPrioT_Layer4 = nullptr
private

Priority time of track segments in layer 4.

Definition at line 491 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSPrioT_Layer5

TH1F* m_neuroSWTSSW2DInTSPrioT_Layer5 = nullptr
private

Priority time of track segments in layer 5.

Definition at line 492 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSPrioT_Layer6

TH1F* m_neuroSWTSSW2DInTSPrioT_Layer6 = nullptr
private

Priority time of track segments in layer 6.

Definition at line 493 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSPrioT_Layer7

TH1F* m_neuroSWTSSW2DInTSPrioT_Layer7 = nullptr
private

Priority time of track segments in layer 7.

Definition at line 494 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DInTSPrioT_Layer8

TH1F* m_neuroSWTSSW2DInTSPrioT_Layer8 = nullptr
private

Priority time of track segments in layer 8.

Definition at line 495 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DOutCosTheta

TH1F* m_neuroSWTSSW2DOutCosTheta = nullptr
private

cos theta distribution from simulation (sw TS sw 2D sw NN)

Definition at line 287 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DOutHitPattern

TH1F* m_neuroSWTSSW2DOutHitPattern = nullptr
private

stereo hit pattern of simulated neuro tracks (sw TS sw 2D sw NN)

Definition at line 290 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DOutInvPt

TH1F* m_neuroSWTSSW2DOutInvPt = nullptr
private

Inverse Pt distribution from simulation (sw TS sw 2D sw NN)

Definition at line 288 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DOutPhi0

TH1F* m_neuroSWTSSW2DOutPhi0 = nullptr
private

phi distribution from simulation (sw TS sw 2D sw NN)

Definition at line 289 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DOutTrackCount

TH1F* m_neuroSWTSSW2DOutTrackCount = nullptr
private

number of simulated tracks per event (sw TS sw 2D sw NN)

Definition at line 291 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DOutZ

TH1F* m_neuroSWTSSW2DOutZ = nullptr
private

z distribution from simulation (sw TS sw 2D sw NN)

Definition at line 286 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSector

TH1F* m_neuroSWTSSW2DSector = nullptr
private

NN sector from simulation (sw TS sw 2D sw NN)

Definition at line 292 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSCount

TH1F* m_neuroSWTSSW2DSelTSCount = nullptr
private

number of TS per SL

Definition at line 529 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSFoundT_Layer0

TH1F* m_neuroSWTSSW2DSelTSFoundT_Layer0 = nullptr
private

Found time of selected track segments in layer 0.

Definition at line 539 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSFoundT_Layer1

TH1F* m_neuroSWTSSW2DSelTSFoundT_Layer1 = nullptr
private

Found time of selected track segments in layer 1.

Definition at line 540 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSFoundT_Layer2

TH1F* m_neuroSWTSSW2DSelTSFoundT_Layer2 = nullptr
private

Found time of selected track segments in layer 2.

Definition at line 541 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSFoundT_Layer3

TH1F* m_neuroSWTSSW2DSelTSFoundT_Layer3 = nullptr
private

Found time of selected track segments in layer 3.

Definition at line 542 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSFoundT_Layer4

TH1F* m_neuroSWTSSW2DSelTSFoundT_Layer4 = nullptr
private

Found time of selected track segments in layer 4.

Definition at line 543 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSFoundT_Layer5

TH1F* m_neuroSWTSSW2DSelTSFoundT_Layer5 = nullptr
private

Found time of selected track segments in layer 5.

Definition at line 544 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSFoundT_Layer6

TH1F* m_neuroSWTSSW2DSelTSFoundT_Layer6 = nullptr
private

Found time of selected track segments in layer 6.

Definition at line 545 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSFoundT_Layer7

TH1F* m_neuroSWTSSW2DSelTSFoundT_Layer7 = nullptr
private

Found time of selected track segments in layer 7.

Definition at line 546 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSFoundT_Layer8

TH1F* m_neuroSWTSSW2DSelTSFoundT_Layer8 = nullptr
private

Found time of selected track segments in layer 8.

Definition at line 547 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSID

TH1F* m_neuroSWTSSW2DSelTSID = nullptr
private

ID of incoming track segments.

Definition at line 528 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSLR_Layer0

TH1F* m_neuroSWTSSW2DSelTSLR_Layer0 = nullptr
private

Left/Right of track segments in layer 0.

Definition at line 559 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSLR_Layer1

TH1F* m_neuroSWTSSW2DSelTSLR_Layer1 = nullptr
private

Left/Right of track segments in layer 1.

Definition at line 560 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSLR_Layer2

TH1F* m_neuroSWTSSW2DSelTSLR_Layer2 = nullptr
private

Left/Right of track segments in layer 2.

Definition at line 561 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSLR_Layer3

TH1F* m_neuroSWTSSW2DSelTSLR_Layer3 = nullptr
private

Left/Right of track segments in layer 3.

Definition at line 562 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSLR_Layer4

TH1F* m_neuroSWTSSW2DSelTSLR_Layer4 = nullptr
private

Left/Right of track segments in layer 4.

Definition at line 563 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSLR_Layer5

TH1F* m_neuroSWTSSW2DSelTSLR_Layer5 = nullptr
private

Left/Right of track segments in layer 5.

Definition at line 564 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSLR_Layer6

TH1F* m_neuroSWTSSW2DSelTSLR_Layer6 = nullptr
private

Left/Right of track segments in layer 6.

Definition at line 565 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSLR_Layer7

TH1F* m_neuroSWTSSW2DSelTSLR_Layer7 = nullptr
private

Left/Right of track segments in layer 7.

Definition at line 566 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSLR_Layer8

TH1F* m_neuroSWTSSW2DSelTSLR_Layer8 = nullptr
private

Left/Right of track segments in layer 8.

Definition at line 567 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSPrioB_Layer0

TH1F* m_neuroSWTSSW2DSelTSPrioB_Layer0 = nullptr
private

Priority bits of track segments in layer 0.

Definition at line 549 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSPrioB_Layer1

TH1F* m_neuroSWTSSW2DSelTSPrioB_Layer1 = nullptr
private

Priority bits of track segments in layer 1.

Definition at line 550 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSPrioB_Layer2

TH1F* m_neuroSWTSSW2DSelTSPrioB_Layer2 = nullptr
private

Priority bits of track segments in layer 2.

Definition at line 551 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSPrioB_Layer3

TH1F* m_neuroSWTSSW2DSelTSPrioB_Layer3 = nullptr
private

Priority bits of track segments in layer 3.

Definition at line 552 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSPrioB_Layer4

TH1F* m_neuroSWTSSW2DSelTSPrioB_Layer4 = nullptr
private

Priority bits of track segments in layer 4.

Definition at line 553 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSPrioB_Layer5

TH1F* m_neuroSWTSSW2DSelTSPrioB_Layer5 = nullptr
private

Priority bits of track segments in layer 5.

Definition at line 554 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSPrioB_Layer6

TH1F* m_neuroSWTSSW2DSelTSPrioB_Layer6 = nullptr
private

Priority bits of track segments in layer 6.

Definition at line 555 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSPrioB_Layer7

TH1F* m_neuroSWTSSW2DSelTSPrioB_Layer7 = nullptr
private

Priority bits of track segments in layer 7.

Definition at line 556 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSPrioB_Layer8

TH1F* m_neuroSWTSSW2DSelTSPrioB_Layer8 = nullptr
private

Priority bits of track segments in layer 8.

Definition at line 557 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSPrioT_Layer0

TH1F* m_neuroSWTSSW2DSelTSPrioT_Layer0 = nullptr
private

Priority time of selected track segments in layer 0.

Definition at line 530 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSPrioT_Layer1

TH1F* m_neuroSWTSSW2DSelTSPrioT_Layer1 = nullptr
private

Priority time of selected track segments in layer 1.

Definition at line 531 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSPrioT_Layer2

TH1F* m_neuroSWTSSW2DSelTSPrioT_Layer2 = nullptr
private

Priority time of selected track segments in layer 2.

Definition at line 532 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSPrioT_Layer3

TH1F* m_neuroSWTSSW2DSelTSPrioT_Layer3 = nullptr
private

Priority time of selected track segments in layer 3.

Definition at line 533 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSPrioT_Layer4

TH1F* m_neuroSWTSSW2DSelTSPrioT_Layer4 = nullptr
private

Priority time of selected track segments in layer 4.

Definition at line 534 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSPrioT_Layer5

TH1F* m_neuroSWTSSW2DSelTSPrioT_Layer5 = nullptr
private

Priority time of selected track segments in layer 5.

Definition at line 535 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSPrioT_Layer6

TH1F* m_neuroSWTSSW2DSelTSPrioT_Layer6 = nullptr
private

Priority time of selected track segments in layer 6.

Definition at line 536 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSPrioT_Layer7

TH1F* m_neuroSWTSSW2DSelTSPrioT_Layer7 = nullptr
private

Priority time of selected track segments in layer 7.

Definition at line 537 of file CDCTriggerNeuroDQMModule.h.

◆ m_neuroSWTSSW2DSelTSPrioT_Layer8

TH1F* m_neuroSWTSSW2DSelTSPrioT_Layer8 = nullptr
private

Priority time of selected track segments in layer 8.

Definition at line 538 of file CDCTriggerNeuroDQMModule.h.

◆ m_nsamets

int m_nsamets
private

Number of identical track segments to be required for matching between HW and SW Neurotrigger.

Definition at line 173 of file CDCTriggerNeuroDQMModule.h.

◆ m_package

std::string m_package
privateinherited

Package this module is found in (may be empty).

Definition at line 510 of file Module.h.

◆ m_propertyFlags

unsigned int m_propertyFlags
privateinherited

The properties of the module as bitwise or (with |) of EModulePropFlags.

Definition at line 512 of file Module.h.

◆ m_RecoCosTheta

TH1F* m_RecoCosTheta = nullptr
private

reconstructed cos(theta)

Definition at line 660 of file CDCTriggerNeuroDQMModule.h.

◆ m_RecoD0

TH1F* m_RecoD0 = nullptr
private

reconstructed d0

Definition at line 663 of file CDCTriggerNeuroDQMModule.h.

◆ m_RecoHWCosTheta

TH1F* m_RecoHWCosTheta = nullptr
private

matched to HW reconstructed cos(theta)

Definition at line 668 of file CDCTriggerNeuroDQMModule.h.

◆ m_RecoHWD0

TH1F* m_RecoHWD0 = nullptr
private

matched to HW reconstructed d0

Definition at line 671 of file CDCTriggerNeuroDQMModule.h.

◆ m_RecoHWInvPt

TH1F* m_RecoHWInvPt = nullptr
private

matched to HW reconstructed inverse Pt

Definition at line 669 of file CDCTriggerNeuroDQMModule.h.

◆ m_RecoHWPhi

TH1F* m_RecoHWPhi = nullptr
private

matched to HW reconstructed phi

Definition at line 670 of file CDCTriggerNeuroDQMModule.h.

◆ m_RecoHWZ

TH1F* m_RecoHWZ = nullptr
private

matched to HW reconstructed z

Definition at line 667 of file CDCTriggerNeuroDQMModule.h.

◆ m_RecoHWZScatter

TH2F* m_RecoHWZScatter = nullptr
private

matched to HW reconstructed z scatter plot

Definition at line 672 of file CDCTriggerNeuroDQMModule.h.

◆ m_RecoInvPt

TH1F* m_RecoInvPt = nullptr
private

reconstructed inverse Pt

Definition at line 661 of file CDCTriggerNeuroDQMModule.h.

◆ m_RecoPhi

TH1F* m_RecoPhi = nullptr
private

reconstructed phi

Definition at line 662 of file CDCTriggerNeuroDQMModule.h.

◆ m_RecoSWCosTheta

TH1F* m_RecoSWCosTheta = nullptr
private

matched to SW reconstructed cos(theta)

Definition at line 691 of file CDCTriggerNeuroDQMModule.h.

◆ m_RecoSWD0

TH1F* m_RecoSWD0 = nullptr
private

matched to SW reconstructed d0

Definition at line 694 of file CDCTriggerNeuroDQMModule.h.

◆ m_RecoSWInvPt

TH1F* m_RecoSWInvPt = nullptr
private

matched to SW reconstructed inverse Pt

Definition at line 692 of file CDCTriggerNeuroDQMModule.h.

◆ m_RecoSWPhi

TH1F* m_RecoSWPhi = nullptr
private

matched to SW reconstructed phi

Definition at line 693 of file CDCTriggerNeuroDQMModule.h.

◆ m_RecoSWTSSW2DCosTheta

TH1F* m_RecoSWTSSW2DCosTheta = nullptr
private

matched to SWTSSW2DSWNN reconstructed cos(theta)

Definition at line 714 of file CDCTriggerNeuroDQMModule.h.

◆ m_RecoSWTSSW2DD0

TH1F* m_RecoSWTSSW2DD0 = nullptr
private

matched to SWTSSW2DSWNN reconstructed d0

Definition at line 717 of file CDCTriggerNeuroDQMModule.h.

◆ m_RecoSWTSSW2DInvPt

TH1F* m_RecoSWTSSW2DInvPt = nullptr
private

matched to SWTSSW2DSWNN reconstructed inverse Pt

Definition at line 715 of file CDCTriggerNeuroDQMModule.h.

◆ m_RecoSWTSSW2DPhi

TH1F* m_RecoSWTSSW2DPhi = nullptr
private

matched to SWTSSW2DSWNN reconstructed phi

Definition at line 716 of file CDCTriggerNeuroDQMModule.h.

◆ m_RecoSWTSSW2DZ

TH1F* m_RecoSWTSSW2DZ = nullptr
private

matched to SWTSSW2DSWNN reconstructed z

Definition at line 713 of file CDCTriggerNeuroDQMModule.h.

◆ m_RecoSWTSSW2DZScatter

TH2F* m_RecoSWTSSW2DZScatter = nullptr
private

matched to SWTSSW2DSWNN reconstructed z scatter plot

Definition at line 718 of file CDCTriggerNeuroDQMModule.h.

◆ m_RecoSWZ

TH1F* m_RecoSWZ = nullptr
private

matched to SW reconstructed z

Definition at line 690 of file CDCTriggerNeuroDQMModule.h.

◆ m_RecoSWZScatter

TH2F* m_RecoSWZScatter = nullptr
private

matched to SW reconstructed z scatter plot

Definition at line 695 of file CDCTriggerNeuroDQMModule.h.

◆ m_RecoTrackCount

TH1F* m_RecoTrackCount = nullptr
private

number of reconstructed tracks per event

Definition at line 664 of file CDCTriggerNeuroDQMModule.h.

◆ m_recoTrackMultiplicity

int m_recoTrackMultiplicity
private

Select events with a specific RecoTrack track multiplicity.

-1 for all events

Definition at line 196 of file CDCTriggerNeuroDQMModule.h.

◆ m_RecoTracks

StoreArray<RecoTrack> m_RecoTracks
private

StoreArray for RecoTracks.

Definition at line 235 of file CDCTriggerNeuroDQMModule.h.

◆ m_recoTracksName

std::string m_recoTracksName
private

Name for the RecoTrack array name.

Definition at line 214 of file CDCTriggerNeuroDQMModule.h.

◆ m_RecoZ

TH1F* m_RecoZ = nullptr
private

reconstructed z

Definition at line 659 of file CDCTriggerNeuroDQMModule.h.

◆ m_returnValue

int m_returnValue
privateinherited

The return value.

Definition at line 519 of file Module.h.

◆ m_showRecoTracks

bool m_showRecoTracks
private

Switch to turn on a comparison with the reconstruction.

Definition at line 194 of file CDCTriggerNeuroDQMModule.h.

◆ m_sim2DTracksSWTS

StoreArray<CDCTriggerTrack> m_sim2DTracksSWTS
private

StoreArray for simulated 2D finder tracks using simulated TS.

Definition at line 240 of file CDCTriggerNeuroDQMModule.h.

◆ m_sim2DTracksSWTSName

std::string m_sim2DTracksSWTSName
private

Name for simulated 2D finder tracks using simulated TS.

Definition at line 207 of file CDCTriggerNeuroDQMModule.h.

◆ m_simDiffTS

TH1F* m_simDiffTS = nullptr
private

number of TS selcted in TSIM but not in unpacked

Definition at line 306 of file CDCTriggerNeuroDQMModule.h.

◆ m_simNeuroInputVector

StoreArray<CDCTriggerMLPInput> m_simNeuroInputVector
private

StoreArray for neuro input vector from TSIM.

Definition at line 233 of file CDCTriggerNeuroDQMModule.h.

◆ m_simNeuroInputVectorName

std::string m_simNeuroInputVectorName
private

Name for simulated neuro input vector using HW TS, HW 2D.

Definition at line 192 of file CDCTriggerNeuroDQMModule.h.

◆ m_simNeuroInputVectorSWTSSW2D

StoreArray<CDCTriggerMLPInput> m_simNeuroInputVectorSWTSSW2D
private

StoreArray for neuro input vector using simulated TS and simulated 2D.

Definition at line 242 of file CDCTriggerNeuroDQMModule.h.

◆ m_simNeuroInputVectorSWTSSW2DName

std::string m_simNeuroInputVectorSWTSSW2DName
private

Name for neuro input vector using simulated TS and simulated 2D.

Definition at line 211 of file CDCTriggerNeuroDQMModule.h.

◆ m_simNeuroTracks

StoreArray<CDCTriggerTrack> m_simNeuroTracks
private

StoreArray for neuro tracks from TSIM.

Definition at line 231 of file CDCTriggerNeuroDQMModule.h.

◆ m_simNeuroTracksName

std::string m_simNeuroTracksName
private

Name for neuro tracks from TSIM using HW TS, HW 2D.

Definition at line 190 of file CDCTriggerNeuroDQMModule.h.

◆ m_simNeuroTracksSWTSSW2D

StoreArray<CDCTriggerTrack> m_simNeuroTracksSWTSSW2D
private

StoreArray for neuro tracks using simulated TS and simulated 2D.

Definition at line 244 of file CDCTriggerNeuroDQMModule.h.

◆ m_simNeuroTracksSWTSSW2DName

std::string m_simNeuroTracksSWTSSW2DName
private

Name for neuro tracks using simulated TS and simulated 2D.

Definition at line 209 of file CDCTriggerNeuroDQMModule.h.

◆ m_simSameTS

TH1F* m_simSameTS = nullptr
private

number of TS selected in both, unpacked and TSIM tracks

Definition at line 305 of file CDCTriggerNeuroDQMModule.h.

◆ m_simSegmentHits

StoreArray<CDCTriggerSegmentHit> m_simSegmentHits
private

StoreArray for simulated TS hits.

Definition at line 238 of file CDCTriggerNeuroDQMModule.h.

◆ m_simSegmentHitsName

std::string m_simSegmentHitsName
private

Name for simulated TS hits.

Definition at line 205 of file CDCTriggerNeuroDQMModule.h.

◆ m_skipWithoutHWTS

bool m_skipWithoutHWTS
private

Switch to skip events without unpacked TS.

Definition at line 198 of file CDCTriggerNeuroDQMModule.h.

◆ m_type

std::string m_type
privateinherited

The type of the module, saved as a string.

Definition at line 509 of file Module.h.

◆ m_unpacked2DTracks

StoreArray<CDCTriggerTrack> m_unpacked2DTracks
private

StoreArray for 2D finder tracks from unpacker.

Definition at line 221 of file CDCTriggerNeuroDQMModule.h.

◆ m_unpacked2DTracksName

std::string m_unpacked2DTracksName
private

Name for 2D finder tracks from unpacker.

Definition at line 178 of file CDCTriggerNeuroDQMModule.h.

◆ m_unpackedNeuroInput2DTracks

StoreArray<CDCTriggerTrack> m_unpackedNeuroInput2DTracks
private

StoreArray for neuro input 2dfinder tracks.

Definition at line 227 of file CDCTriggerNeuroDQMModule.h.

◆ m_unpackedNeuroInput2DTracksName

std::string m_unpackedNeuroInput2DTracksName
private

Name for neuro input 2d finder tracks.

Definition at line 184 of file CDCTriggerNeuroDQMModule.h.

◆ m_unpackedNeuroInputSegments

StoreArray<CDCTriggerSegmentHit> m_unpackedNeuroInputSegments
private

StoreArray for neuro input Track segments.

Definition at line 229 of file CDCTriggerNeuroDQMModule.h.

◆ m_unpackedNeuroInputSegmentsName

std::string m_unpackedNeuroInputSegmentsName
private

Name for neuro input Track segments.

Definition at line 186 of file CDCTriggerNeuroDQMModule.h.

◆ m_unpackedNeuroInputVector

StoreArray<CDCTriggerMLPInput> m_unpackedNeuroInputVector
private

StoreArray for neuro input vector from unpacker.

Definition at line 225 of file CDCTriggerNeuroDQMModule.h.

◆ m_unpackedNeuroInputVectorName

std::string m_unpackedNeuroInputVectorName
private

Name for neuro input vector from unpacker.

Definition at line 182 of file CDCTriggerNeuroDQMModule.h.

◆ m_unpackedNeuroTracks

StoreArray<CDCTriggerTrack> m_unpackedNeuroTracks
private

StoreArray for neuro tracks from unpacker.

Definition at line 223 of file CDCTriggerNeuroDQMModule.h.

◆ m_unpackedNeuroTracksName

std::string m_unpackedNeuroTracksName
private

Name for neuro tracks from unpacker.

Definition at line 180 of file CDCTriggerNeuroDQMModule.h.

◆ m_unpackedSegmentHits

StoreArray<CDCTriggerSegmentHit> m_unpackedSegmentHits
private

StoreArray for TS hits from unpacker.

Definition at line 219 of file CDCTriggerNeuroDQMModule.h.

◆ m_unpackedSegmentHitsName

std::string m_unpackedSegmentHitsName
private

Name for TS hits from unpacker.

Definition at line 176 of file CDCTriggerNeuroDQMModule.h.


The documentation for this class was generated from the following files: