Belle II Software development
SVDPerformanceModule Class Reference

The (TB) SVD Performance Module. More...

#include <SVDPerformanceModule.h>

Inheritance diagram for SVDPerformanceModule:
Module PathElement

Public Types

enum  EModulePropFlags {
  c_Input = 1 ,
  c_Output = 2 ,
  c_ParallelProcessingCertified = 4 ,
  c_HistogramManager = 8 ,
  c_InternalSerializer = 16 ,
  c_TerminateInAllProcesses = 32 ,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

 SVDPerformanceModule ()
 constructor
 
virtual ~SVDPerformanceModule ()
 destructor
 
virtual void initialize () override
 check StoreArrays & create rootfile
 
virtual void beginRun () override
 create histograms
 
virtual void event () override
 fill histograms
 
virtual void endRun () override
 write histogrmas
 
virtual std::vector< std::string > getFileNames (bool outputFiles)
 Return a list of output filenames for this modules.
 
virtual void terminate ()
 This method is called at the end of the event processing.
 
const std::string & getName () const
 Returns the name of the module.
 
const std::string & getType () const
 Returns the type of the module (i.e.
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module.
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties.
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level.
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module.
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module.
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module.
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true.
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished.
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module.
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter.
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module.
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module.
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters.
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Public Attributes

std::string m_ShaperDigitName = "SVDShaperDigits"
 ShaperDigits Store Array name.
 
std::string m_RecoDigitName = "SVDRecoDigits"
 SVDRecoDigits Store Array name.
 
std::string m_ClusterName = "SVDClusters"
 SVDCluster StoreArray name.
 
std::string m_TrackFitResultName = "TrackFitResults"
 TrackFitResult StoreArray name.
 
std::string m_TrackName = "Tracks"
 Track StoreArray name.
 
bool m_is2017TBanalysis = false
 true if we analyze 2017 TB data
 
bool m_isSimulation = false
 true if we analyze Simulated data
 
float m_debugLowTime = - 100
 cluster Time below this number will produce a printout
 
std::string m_rootFileName = ""
 root file name
 
TFile * m_rootFilePtr = nullptr
 pointer at root file used for storing histograms
 

Protected Member Functions

virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python.
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side.
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module.
 
void setType (const std::string &type)
 Set the module type.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module.
 
void setReturnValue (int value)
 Sets the return value for this module as integer.
 
void setReturnValue (bool value)
 Sets the return value for this module as bool.
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Private Member Functions

int getSensor (int layer, int sensor, bool isTB)
 get sensor number
 
TH1F * createHistogram1D (const char *name, const char *title, Int_t nbins, Double_t min, Double_t max, const char *xtitle, TList *histoList=nullptr)
 Function returning a TH1F.
 
TH2F * createHistogram2D (const char *name, const char *title, Int_t nbinsX, Double_t minX, Double_t maxX, const char *titleX, Int_t nbinsY, Double_t minY, Double_t maxY, const char *titleY, TList *histoList=nullptr)
 Function returning TH2F.
 
std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects.
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary.
 

Private Attributes

int m_nEvents = 0
 number of events
 
SVDNoiseCalibrations m_NoiseCal
 SVDNoise calibration db object.
 
SVDPulseShapeCalibrations m_PulseShapeCal
 SVDPulseShape calibration db object.
 
StoreArray< SVDShaperDigitm_svdShapers
 SVDShaperDigit store array.
 
StoreArray< SVDRecoDigitm_svdRecos
 SVDRecoDigits store array.
 
StoreArray< SVDClusterm_svdClusters
 SVDCluster store array.
 
StoreArray< RecoTrackm_recoTracks
 RecoTracks store array.
 
StoreArray< Trackm_Tracks
 Tracks store array.
 
StoreArray< TrackFitResultm_tfr
 TrackFitResult store array.
 
StoreObjPtr< SVDEventInfom_storeSVDEvtInfo
 Storage for SVDEventInfo object.
 
std::string m_svdEventInfoName
 Name of the SVDEventInfo object.
 
int m_ntracks = 0
 numner of tracks
 
unsigned int sensorsOnLayer [4] = {0}
 sensors on layer i
 
TList * m_histoList_track = nullptr
 histo list tracks
 
TList * m_histoList_corr = nullptr
 histo list correlations
 
TList * m_histoList_clTRK [m_nLayers] = {nullptr}
 histo list clusters related to tracks
 
TList * m_histoList_cluster [m_nLayers] = {nullptr}
 histo list clusters
 
TList * m_histoList_shaper [m_nLayers] = {nullptr}
 histo list shaper digits
 
TList * m_histoList_reco [m_nLayers] = {nullptr}
 histo list reco digits
 
TH1F * m_nTracks = nullptr
 number of tracks
 
TH1F * m_Pvalue = nullptr
 track p value
 
TH1F * m_mom = nullptr
 track momentum
 
TH1F * m_nSVDhits = nullptr
 track momentum
 
TH1F * h_nShaper [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 number per event
 
TH1F * h_nReco [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 number per event
 
TH1F * h_recoCharge [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 charge
 
TH1F * h_recoEnergy [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 energy
 
TH1F * h_stripNoise [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 strip noise
 
TH1F * h_recoTime [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 time
 
TH1F * h_nCl [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 number per event
 
TH1F * h_clSize [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 size
 
TH1F * h_clCharge [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 charge
 
TH1F * h_clEnergy [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 energy
 
TH1F * h_clSeedMaxbin [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 maxbin seed
 
TH2F * h_clEnergyVSMaxbin [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 energy VS maxbin seed
 
TH2F * h_clEnergyVSCoorU [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 energy VS position U
 
TH2F * h_clEnergyVSCoorV [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 energy VS position V
 
TH2F * h_clNuVSNv [m_nLayers][m_nSensors] = {{nullptr}}
 N U culsters VS N V clusters.
 
TH2F * h_clCoorUVSCoorV [m_nLayers][m_nSensors] = {{nullptr}}
 energy VS position
 
TH1F * h_clCoor1VSCoor2 [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 coor1 VS coor2
 
TH2F * h_clEnergy12VSdelta [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 coor1 VS coor2
 
TH1F * h_clCellID1VSCellID2 [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 coor1 VS coor2
 
TH2F * h_clEnergyUVSEnergyV [m_nLayers][m_nSensors] = {{nullptr}}
 energy VS position
 
TH1F * h_clSN [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 signal over noise
 
TH1F * h_clTime [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 time
 
TH2F * h_clChargeVSSize [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 charge VS size
 
TH2F * h_clEnergyVSSize_mb12 [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 energy VS size, maxbin == 1,2
 
TH2F * h_clEnergyVSSize_mb345 [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 energy VS size, maxbin == 3,4,5
 
TH2F * h_clEnergyVSSize_mb6 [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 energy VS size, max bin == 6
 
TH2F * h_clSNVSSize [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 charge VS size
 
TH2F * h_clTimeVSSize [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 charge VS size
 
TH2F * h_clTimeVSTrueTime [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 time VS true time
 
TH1F * h_nCltrk [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 number per event
 
TH1F * h_cltrkSize [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 size
 
TH1F * h_cltrkCharge [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 charge
 
TH1F * h_cltrkEnergy [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 energy
 
TH1F * h_cltrkSN [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 signal over noise
 
TH1F * h_cltrkTime [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 time
 
TH1F * h_cltrkTime_TB1 [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 time
 
TH1F * h_cltrkTime_TB2 [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 time
 
TH1F * h_cltrkTime_TB3 [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 time
 
TH1F * h_cltrkTime_TB4 [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 time
 
TH2F * h_cltrkChargeVSSize [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 charge VS size
 
TH2F * h_cltrkSNVSSize [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 charge VS size
 
TH2F * h_cltrkTimeVSSize [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 charge VS size
 
TH2F * h_cltrkTimeVSTrueTime [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 time VS true time
 
TH1F * h_1cltrkCharge [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 charge
 
TH1F * h_1cltrkSN [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 signal over noise
 
TH1F * h_2cltrkCharge [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 charge
 
TH1F * h_2cltrkSN [m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
 signal over noise
 
TH1F * h_cltrk_UU = nullptr
 U time vs U time.
 
TH1F * h_cltrk_VV = nullptr
 V time vs V time.
 
TH1F * h_cltrk_UV = nullptr
 U time vs V time.
 
TH2F * h_cltrkTime_L4uL5u = nullptr
 L4U time VS L5U time.
 
TH2F * h_cltrkTime_L4vL5v = nullptr
 L4V time VS L5V time.
 
TH2F * h_cltrkTime_L5uL5v = nullptr
 L5U time VS L5V time.
 
std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 

Static Private Attributes

static const int m_nLayers = 4
 max number of layers
 
static const int m_nSensors = 5
 max number of sensors
 
static const int m_nSides = 2
 max number of sides
 

Detailed Description

The (TB) SVD Performance Module.

Definition at line 41 of file SVDPerformanceModule.h.

Member Typedef Documentation

◆ EAfterConditionPath

Forward the EAfterConditionPath definition from the ModuleCondition.

Definition at line 88 of file Module.h.

Member Enumeration Documentation

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 77 of file Module.h.

77 {
78 c_Input = 1,
79 c_Output = 2,
85 };
@ c_HistogramManager
This module is used to manage histograms accumulated by other modules.
Definition: Module.h:81
@ c_Input
This module is an input module (reads data).
Definition: Module.h:78
@ c_DontCollectