Belle II Software development
HitXPModule Class Reference

This module from a data root file builds a tree of hitXP (see the class to know all the information contained). More...

#include <HitXPModule.h>

Inheritance diagram for HitXPModule:
Module PathElement

Public Types

enum  EModulePropFlags {
  c_Input = 1 ,
  c_Output = 2 ,
  c_ParallelProcessingCertified = 4 ,
  c_HistogramManager = 8 ,
  c_InternalSerializer = 16 ,
  c_TerminateInAllProcesses = 32 ,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

 HitXPModule ()
 
void initialize () override
 Initialize the Module.
 
void beginRun () override
 Called when entering a new run.
 
void event () override
 This method is the core of the module.
 
void endRun () override
 This method is called if the current run ends.
 
void terminate () override
 This method is called at the end of the event processing.
 
virtual std::vector< std::string > getFileNames (bool outputFiles)
 Return a list of output filenames for this modules.
 
const std::string & getName () const
 Returns the name of the module.
 
const std::string & getType () const
 Returns the type of the module (i.e.
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module.
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties.
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level.
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module.
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module.
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module.
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true.
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished.
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module.
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter.
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module.
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module.
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters.
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Protected Member Functions

virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python.
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side.
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module.
 
void setType (const std::string &type)
 Set the module type.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module.
 
void setReturnValue (int value)
 Sets the return value for this module as integer.
 
void setReturnValue (bool value)
 Sets the return value for this module as bool.
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Private Member Functions

std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects.
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary.
 

Private Attributes

TTree * m_tree = nullptr
 full output tree
 
TFile * m_outputFile = nullptr
 output file
 
std::vector< hitXPm_hitXP
 vector of the hitXP, used to fill the output tree
 
std::set< hitXP, hitXP::timeComparem_hitXPSet
 set of the hitXP, used to order tn time he hit
 
bool c_addTree
 parameter to produce additional tree
 
int m_trackNumber = 0
 iterative number of the track in the run
 
int m_eventNumber = 0
 interative number of the event in the run
 
int m_numberHitPerTrack = 0
 counter of the number of the hit for each track
 
int m_trackIterator = 0
 iterator used to count track (m_trackNumber)
 
int m_eventIterator = 0
 iterator used to count event number (m_eventNumber)
 
TTree * m_treeSel = nullptr
 selected output tree
 
TFile * m_outputFileSel = nullptr
 selected output file
 
std::vector< hitXPm_hitXPSel
 selected vector of hitXP
 
int m_trackNumberSel = 0
 selected iterative number of the track in the run
 
int m_eventNumberSel = 0
 selected interative number of the event in the run
 
int m_numberHitPerTrackSel = 0
 selected counter of the number of the hit for each track
 
TTree * m_treeTiSel = nullptr
 tight selected output tree
 
TFile * m_outputFileTiSel = nullptr
 tight selected output file
 
std::vector< hitXPm_hitXPTiSel
 tight selected vector of hitXP
 
int m_trackNumberTiSel = 0
 tight selected iterative number of the track in the run
 
int m_eventNumberTiSel = 0
 tight selected interative number of the event in the run
 
int m_numberHitPerTrackTiSel = 0
 tight selected counter of the number of the hit for each track
 
TFile * m_outputFileExt = nullptr
 external output file
 
TTree * m_treeExt = nullptr
 external output tree
 
std::vector< double > m_EpositionEntryX
 external position at entry point, coordinate x
 
std::vector< double > m_EpositionEntryY
 external position at entry point, coordinate y
 
std::vector< double > m_EpositionEntryZ
 external position at entry point, coordinate z
 
std::vector< double > m_EmomentumEntryX
 external momentum at entry point, coordinate x
 
std::vector< double > m_EmomentumEntryY
 external momentum at entry point, coordinate x
 
std::vector< double > m_EmomentumEntryZ
 external momentum at entry point, coordinate x
 
std::vector< double > m_EpositionLocalEntryX
 external local position at entry point, coordinate x
 
std::vector< double > m_EpositionLocalEntryY
 external local position at entry point, coordinate y
 
std::vector< double > m_EpositionLocalEntryZ
 external local position at entry point, coordinate z
 
std::vector< int > m_EPDGID
 external PDGID
 
std::vector< double > m_Eposition0X
 external position at IP, coordinate x
 
std::vector< double > m_Eposition0Y
 external position at IP, coordinate y
 
std::vector< double > m_Eposition0Z
 external position at IP, coordinate z
 
std::vector< double > m_Emomentum0X
 external momentum at IP, coordinate x
 
std::vector< double > m_Emomentum0Y
 external momentum at IP, coordinate y
 
std::vector< double > m_Emomentum0Z
 external momentum at IP, coordinate z
 
std::vector< double > m_Etime
 external time of the hit
 
std::vector< int > m_EsensorSensor
 external sensor of the hit
 
std::vector< int > m_EsensorLayer
 external layer of the hit
 
std::vector< int > m_EsensorLadder
 external ladder of the hit
 
std::vector< int > m_Ereconstructed
 external flag of track-reconstruction or not
 
std::vector< int > m_EclusterU
 external flag of u-cluster
 
std::vector< int > m_EclusterV
 external flag of v-cluster
 
std::vector< double > m_Echarge
 external charge
 
int m_EtrackNumber = 0
 external iterator of track in the run
 
int m_EeventNumber = 0
 external iterator of event in the run
 
int m_EnumberHitPerTrack = 0
 external number of the hit for each track
 
std::vector< double > m_EomegaEntry
 external omega parameter at entry point
 
std::vector< double > m_Eomega0
 external omega parameter at IP
 
std::vector< double > m_Ed0Entry
 external d0 parameter at entry point
 
std::vector< double > m_Ed00
 external d0 parameter at IP
 
std::vector< double > m_Ephi0Entry
 external phi0 parameter at entry point
 
std::vector< double > m_Ephi00
 external phi0 parameter at IP
 
std::vector< double > m_Ez0Entry
 external z0 parameter at entry point
 
std::vector< double > m_Ez00
 external z0 parameter at IP
 
std::vector< double > m_EtanlambdaEntry
 external tanlambda parameter at entry point
 
std::vector< double > m_Etanlambda0
 external tanlambda parameter at IP
 
int m_Eprimary = 0
 external flag for primary particles
 
StoreArray< MCParticlem_MCParticles
 MCParticles StoreArray.
 
std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 

Detailed Description

This module from a data root file builds a tree of hitXP (see the class to know all the information contained).

The tree filled with tracks (so each "event" is a track), as vector of hitXP.

The module create 4 tree:

  • one complete (TTree_hitXP.root),
  • one with only tracks with at least one hit per SVD layer (TTree_hitXPSel.root)
  • one with only tracks with exactly one hit per SVD layer, so no overlap are allowed (TTree_hitXPTiSel.root)
  • one that does not use hitXP class but uses standard classes, it is lighter and contains less information but is usable externally from basf2 (TTree_hitXP_ext.root)

Definition at line 41 of file HitXPModule.h.

Member Typedef Documentation

◆ EAfterConditionPath

Forward the EAfterConditionPath definition from the ModuleCondition.

Definition at line 88 of file Module.h.

Member Enumeration Documentation

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 77 of file Module.h.

77 {
78 c_Input = 1,
79 c_Output = 2,
85 };
@ c_HistogramManager
This module is used to manage histograms accumulated by other modules.
Definition: Module.h:81
@ c_Input
This module is an input module (reads data).
Definition: Module.h:78
@ c_DontCollectStatistics
No statistics is collected for this module.
Definition: Module.h:84
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
Definition: Module.h:80
@ c_InternalSerializer
This module is an internal serializer/deserializer for parallel processing.
Definition: Module.h:82
@ c_Output
This module is an output module (writes data).
Definition: Module.h:79
@ c_TerminateInAllProcesses
When using parallel processing, call this module's terminate() function in all processes().
Definition: Module.h:83

Constructor & Destructor Documentation

◆ HitXPModule()

write validation plots

Definition at line 25 of file HitXPModule.cc.

25 : Module()
26{
27 setDescription("This module builds a TTree with true hit information (momentum, position, PDGID, and track parameters hit per hit) running over simulated and reconstructed events.");
28
30 addParam("additionalTree", c_addTree,
31 "produce two additional tree with reduced date: selTree (track with at least one hit per layer), tiSelTree (track with one hit per layer)",
32 false);
33
34}
bool c_addTree
parameter to produce additional tree
Definition: HitXPModule.h:70
void setDescription(const std::string &description)
Sets the description of the module.
Definition: Module.cc:214
Module()
Constructor.
Definition: Module.cc:30
void addParam(const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
Definition: Module.h:560

◆ ~HitXPModule()

Definition at line 37 of file HitXPModule.cc.

38{
39}

Member Function Documentation

◆ beginRun()

void beginRun ( void  )
overridevirtual

Called when entering a new run.


Reimplemented from Module.

Definition at line 152 of file HitXPModule.cc.

152{}

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 179 of file Module.cc.

180{
182 newModule->m_moduleParamList.setParameters(getParamList());
183 newModule->setName(getName());
184 newModule->m_package = m_package;
185 newModule->m_propertyFlags = m_propertyFlags;
186 newModule->m_logConfig = m_logConfig;
187 newModule->m_conditions = m_conditions;
188
189 return newModule;
190}
std::shared_ptr< Module > registerModule(const std::string &moduleName, std::string sharedLibPath="") noexcept(false)
Creates an instance of a module and registers it to the ModuleManager.
static ModuleManager & Instance()
Exception is thrown if the requested module could not be created by the ModuleManager.
const ModuleParamList & getParamList() const
Return module param list.
Definition: Module.h:363
const std::string & getName() const
Returns the name of the module.
Definition: Module.h:187
const std::string & getType() const
Returns the type of the module (i.e.
Definition: Module.cc:41
unsigned int m_propertyFlags
The properties of the module as bitwise or (with |) of EModulePropFlags.
Definition: Module.h:512
LogConfig m_logConfig
The log system configuration of the module.
Definition: Module.h:514
std::vector< ModuleCondition > m_conditions
Module condition, only non-null if set.
Definition: Module.h:521
std::string m_package
Package this module is found in (may be empty).
Definition: Module.h:510
std::shared_ptr< Module > ModulePtr
Defines a pointer to a module object as a boost shared pointer.
Definition: Module.h:43

◆ def_beginRun()

virtual void def_beginRun ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 426 of file Module.h.

426{ beginRun(); }
virtual void beginRun()
Called when entering a new run.
Definition: Module.h:147

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 439 of file Module.h.

439{ endRun(); }
virtual void endRun()
This method is called if the current run ends.
Definition: Module.h:166

◆ def_event()

virtual void def_event ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 432 of file Module.h.

432{ event(); }
virtual void event()
This method is the core of the module.
Definition: Module.h:157

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 420 of file Module.h.

420{ initialize(); }
virtual void initialize()
Initialize the Module.
Definition: Module.h:109

◆ def_terminate()

virtual void def_terminate ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 445 of file Module.h.

445{ terminate(); }
virtual void terminate()
This method is called at the end of the event processing.
Definition: Module.h:176

◆ endRun()

void endRun ( void  )
overridevirtual

This method is called if the current run ends.

Reimplemented from Module.

Definition at line 353 of file HitXPModule.cc.

354{
355 m_outputFile->cd();
356 m_tree->Write();
357 m_outputFile->Close();
358
359 if (c_addTree) {
360 //-------------------------------------------------------------------------------------------------//
361 //------------------------------------selected Tree storage--------------------------------------//
362 //-------------------------------------------------------------------------------------------------//
363 m_outputFileSel->cd();
364 m_treeSel->Write();
365 m_outputFileSel->Close();
366
367
368 //-------------------------------------------------------------------------------------------------//
369 //------------------------------------tight selected Tree storage--------------------------------------//
370 //-------------------------------------------------------------------------------------------------//
371 m_outputFileTiSel->cd();
372 m_treeTiSel->Write();
373 m_outputFileTiSel->Close();
374 }
375
376
377 //-------------------------------------------------------------------------------------------------//
378 //------------------------------------external Tree storage--------------------------------------//
379 //-------------------------------------------------------------------------------------------------//
380 m_outputFileExt->cd();
381 m_treeExt->Write();
382 m_outputFileExt->Close();
383}
TFile * m_outputFile
output file
Definition: HitXPModule.h:67
TTree * m_treeTiSel
tight selected output tree
Definition: HitXPModule.h:85
TTree * m_tree
full output tree
Definition: HitXPModule.h:66
TTree * m_treeExt
external output tree
Definition: HitXPModule.h:93
TFile * m_outputFileSel
selected output file
Definition: HitXPModule.h:79
TTree * m_treeSel
selected output tree
Definition: HitXPModule.h:78
TFile * m_outputFileTiSel
tight selected output file
Definition: HitXPModule.h:86
TFile * m_outputFileExt
external output file
Definition: HitXPModule.h:92

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 96 of file Module.cc.

97{
98 if (m_conditions.empty()) return false;
99
100 //okay, a condition was set for this Module...
101 if (!m_hasReturnValue) {
102 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
103 }
104
105 for (const auto& condition : m_conditions) {
106 if (condition.evaluate(m_returnValue)) {
107 return true;
108 }
109 }
110 return false;
111}
int m_returnValue
The return value.
Definition: Module.h:519
bool m_hasReturnValue
True, if the return value is set.
Definition: Module.h:518

◆ event()

void event ( void  )
overridevirtual

This method is the core of the module.

This method is called for each event. All processing of the event has to take place in this method.

this selection take tracks that have at least one hit in each layer, and make 4-hit-tracks selecting first hit found on each layer.

this selection takes tracks that have exactly one hit on each layer, so cut away overlap from selected tree

Reimplemented from Module.

Definition at line 154 of file HitXPModule.cc.

155{
157 m_EeventNumber = m_eventIterator; //------------External Tree---------//
159
160
161 for (const MCParticle& particle : m_MCParticles) {
162 m_Eprimary = particle.getStatus();
163 for (const SVDTrueHit& hit : particle.getRelationsTo<SVDTrueHit>()) {
164 if (hit.getRelationsFrom<SVDCluster>().size() > 0) {
165 VxdID trueHitSensorID = hit.getSensorID();
166 const VXD::SensorInfoBase& sensorInfo = VXD::GeoCache::getInstance().getSensorInfo(trueHitSensorID);
167 const SVDCluster* cluster = hit.getRelationsFrom<SVDCluster>()[0];
168 hitXPDerivate entry(hit, *cluster, particle, sensorInfo);
169 int NClusterU = 0;
170 int NClusterV = 0;
171 for (SVDCluster Ncluster : hit.getRelationsFrom<SVDCluster>()) {
172 if (Ncluster.isUCluster()) NClusterU++;
173 else NClusterV++;
174 }
175 entry.setClusterU(NClusterU);
176 entry.setClusterV(NClusterV);
177
178 bool isReconstructed(false);
179 for (const RecoTrack& aRecoTrack : particle.getRelationsFrom<RecoTrack>())
180 isReconstructed |= aRecoTrack.hasSVDHits();
181 entry.setReconstructed(isReconstructed);
182 m_hitXPSet.insert(entry);
183 }
184 }
186 m_EtrackNumber = m_trackIterator; //----------------External Tree ----------------//
188
189 for (auto element : m_hitXPSet) {
190 m_hitXP.push_back(element);
191
192 //-----------------External Tree ---------------------------- //
193 m_EpositionEntryX.push_back(element.m_positionEntry.x());
194 m_EpositionEntryY.push_back(element.m_positionEntry.y());
195 m_EpositionEntryZ.push_back(element.m_positionEntry.z());
196 m_EmomentumEntryX.push_back(element.m_momentumEntry.x());
197 m_EmomentumEntryY.push_back(element.m_momentumEntry.y());
198 m_EmomentumEntryZ.push_back(element.m_momentumEntry.z());
199 m_EpositionLocalEntryX.push_back(element.m_positionLocalEntry.x());
200 m_EpositionLocalEntryY.push_back(element.m_positionLocalEntry.y());
201 m_EpositionLocalEntryZ.push_back(element.m_positionLocalEntry.z());
202 m_EPDGID.push_back(element.m_PDGID);
203 m_Eposition0X.push_back(element.m_position0.x());
204 m_Eposition0Y.push_back(element.m_position0.y());
205 m_Eposition0Z.push_back(element.m_position0.z());
206 m_Emomentum0X.push_back(element.m_momentum0.x());
207 m_Emomentum0Y.push_back(element.m_momentum0.y());
208 m_Emomentum0Z.push_back(element.m_momentum0.z());
209 m_Etime.push_back(element.m_time);
210 m_EsensorSensor.push_back(element.m_sensorSensor);
211 m_EsensorLayer.push_back(element.m_sensorLayer);
212 m_EsensorLadder.push_back(element.m_sensorLadder);
213 m_Ereconstructed.push_back(element.m_reconstructed);
214 m_EclusterU.push_back(element.m_clusterU);
215 m_EclusterV.push_back(element.m_clusterV);
216 m_Echarge.push_back(element.m_charge);
217 m_EomegaEntry.push_back(element.getOmegaEntry());
218 m_Eomega0.push_back(element.getOmega0());
219 m_Ed0Entry.push_back(element.getD0Entry());
220 m_Ed00.push_back(element.getD00());
221 m_Ephi0Entry.push_back(element.getPhi0Entry());
222 m_Ephi00.push_back(element.getPhi00());
223 m_Ez0Entry.push_back(element.getZ0Entry());
224 m_Ez00.push_back(element.getZ00());
225 m_EtanlambdaEntry.push_back(element.getTanLambdaEntry());
226 m_Etanlambda0.push_back(element.getTanLambda0());
227 }
229 m_EnumberHitPerTrack = m_hitXP.size(); //-------external tree--------------//
230
231
232 m_tree->Fill();
233
234 //-------external tree--------------//
235 m_treeExt->Fill();
236 m_EpositionEntryX.clear();
237 m_EpositionEntryY.clear();
238 m_EpositionEntryZ.clear();
239 m_EmomentumEntryX.clear();
240 m_EmomentumEntryY.clear();
241 m_EmomentumEntryZ.clear();
245 m_EPDGID.clear();
246 m_Eposition0X.clear();
247 m_Eposition0Y.clear();
248 m_Eposition0Z.clear();
249 m_Emomentum0X.clear();
250 m_Emomentum0Y.clear();
251 m_Emomentum0Z.clear();
252 m_Etime.clear();
253 m_EsensorSensor.clear();
254 m_EsensorLayer.clear();
255 m_EsensorLadder.clear();
256 m_Ereconstructed.clear();
257 m_EclusterU.clear();
258 m_EclusterV.clear();
259 m_Echarge.clear();
260 m_EomegaEntry.clear();
261 m_Eomega0.clear();
262 m_Ed0Entry.clear();
263 m_Ed00.clear();
264 m_Ephi0Entry.clear();
265 m_Ephi00.clear();
266 m_Ez0Entry.clear();
267 m_Ez00.clear();
268 m_EtanlambdaEntry.clear();
269 m_Etanlambda0.clear();
270
271
272
273 //-------------------------------------------------------------------------------------------------//
274 //------------------------------------Selected Tree creation--------------------------------------//
275 //-------------------------------------------------------------------------------------------------//
277 int f3 = 0, f4 = 0, f5 = 0, f6 = 0;
278 int layer_flag = 0;
279 unsigned int j = 0;
280 int brk = 0;
281 std::vector<hitXP> temp_hitXP;
282 while (j < m_hitXP.size() && brk == 0) {
283 if (m_hitXP[j].m_sensorLayer == 3) {
284 f3 = 1;
285 temp_hitXP.push_back(m_hitXP[j]);
286 j++;
287 while (j < m_hitXP.size() && brk == 0) {
288 if (m_hitXP[j].m_sensorLayer == 4) {
289 f4 = 1;
290 temp_hitXP.push_back(m_hitXP[j]);
291 j++;
292 while (j < m_hitXP.size() && brk == 0) {
293 if (m_hitXP[j].m_sensorLayer == 5) {
294 f5 = 1;
295 temp_hitXP.push_back(m_hitXP[j]);
296 j++;
297 while (j < m_hitXP.size() && brk == 0) {
298 if (m_hitXP[j].m_sensorLayer == 6) {
299 f6 = 1;
300 temp_hitXP.push_back(m_hitXP[j]);
301 brk = 1;
302 j++;
303 }
304 j++;
305 }
306 }
307 j++;
308 }
309 }
310 j++;
311 }
312 }
313 j++;
314 }
315 layer_flag = f3 * f4 * f5 * f6;
316 if (layer_flag != 0) {
317 int k;
318 for (k = 0; k < 4; k = k + 1) {
319 m_hitXPSel.push_back(temp_hitXP[k]);
320 }
324 m_treeSel->Fill();
325 m_hitXPSel.erase(m_hitXPSel.begin(), m_hitXPSel.end());
326 }
327
328
329
330 //-------------------------------------------------------------------------------------------------//
331 //------------------------------------Tight Selected Tree creation--------------------------------------//
332 //-------------------------------------------------------------------------------------------------//
334 if (m_numberHitPerTrack == 4 && m_hitXP[0].m_sensorLayer == 3 && m_hitXP[1].m_sensorLayer == 4
335 && m_hitXP[2].m_sensorLayer == 5 && m_hitXP[3].m_sensorLayer == 6) {
336 int h = 0;
337 for (h = 0; h < 4; h = h + 1) {
338 m_hitXPTiSel.push_back(m_hitXP[h]);
339 }
343 m_treeTiSel->Fill();
344 m_hitXPTiSel.erase(m_hitXPTiSel.begin(), m_hitXPTiSel.end());
345 }
346 m_hitXP.erase(m_hitXP.begin(), m_hitXP.end());
347 m_hitXPSet.clear();
348 }
349}
std::vector< double > m_EmomentumEntryX
external momentum at entry point, coordinate x
Definition: HitXPModule.h:97
std::vector< int > m_EclusterV
external flag of v-cluster
Definition: HitXPModule.h:116
std::vector< double > m_EomegaEntry
external omega parameter at entry point
Definition: HitXPModule.h:121
std::vector< hitXP > m_hitXPSel
selected vector of hitXP
Definition: HitXPModule.h:80
std::vector< double > m_Etanlambda0
external tanlambda parameter at IP
Definition: HitXPModule.h:130
std::vector< double > m_EtanlambdaEntry
external tanlambda parameter at entry point
Definition: HitXPModule.h:129
std::vector< int > m_EPDGID
external PDGID
Definition: HitXPModule.h:103
std::vector< int > m_EsensorLayer
external layer of the hit
Definition: HitXPModule.h:112
int m_Eprimary
external flag for primary particles
Definition: HitXPModule.h:131
std::vector< double > m_EmomentumEntryY
external momentum at entry point, coordinate x
Definition: HitXPModule.h:98
int m_eventNumberTiSel
tight selected interative number of the event in the run
Definition: HitXPModule.h:89
std::vector< double > m_EpositionLocalEntryZ
external local position at entry point, coordinate z
Definition: HitXPModule.h:102
std::vector< int > m_Ereconstructed
external flag of track-reconstruction or not
Definition: HitXPModule.h:114
std::vector< double > m_EmomentumEntryZ
external momentum at entry point, coordinate x
Definition: HitXPModule.h:99
std::vector< double > m_Etime
external time of the hit
Definition: HitXPModule.h:110
std::vector< double > m_Ephi0Entry
external phi0 parameter at entry point
Definition: HitXPModule.h:125
std::vector< double > m_Ed00
external d0 parameter at IP
Definition: HitXPModule.h:124
std::vector< int > m_EsensorSensor
external sensor of the hit
Definition: HitXPModule.h:111
int m_trackNumberSel
selected iterative number of the track in the run
Definition: HitXPModule.h:81
std::vector< double > m_Emomentum0X
external momentum at IP, coordinate x
Definition: HitXPModule.h:107
std::vector< double > m_Eposition0X
external position at IP, coordinate x
Definition: HitXPModule.h:104
std::vector< double > m_EpositionLocalEntryY
external local position at entry point, coordinate y
Definition: HitXPModule.h:101
int m_trackIterator
iterator used to count track (m_trackNumber)
Definition: HitXPModule.h:75
std::vector< int > m_EsensorLadder
external ladder of the hit
Definition: HitXPModule.h:113
std::vector< double > m_EpositionLocalEntryX
external local position at entry point, coordinate x
Definition: HitXPModule.h:100
std::vector< double > m_Emomentum0Y
external momentum at IP, coordinate y
Definition: HitXPModule.h:108
std::vector< int > m_EclusterU
external flag of u-cluster
Definition: HitXPModule.h:115
int m_EeventNumber
external iterator of event in the run
Definition: HitXPModule.h:119
std::vector< double > m_EpositionEntryX
external position at entry point, coordinate x
Definition: HitXPModule.h:94
int m_numberHitPerTrackTiSel
tight selected counter of the number of the hit for each track
Definition: HitXPModule.h:90
std::vector< hitXP > m_hitXPTiSel
tight selected vector of hitXP
Definition: HitXPModule.h:87
int m_eventNumber
interative number of the event in the run
Definition: HitXPModule.h:73
int m_numberHitPerTrack
counter of the number of the hit for each track
Definition: HitXPModule.h:74
int m_trackNumber
iterative number of the track in the run
Definition: HitXPModule.h:72
std::set< hitXP, hitXP::timeCompare > m_hitXPSet
set of the hitXP, used to order tn time he hit
Definition: HitXPModule.h:69
std::vector< double > m_EpositionEntryZ
external position at entry point, coordinate z
Definition: HitXPModule.h:96
int m_eventNumberSel
selected interative number of the event in the run
Definition: HitXPModule.h:82
std::vector< double > m_Emomentum0Z
external momentum at IP, coordinate z
Definition: HitXPModule.h:109
int m_trackNumberTiSel
tight selected iterative number of the track in the run
Definition: HitXPModule.h:88
std::vector< double > m_Ephi00
external phi0 parameter at IP
Definition: HitXPModule.h:126
std::vector< double > m_Echarge
external charge
Definition: HitXPModule.h:117
int m_numberHitPerTrackSel
selected counter of the number of the hit for each track
Definition: HitXPModule.h:83
std::vector< hitXP > m_hitXP
vector of the hitXP, used to fill the output tree
Definition: HitXPModule.h:68
int m_EtrackNumber
external iterator of track in the run
Definition: HitXPModule.h:118
std::vector< double > m_EpositionEntryY
external position at entry point, coordinate y
Definition: HitXPModule.h:95
int m_eventIterator
iterator used to count event number (m_eventNumber)
Definition: HitXPModule.h:76
std::vector< double > m_Ed0Entry
external d0 parameter at entry point
Definition: HitXPModule.h:123
StoreArray< MCParticle > m_MCParticles
MCParticles StoreArray.
Definition: HitXPModule.h:133
std::vector< double > m_Ez00
external z0 parameter at IP
Definition: HitXPModule.h:128
std::vector< double > m_Eomega0
external omega parameter at IP
Definition: HitXPModule.h:122
std::vector< double > m_Eposition0Z
external position at IP, coordinate z
Definition: HitXPModule.h:106
int m_EnumberHitPerTrack
external number of the hit for each track
Definition: HitXPModule.h:120
std::vector< double > m_Eposition0Y
external position at IP, coordinate y
Definition: HitXPModule.h:105
std::vector< double > m_Ez0Entry
external z0 parameter at entry point
Definition: HitXPModule.h:127
A Class to store the Monte Carlo particle information.
Definition: MCParticle.h:32
This is the Reconstruction Event-Data Model Track.
Definition: RecoTrack.h:79
The SVD Cluster class This class stores all information about reconstructed SVD clusters.
Definition: SVDCluster.h:29
Class SVDTrueHit - Records of tracks that either enter or leave the sensitive volume.
Definition: SVDTrueHit.h:33
const SensorInfoBase & getSensorInfo(Belle2::VxdID id) const
Return a referecne to the SensorInfo of a given SensorID.
Definition: GeoCache.cc:67
static GeoCache & getInstance()
Return a reference to the singleton instance.
Definition: GeoCache.cc:214
Base class to provide Sensor Information for PXD and SVD.
Class to uniquely identify a any structure of the PXD and SVD.
Definition: VxdID.h:33
This class is the derivate of HitXP, and complete it with a constructor that use all other complex ty...
Definition: hitXPDerivate.h:27

◆ exposePythonAPI()

void exposePythonAPI ( )
staticinherited

Exposes methods of the Module class to Python.

Definition at line 325 of file Module.cc.

326{
327 // to avoid confusion between std::arg and boost::python::arg we want a shorthand namespace as well
328 namespace bp = boost::python;
329
330 docstring_options options(true, true, false); //userdef, py sigs, c++ sigs
331
332 void (Module::*setReturnValueInt)(int) = &Module::setReturnValue;
333
334 enum_<Module::EAfterConditionPath>("AfterConditionPath",
335 R"(Determines execution behaviour after a conditional path has been executed:
336
337.. attribute:: END
338
339 End processing of this path after the conditional path. (this is the default for if_value() etc.)
340
341.. attribute:: CONTINUE
342
343 After the conditional path, resume execution after this module.)")
344 .value("END", Module::EAfterConditionPath::c_End)
345 .value("CONTINUE", Module::EAfterConditionPath::c_Continue)
346 ;
347
348 /* Do not change the names of >, <, ... we use them to serialize conditional pathes */
349 enum_<Belle2::ModuleCondition::EConditionOperators>("ConditionOperator")
356 ;
357
358 enum_<Module::EModulePropFlags>("ModulePropFlags",
359 R"(Flags to indicate certain low-level features of modules, see :func:`Module.set_property_flags()`, :func:`Module.has_properties()`. Most useful flags are:
360
361.. attribute:: PARALLELPROCESSINGCERTIFIED
362
363 This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)
364
365.. attribute:: HISTOGRAMMANAGER
366
367 This module is used to manage histograms accumulated by other modules
368
369.. attribute:: TERMINATEINALLPROCESSES
370
371 When using parallel processing, call this module's terminate() function in all processes. This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.
372)")
373 .value("INPUT", Module::EModulePropFlags::c_Input)
374 .value("OUTPUT", Module::EModulePropFlags::c_Output)
375 .value("PARALLELPROCESSINGCERTIFIED", Module::EModulePropFlags::c_ParallelProcessingCertified)
376 .value("HISTOGRAMMANAGER", Module::EModulePropFlags::c_HistogramManager)
377 .value("INTERNALSERIALIZER", Module::EModulePropFlags::c_InternalSerializer)
378 .value("TERMINATEINALLPROCESSES", Module::EModulePropFlags::c_TerminateInAllProcesses)
379 ;
380
381 //Python class definition
382 class_<Module, PyModule> module("Module", R"(
383Base class for Modules.
384
385A module is the smallest building block of the framework.
386A typical event processing chain consists of a Path containing
387modules. By inheriting from this base class, various types of
388modules can be created. To use a module, please refer to
389:func:`Path.add_module()`. A list of modules is available by running
390``basf2 -m`` or ``basf2 -m package``, detailed information on parameters is
391given by e.g. ``basf2 -m RootInput``.
392
393The 'Module Development' section in the manual provides detailed information
394on how to create modules, setting parameters, or using return values/conditions:
395https://xwiki.desy.de/xwiki/rest/p/f4fa4/#HModuleDevelopment
396
397)");
398 module
399 .def("__str__", &Module::getPathString)
400 .def("name", &Module::getName, return_value_policy<copy_const_reference>(),
401 "Returns the name of the module. Can be changed via :func:`set_name() <Module.set_name()>`, use :func:`type() <Module.type()>` for identifying a particular module class.")
402 .def("type", &Module::getType, return_value_policy<copy_const_reference>(),
403 "Returns the type of the module (i.e. class name minus 'Module')")
404 .def("set_name", &Module::setName, args("name"), R"(
405Set custom name, e.g. to distinguish multiple modules of the same type.
406
407>>> path.add_module('EventInfoSetter')
408>>> ro = path.add_module('RootOutput', branchNames=['EventMetaData'])
409>>> ro.set_name('RootOutput_metadata_only')
410>>> print(path)
411[EventInfoSetter -> RootOutput_metadata_only]
412
413)")
414 .def("description", &Module::getDescription, return_value_policy<copy_const_reference>(),
415 "Returns the description of this module.")
416 .def("package", &Module::getPackage, return_value_policy<copy_const_reference>(),
417 "Returns the package this module belongs to.")
418 .def("available_params", &_getParamInfoListPython,
419 "Return list of all module parameters as `ModuleParamInfo` instances")
420 .def("has_properties", &Module::hasProperties, (bp::arg("properties")),
421 R"DOCSTRING(Allows to check if the module has the given properties out of `ModulePropFlags` set.
422
423>>> if module.has_properties(ModulePropFlags.PARALLELPROCESSINGCERTIFIED):
424>>> ...
425
426Parameters:
427 properties (int): bitmask of `ModulePropFlags` to check for.
428)DOCSTRING")
429 .def("set_property_flags", &Module::setPropertyFlags, args("property_mask"),
430 "Set module properties in the form of an OR combination of `ModulePropFlags`.");
431 {
432 // python signature is too crowded, make ourselves
433 docstring_options subOptions(true, false, false); //userdef, py sigs, c++ sigs
434 module
435 .def("if_value", &Module::if_value,
436 (bp::arg("expression"), bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
437 R"DOCSTRING(if_value(expression, condition_path, after_condition_path=AfterConditionPath.END)
438
439Sets a conditional sub path which will be executed after this
440module if the return value set in the module passes the given ``expression``.
441
442Modules can define a return value (int or bool) using ``setReturnValue()``,
443which can be used in the steering file to split the Path based on this value, for example
444
445>>> module_with_condition.if_value("<1", another_path)
446
447In case the return value of the ``module_with_condition`` for a given event is
448less than 1, the execution will be diverted into ``another_path`` for this event.
449
450You could for example set a special return value if an error occurs, and divert
451the execution into a path containing :b2:mod:`RootOutput` if it is found;
452saving only the data producing/produced by the error.
453
454After a conditional path has executed, basf2 will by default stop processing
455the path for this event. This behaviour can be changed by setting the
456``after_condition_path`` argument.
457
458Parameters:
459 expression (str): Expression to determine if the conditional path should be executed.
460 This should be one of the comparison operators ``<``, ``>``, ``<=``,
461 ``>=``, ``==``, or ``!=`` followed by a numerical value for the return value
462 condition_path (Path): path to execute in case the expression is fulfilled
463 after_condition_path (AfterConditionPath): What to do once the ``condition_path`` has been executed.
464)DOCSTRING")
465 .def("if_false", &Module::if_false,
466 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
467 R"DOC(if_false(condition_path, after_condition_path=AfterConditionPath.END)
468
469Sets a conditional sub path which will be executed after this module if
470the return value of the module evaluates to False. This is equivalent to
471calling `if_value` with ``expression=\"<1\"``)DOC")
472 .def("if_true", &Module::if_true,
473 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
474 R"DOC(if_true(condition_path, after_condition_path=AfterConditionPath.END)
475
476Sets a conditional sub path which will be executed after this module if
477the return value of the module evaluates to True. It is equivalent to
478calling `if_value` with ``expression=\">=1\"``)DOC");
479 }
480 module
481 .def("has_condition", &Module::hasCondition,
482 "Return true if a conditional path has been set for this module "
483 "using `if_value`, `if_true` or `if_false`")
484 .def("get_all_condition_paths", &_getAllConditionPathsPython,
485 "Return a list of all conditional paths set for this module using "
486 "`if_value`, `if_true` or `if_false`")
487 .def("get_all_conditions", &_getAllConditionsPython,
488 "Return a list of all conditional path expressions set for this module using "
489 "`if_value`, `if_true` or `if_false`")
490 .add_property("logging", make_function(&Module::getLogConfig, return_value_policy<reference_existing_object>()),
@ c_GE
Greater or equal than: ">=".
@ c_SE
Smaller or equal than: "<=".
@ c_GT
Greater than: ">"
@ c_NE
Not equal: "!=".
@ c_EQ
Equal: "=" or "=="
@ c_ST
Smaller than: "<"
Base class for Modules.
Definition: Module.h:72
LogConfig & getLogConfig()
Returns the log system configuration.
Definition: Module.h:225
void if_value(const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
Add a condition to the module.
Definition: Module.cc:79
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
Definition: Module.cc:208
void if_true(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to set the condition of the module.
Definition: Module.cc:90
void setReturnValue(int value)
Sets the return value for this module as integer.
Definition: Module.cc:220
void setLogConfig(const LogConfig &logConfig)
Set the log system configuration.
Definition: Module.h:230
const std::string & getDescription() const
Returns the description of the module.
Definition: Module.h:202
void if_false(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to add a condition to the module.
Definition: Module.cc:85
bool hasCondition() const
Returns true if at least one condition was set for the module.
Definition: Module.h:311
const std::string & getPackage() const
Returns the package this module is in.
Definition: Module.h:197
void setName(const std::string &name)
Set the name of the module.
Definition: Module.h:214
bool hasProperties(unsigned int propertyFlags) const
Returns true if all specified property flags are available in this module.
Definition: Module.cc:160
std::string getPathString() const override
return the module name.
Definition: Module.cc:192

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 133 of file Module.cc.

134{
135 if (m_conditions.empty()) return EAfterConditionPath::c_End;
136
137 //okay, a condition was set for this Module...
138 if (!m_hasReturnValue) {
139 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
140 }
141
142 for (const auto& condition : m_conditions) {
143 if (condition.evaluate(m_returnValue)) {
144 return condition.getAfterConditionPath();
145 }
146 }
147
148 return EAfterConditionPath::c_End;
149}

◆ getAllConditionPaths()

std::vector< std::shared_ptr< Path > > getAllConditionPaths ( ) const
inherited

Return all condition paths currently set (no matter if the condition is true or not).

Definition at line 150 of file Module.cc.

151{
152 std::vector<std::shared_ptr<Path>> allConditionPaths;
153 for (const auto& condition : m_conditions) {
154 allConditionPaths.push_back(condition.getPath());
155 }
156
157 return allConditionPaths;
158}

◆ getAllConditions()

const std::vector< ModuleCondition > & getAllConditions ( ) const
inlineinherited

Return all set conditions for this module.

Definition at line 324 of file Module.h.

325 {
326 return m_conditions;
327 }

◆ getCondition()

const ModuleCondition * getCondition ( ) const
inlineinherited

Return a pointer to the first condition (or nullptr, if none was set)

Definition at line 314 of file Module.h.

315 {
316 if (m_conditions.empty()) {
317 return nullptr;
318 } else {
319 return &m_conditions.front();
320 }
321 }

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 113 of file Module.cc.

114{
115 PathPtr p;
116 if (m_conditions.empty()) return p;
117
118 //okay, a condition was set for this Module...
119 if (!m_hasReturnValue) {
120 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
121 }
122
123 for (const auto& condition : m_conditions) {
124 if (condition.evaluate(m_returnValue)) {
125 return condition.getPath();
126 }
127 }
128
129 // if none of the conditions were true, return a null pointer.
130 return p;
131}
std::shared_ptr< Path > PathPtr
Defines a pointer to a path object as a boost shared pointer.
Definition: Path.h:35

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Returns the description of the module.

Definition at line 202 of file Module.h.

202{return m_description;}
std::string m_description
The description of the module.
Definition: Module.h:511

◆ getFileNames()

virtual std::vector< std::string > getFileNames ( bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Reimplemented in RootInputModule, StorageRootOutputModule, and RootOutputModule.

Definition at line 134 of file Module.h.

135 {
136 return std::vector<std::string>();
137 }

◆ getLogConfig()

LogConfig & getLogConfig ( )
inlineinherited

Returns the log system configuration.

Definition at line 225 of file Module.h.

225{return m_logConfig;}

◆ getModules()

std::list< ModulePtr > getModules ( ) const
inlineoverrideprivatevirtualinherited

no submodules, return empty list

Implements PathElement.

Definition at line 506 of file Module.h.

506{ return std::list<ModulePtr>(); }

◆ getName()

const std::string & getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 187 of file Module.h.

187{return m_name;}
std::string m_name
The name of the module, saved as a string (user-modifiable)
Definition: Module.h:508

◆ getPackage()

const std::string & getPackage ( ) const
inlineinherited

Returns the package this module is in.

Definition at line 197 of file Module.h.

197{return m_package;}

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 279 of file Module.cc.

280{
282}
std::shared_ptr< boost::python::list > getParamInfoListPython() const
Returns a python list of all parameters.
ModuleParamList m_moduleParamList
List storing and managing all parameter of the module.
Definition: Module.h:516

◆ getParamList()

const ModuleParamList & getParamList ( ) const
inlineinherited

Return module param list.

Definition at line 363 of file Module.h.

363{ return m_moduleParamList; }

◆ getPathString()

std::string getPathString ( ) const
overrideprivatevirtualinherited

return the module name.

Implements PathElement.

Definition at line 192 of file Module.cc.

193{
194
195 std::string output = getName();
196
197 for (const auto& condition : m_conditions) {
198 output += condition.getString();
199 }
200
201 return output;
202}

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 381 of file Module.h.

381{ return m_returnValue; }

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 41 of file Module.cc.

42{
43 if (m_type.empty())
44 B2FATAL("Module type not set for " << getName());
45 return m_type;
46}
std::string m_type
The type of the module, saved as a string.
Definition: Module.h:509

◆ hasCondition()

bool hasCondition ( ) const
inlineinherited

Returns true if at least one condition was set for the module.

Definition at line 311 of file Module.h.

311{ return not m_conditions.empty(); };

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 160 of file Module.cc.

161{
162 return (propertyFlags & m_propertyFlags) == propertyFlags;
163}

◆ hasReturnValue()

bool hasReturnValue ( ) const
inlineinherited

Return true if this module has a valid return value set.

Definition at line 378 of file Module.h.

378{ return m_hasReturnValue; }

◆ hasUnsetForcedParams()

bool hasUnsetForcedParams ( ) const
inherited

Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.

Definition at line 166 of file Module.cc.

167{
169 std::string allMissing = "";
170 for (const auto& s : missing)
171 allMissing += s + " ";
172 if (!missing.empty())
173 B2ERROR("The following required parameters of Module '" << getName() << "' were not specified: " << allMissing <<
174 "\nPlease add them to your steering file.");
175 return !missing.empty();
176}
std::vector< std::string > getUnsetForcedParams() const
Returns list of unset parameters (if they are required to have a value.

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 85 of file Module.cc.

86{
87 if_value("<1", path, afterConditionPath);
88}

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 90 of file Module.cc.

91{
92 if_value(">=1", path, afterConditionPath);
93}

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://xwiki.desy.de/xwiki/rest/p/a94f2 or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 79 of file Module.cc.

80{
81 m_conditions.emplace_back(expression, path, afterConditionPath);
82}

◆ initialize()

void initialize ( void  )
overridevirtual

Initialize the Module.

This method is called only once before the actual event processing starts.

initialize store array and relations

initialize output TFile (ttree, with own-class (hitXP) branch) nb: is not possible to completely access to entries of this tree using external (out of basf2) scripts because are used, as branches of the tree, some basf2 internal classes (more specifically, some members of the hitXP branch, see tracking/dataobjects/hitXP for more details) Only the "external tree" is completely accessible, but the information is reduced.

output tree for complete external use (same data, but using only root default classes)

Reimplemented from Module.

Definition at line 43 of file HitXPModule.cc.

44{
45
48 StoreArray<RecoTrack> storeRecoTracks("");
49 StoreArray<SVDCluster> storeClusters("");
50 StoreArray<SVDTrueHit> storeTrueHits("");
51 storeRecoTracks.isRequired();
52 storeClusters.isRequired();
53 storeTrueHits.isRequired();
54
55 RelationArray relClusterTrueHits(storeClusters, storeTrueHits);
56 RelationArray relClusterMCParticles(storeClusters, m_MCParticles);
57 RelationArray recoTracksToMCParticles(storeRecoTracks, m_MCParticles);
58
59
68 m_outputFile = new TFile("TFile_hitXP.root", "RECREATE");
69 m_tree = new TTree("TTree_hitXP", "TTree_hitXP");
70
71 m_tree->Branch("hitXP", &m_hitXP);
72 m_tree->Branch("trackNumber", &m_trackNumber);
73 m_tree->Branch("eventNumber", &m_eventNumber);
74 m_tree->Branch("numberHitPerTrack", &m_numberHitPerTrack);
75
78
79 //-------------------------------------------------------------------------------------------------//
80 //------------------------------------selected Tree creation--------------------------------------//
81 //-------------------------------------------------------------------------------------------------//
82 if (c_addTree) m_outputFileSel = new TFile("TFile_hitXPSel.root", "RECREATE");
83 m_treeSel = new TTree("TTree_hitXPSel", "TTree_hitXPSel");
84
85 m_treeSel->Branch("hitXP", &m_hitXPSel);
86 m_treeSel->Branch("trackNumber", &m_trackNumberSel);
87 m_treeSel->Branch("eventNumber", &m_eventNumberSel);
88 m_treeSel->Branch("numberHitPerTrack", &m_numberHitPerTrackSel);
89
90
91 //-------------------------------------------------------------------------------------------------//
92 //------------------------------------tight selected Tree creation--------------------------------------//
93 //-------------------------------------------------------------------------------------------------//
94 if (c_addTree) m_outputFileTiSel = new TFile("TFile_hitXPTiSel.root", "RECREATE");
95 m_treeTiSel = new TTree("TTree_hitXPTiSel", "TTree_hitXPTiSel");
96
97 m_treeTiSel->Branch("hitXP", &m_hitXPTiSel);
98 m_treeTiSel->Branch("trackNumber", &m_trackNumberTiSel);
99 m_treeTiSel->Branch("eventNumber", &m_eventNumberTiSel);
100 m_treeTiSel->Branch("numberHitPerTrack", &m_numberHitPerTrackTiSel);
101
102
103//-------------------------------------------------------------------------------------------------//
104//------------------------------------External Tree creation--------------------------------------//
105//-------------------------------------------------------------------------------------------------//
106
108 m_outputFileExt = new TFile("TFile_hitXP_ext.root", "RECREATE");
109 m_treeExt = new TTree("TTree_hitXP_ext", "TTree_hitXP_ext");
110
111 m_treeExt->Branch("positionEntryX", &m_EpositionEntryX);
112 m_treeExt->Branch("positionEntryY", &m_EpositionEntryY);
113 m_treeExt->Branch("positionEntryZ", &m_EpositionEntryZ);
114 m_treeExt->Branch("momentumEntryX", &m_EmomentumEntryX);
115 m_treeExt->Branch("momentumEntryY", &m_EmomentumEntryY);
116 m_treeExt->Branch("momentumEntryZ", &m_EmomentumEntryZ);
117 m_treeExt->Branch("positionLocalEntryX", &m_EpositionLocalEntryX);
118 m_treeExt->Branch("positionLocalEntryY", &m_EpositionLocalEntryY);
119 m_treeExt->Branch("positionLocalEntryZ", &m_EpositionLocalEntryZ);
120 m_treeExt->Branch("PDGID", &m_EPDGID);
121 m_treeExt->Branch("position0X", &m_Eposition0X);
122 m_treeExt->Branch("position0Y", &m_Eposition0Y);
123 m_treeExt->Branch("position0Z", &m_Eposition0Z);
124 m_treeExt->Branch("momentum0X", &m_Emomentum0X);
125 m_treeExt->Branch("momentum0Y", &m_Emomentum0Y);
126 m_treeExt->Branch("momentum0Z", &m_Emomentum0Z);
127 m_treeExt->Branch("time", &m_Etime);
128 m_treeExt->Branch("sensorSensor", &m_EsensorSensor);
129 m_treeExt->Branch("sensorLayer", &m_EsensorLayer);
130 m_treeExt->Branch("sensorLadder", &m_EsensorLadder);
131 m_treeExt->Branch("reconstructed", &m_Ereconstructed);
132 m_treeExt->Branch("clusterU", &m_EclusterU);
133 m_treeExt->Branch("clusterV", &m_EclusterV);
134 m_treeExt->Branch("charge", &m_Echarge);
135 m_treeExt->Branch("trackNumber", &m_EtrackNumber);
136 m_treeExt->Branch("eventNumber", &m_EeventNumber);
137 m_treeExt->Branch("numberHitPerTrack", &m_EnumberHitPerTrack);
138 m_treeExt->Branch("omegaEntry", &m_EomegaEntry);
139 m_treeExt->Branch("omega0", &m_Eomega0);
140 m_treeExt->Branch("d0Entry", &m_Ed0Entry);
141 m_treeExt->Branch("d00", &m_Ed00);
142 m_treeExt->Branch("phi0Entry", &m_Ephi0Entry);
143 m_treeExt->Branch("phi00", &m_Ephi00);
144 m_treeExt->Branch("z0Entry", &m_Ez0Entry);
145 m_treeExt->Branch("z00", &m_Ez00);
146 m_treeExt->Branch("tanlambdaEntry", &m_EtanlambdaEntry);
147 m_treeExt->Branch("tanlambda0", &m_Etanlambda0);
148 m_treeExt->Branch("primary", &m_Eprimary);
149
150}
Low-level class to create/modify relations between StoreArrays.
Definition: RelationArray.h:62
bool isRequired(const std::string &name="")
Ensure this array/object has been registered previously.
Accessor to arrays stored in the data store.
Definition: StoreArray.h:113

◆ setAbortLevel()

void setAbortLevel ( int  abortLevel)
inherited

Configure the abort log level.

Definition at line 67 of file Module.cc.

68{
69 m_logConfig.setAbortLevel(static_cast<LogConfig::ELogLevel>(abortLevel));
70}
ELogLevel
Definition of the supported log levels.
Definition: LogConfig.h:26
void setAbortLevel(ELogLevel abortLevel)
Configure the abort level.
Definition: LogConfig.h:112

◆ setDebugLevel()

void setDebugLevel ( int  debugLevel)
inherited

Configure the debug messaging level.

Definition at line 61 of file Module.cc.

62{
63 m_logConfig.setDebugLevel(debugLevel);
64}
void setDebugLevel(int debugLevel)
Configure the debug messaging level.
Definition: LogConfig.h:98

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 214 of file Module.cc.

215{
216 m_description = description;
217}

◆ setLogConfig()

void setLogConfig ( const LogConfig logConfig)
inlineinherited

Set the log system configuration.

Definition at line 230 of file Module.h.

230{m_logConfig = logConfig;}

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 73 of file Module.cc.

74{
75 m_logConfig.setLogInfo(static_cast<LogConfig::ELogLevel>(logLevel), logInfo);
76}
void setLogInfo(ELogLevel logLevel, unsigned int logInfo)
Configure the printed log information for the given level.
Definition: LogConfig.h:127

◆ setLogLevel()

void setLogLevel ( int  logLevel)
inherited

Configure the log level.

Definition at line 55 of file Module.cc.

56{
57 m_logConfig.setLogLevel(static_cast<LogConfig::ELogLevel>(logLevel));
58}
void setLogLevel(ELogLevel logLevel)
Configure the log level.
Definition: LogConfig.cc:25

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 214 of file Module.h.

214{ m_name = name; };

◆ setParamList()

void setParamList ( const ModuleParamList params)
inlineprotectedinherited

Replace existing parameter list.

Definition at line 501 of file Module.h.

501{ m_moduleParamList = params; }

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 234 of file Module.cc.

235{
236 LogSystem& logSystem = LogSystem::Instance();
237 logSystem.updateModule(&(getLogConfig()), getName());
238 try {
240 } catch (std::runtime_error& e) {
241 throw std::runtime_error("Cannot set parameter '" + name + "' for module '"
242 + m_name + "': " + e.what());
243 }
244
245 logSystem.updateModule(nullptr);
246}
Class for logging debug, info and error messages.
Definition: LogSystem.h:46
void updateModule(const LogConfig *moduleLogConfig=nullptr, const std::string &moduleName="")
Sets the log configuration to the given module log configuration and sets the module name This method...
Definition: LogSystem.h:191
static LogSystem & Instance()
Static method to get a reference to the LogSystem instance.
Definition: LogSystem.cc:31
void setParamPython(const std::string &name, const PythonObject &pyObj)
Implements a method for setting boost::python objects.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 249 of file Module.cc.

250{
251
252 LogSystem& logSystem = LogSystem::Instance();
253 logSystem.updateModule(&(getLogConfig()), getName());
254
255 boost::python::list dictKeys = dictionary.keys();
256 int nKey = boost::python::len(dictKeys);
257
258 //Loop over all keys in the dictionary
259 for (int iKey = 0; iKey < nKey; ++iKey) {
260 boost::python::object currKey = dictKeys[iKey];
261 boost::python::extract<std::string> keyProxy(currKey);
262
263 if (keyProxy.check()) {
264 const boost::python::object& currValue = dictionary[currKey];
265 setParamPython(keyProxy, currValue);
266 } else {
267 B2ERROR("Setting the module parameters from a python dictionary: invalid key in dictionary!");
268 }
269 }
270
271 logSystem.updateModule(nullptr);
272}
void setParamPython(const std::string &name, const boost::python::object &pyObj)
Implements a method for setting boost::python objects.
Definition: Module.cc:234

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 208 of file Module.cc.

209{
210 m_propertyFlags = propertyFlags;
211}

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 227 of file Module.cc.

228{
229 m_hasReturnValue = true;
230 m_returnValue = value;
231}

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 220 of file Module.cc.

221{
222 m_hasReturnValue = true;
223 m_returnValue = value;
224}

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 48 of file Module.cc.

49{
50 if (!m_type.empty())
51 B2FATAL("Trying to change module type from " << m_type << " is not allowed, the value is assumed to be fixed.");
52 m_type = type;
53}

◆ terminate()

void terminate ( void  )
overridevirtual

This method is called at the end of the event processing.


Reimplemented from Module.

Definition at line 385 of file HitXPModule.cc.

385{}

Member Data Documentation

◆ c_addTree

bool c_addTree
private

parameter to produce additional tree

Definition at line 70 of file HitXPModule.h.

◆ m_conditions

std::vector<ModuleCondition> m_conditions
privateinherited

Module condition, only non-null if set.

Definition at line 521 of file Module.h.

◆ m_description

std::string m_description
privateinherited

The description of the module.

Definition at line 511 of file Module.h.

◆ m_Echarge

std::vector<double> m_Echarge
private

external charge

Definition at line 117 of file HitXPModule.h.

◆ m_EclusterU

std::vector<int> m_EclusterU
private

external flag of u-cluster

Definition at line 115 of file HitXPModule.h.

◆ m_EclusterV

std::vector<int> m_EclusterV
private

external flag of v-cluster

Definition at line 116 of file HitXPModule.h.

◆ m_Ed00

std::vector<double> m_Ed00
private

external d0 parameter at IP

Definition at line 124 of file HitXPModule.h.

◆ m_Ed0Entry

std::vector<double> m_Ed0Entry
private

external d0 parameter at entry point

Definition at line 123 of file HitXPModule.h.

◆ m_EeventNumber

int m_EeventNumber = 0
private

external iterator of event in the run

Definition at line 119 of file HitXPModule.h.

◆ m_Emomentum0X

std::vector<double> m_Emomentum0X
private

external momentum at IP, coordinate x

Definition at line 107 of file HitXPModule.h.

◆ m_Emomentum0Y

std::vector<double> m_Emomentum0Y
private

external momentum at IP, coordinate y

Definition at line 108 of file HitXPModule.h.

◆ m_Emomentum0Z

std::vector<double> m_Emomentum0Z
private

external momentum at IP, coordinate z

Definition at line 109 of file HitXPModule.h.

◆ m_EmomentumEntryX

std::vector<double> m_EmomentumEntryX
private

external momentum at entry point, coordinate x

Definition at line 97 of file HitXPModule.h.

◆ m_EmomentumEntryY

std::vector<double> m_EmomentumEntryY
private

external momentum at entry point, coordinate x

Definition at line 98 of file HitXPModule.h.

◆ m_EmomentumEntryZ

std::vector<double> m_EmomentumEntryZ
private

external momentum at entry point, coordinate x

Definition at line 99 of file HitXPModule.h.

◆ m_EnumberHitPerTrack

int m_EnumberHitPerTrack = 0
private

external number of the hit for each track

Definition at line 120 of file HitXPModule.h.

◆ m_Eomega0

std::vector<double> m_Eomega0
private

external omega parameter at IP

Definition at line 122 of file HitXPModule.h.

◆ m_EomegaEntry

std::vector<double> m_EomegaEntry
private

external omega parameter at entry point

Definition at line 121 of file HitXPModule.h.

◆ m_EPDGID

std::vector<int> m_EPDGID
private

external PDGID

Definition at line 103 of file HitXPModule.h.

◆ m_Ephi00

std::vector<double> m_Ephi00
private

external phi0 parameter at IP

Definition at line 126 of file HitXPModule.h.

◆ m_Ephi0Entry

std::vector<double> m_Ephi0Entry
private

external phi0 parameter at entry point

Definition at line 125 of file HitXPModule.h.

◆ m_Eposition0X

std::vector<double> m_Eposition0X
private

external position at IP, coordinate x

Definition at line 104 of file HitXPModule.h.

◆ m_Eposition0Y

std::vector<double> m_Eposition0Y
private

external position at IP, coordinate y

Definition at line 105 of file HitXPModule.h.

◆ m_Eposition0Z

std::vector<double> m_Eposition0Z
private

external position at IP, coordinate z

Definition at line 106 of file HitXPModule.h.

◆ m_EpositionEntryX

std::vector<double> m_EpositionEntryX
private

external position at entry point, coordinate x

Definition at line 94 of file HitXPModule.h.

◆ m_EpositionEntryY

std::vector<double> m_EpositionEntryY
private

external position at entry point, coordinate y

Definition at line 95 of file HitXPModule.h.

◆ m_EpositionEntryZ

std::vector<double> m_EpositionEntryZ
private

external position at entry point, coordinate z

Definition at line 96 of file HitXPModule.h.

◆ m_EpositionLocalEntryX

std::vector<double> m_EpositionLocalEntryX
private

external local position at entry point, coordinate x

Definition at line 100 of file HitXPModule.h.

◆ m_EpositionLocalEntryY

std::vector<double> m_EpositionLocalEntryY
private

external local position at entry point, coordinate y

Definition at line 101 of file HitXPModule.h.

◆ m_EpositionLocalEntryZ

std::vector<double> m_EpositionLocalEntryZ
private

external local position at entry point, coordinate z

Definition at line 102 of file HitXPModule.h.

◆ m_Eprimary

int m_Eprimary = 0
private

external flag for primary particles

Definition at line 131 of file HitXPModule.h.

◆ m_Ereconstructed

std::vector<int> m_Ereconstructed
private

external flag of track-reconstruction or not

Definition at line 114 of file HitXPModule.h.

◆ m_EsensorLadder

std::vector<int> m_EsensorLadder
private

external ladder of the hit

Definition at line 113 of file HitXPModule.h.

◆ m_EsensorLayer

std::vector<int> m_EsensorLayer
private

external layer of the hit

Definition at line 112 of file HitXPModule.h.

◆ m_EsensorSensor

std::vector<int> m_EsensorSensor
private

external sensor of the hit

Definition at line 111 of file HitXPModule.h.

◆ m_Etanlambda0

std::vector<double> m_Etanlambda0
private

external tanlambda parameter at IP

Definition at line 130 of file HitXPModule.h.

◆ m_EtanlambdaEntry

std::vector<double> m_EtanlambdaEntry
private

external tanlambda parameter at entry point

Definition at line 129 of file HitXPModule.h.

◆ m_Etime

std::vector<double> m_Etime
private

external time of the hit

Definition at line 110 of file HitXPModule.h.

◆ m_EtrackNumber

int m_EtrackNumber = 0
private

external iterator of track in the run

Definition at line 118 of file HitXPModule.h.

◆ m_eventIterator

int m_eventIterator = 0
private

iterator used to count event number (m_eventNumber)

Definition at line 76 of file HitXPModule.h.

◆ m_eventNumber

int m_eventNumber = 0
private

interative number of the event in the run

Definition at line 73 of file HitXPModule.h.

◆ m_eventNumberSel

int m_eventNumberSel = 0
private

selected interative number of the event in the run

Definition at line 82 of file HitXPModule.h.

◆ m_eventNumberTiSel

int m_eventNumberTiSel = 0
private

tight selected interative number of the event in the run

Definition at line 89 of file HitXPModule.h.

◆ m_Ez00

std::vector<double> m_Ez00
private

external z0 parameter at IP

Definition at line 128 of file HitXPModule.h.

◆ m_Ez0Entry

std::vector<double> m_Ez0Entry
private

external z0 parameter at entry point

Definition at line 127 of file HitXPModule.h.

◆ m_hasReturnValue

bool m_hasReturnValue
privateinherited

True, if the return value is set.

Definition at line 518 of file Module.h.

◆ m_hitXP

std::vector<hitXP> m_hitXP
private

vector of the hitXP, used to fill the output tree

Definition at line 68 of file HitXPModule.h.

◆ m_hitXPSel

std::vector<hitXP> m_hitXPSel
private

selected vector of hitXP

Definition at line 80 of file HitXPModule.h.

◆ m_hitXPSet

std::set<hitXP, hitXP::timeCompare> m_hitXPSet
private

set of the hitXP, used to order tn time he hit

Definition at line 69 of file HitXPModule.h.

◆ m_hitXPTiSel

std::vector<hitXP> m_hitXPTiSel
private

tight selected vector of hitXP

Definition at line 87 of file HitXPModule.h.

◆ m_logConfig

LogConfig m_logConfig
privateinherited

The log system configuration of the module.

Definition at line 514 of file Module.h.

◆ m_MCParticles

StoreArray<MCParticle> m_MCParticles
private

MCParticles StoreArray.

Definition at line 133 of file HitXPModule.h.

◆ m_moduleParamList

ModuleParamList m_moduleParamList
privateinherited

List storing and managing all parameter of the module.

Definition at line 516 of file Module.h.

◆ m_name

std::string m_name
privateinherited

The name of the module, saved as a string (user-modifiable)

Definition at line 508 of file Module.h.

◆ m_numberHitPerTrack

int m_numberHitPerTrack = 0
private

counter of the number of the hit for each track

Definition at line 74 of file HitXPModule.h.

◆ m_numberHitPerTrackSel

int m_numberHitPerTrackSel = 0
private

selected counter of the number of the hit for each track

Definition at line 83 of file HitXPModule.h.

◆ m_numberHitPerTrackTiSel

int m_numberHitPerTrackTiSel = 0
private

tight selected counter of the number of the hit for each track

Definition at line 90 of file HitXPModule.h.

◆ m_outputFile

TFile* m_outputFile = nullptr
private

output file

Definition at line 67 of file HitXPModule.h.

◆ m_outputFileExt

TFile* m_outputFileExt = nullptr
private

external output file

Definition at line 92 of file HitXPModule.h.

◆ m_outputFileSel

TFile* m_outputFileSel = nullptr
private

selected output file

Definition at line 79 of file HitXPModule.h.

◆ m_outputFileTiSel

TFile* m_outputFileTiSel = nullptr
private

tight selected output file

Definition at line 86 of file HitXPModule.h.

◆ m_package

std::string m_package
privateinherited

Package this module is found in (may be empty).

Definition at line 510 of file Module.h.

◆ m_propertyFlags

unsigned int m_propertyFlags
privateinherited

The properties of the module as bitwise or (with |) of EModulePropFlags.

Definition at line 512 of file Module.h.

◆ m_returnValue

int m_returnValue
privateinherited

The return value.

Definition at line 519 of file Module.h.

◆ m_trackIterator

int m_trackIterator = 0
private

iterator used to count track (m_trackNumber)

Definition at line 75 of file HitXPModule.h.

◆ m_trackNumber

int m_trackNumber = 0
private

iterative number of the track in the run

Definition at line 72 of file HitXPModule.h.

◆ m_trackNumberSel

int m_trackNumberSel = 0
private

selected iterative number of the track in the run

Definition at line 81 of file HitXPModule.h.

◆ m_trackNumberTiSel

int m_trackNumberTiSel = 0
private

tight selected iterative number of the track in the run

Definition at line 88 of file HitXPModule.h.

◆ m_tree

TTree* m_tree = nullptr
private

full output tree

Definition at line 66 of file HitXPModule.h.

◆ m_treeExt

TTree* m_treeExt = nullptr
private

external output tree

Definition at line 93 of file HitXPModule.h.

◆ m_treeSel

TTree* m_treeSel = nullptr
private

selected output tree

Definition at line 78 of file HitXPModule.h.

◆ m_treeTiSel

TTree* m_treeTiSel = nullptr
private

tight selected output tree

Definition at line 85 of file HitXPModule.h.

◆ m_type

std::string m_type
privateinherited

The type of the module, saved as a string.

Definition at line 509 of file Module.h.


The documentation for this class was generated from the following files: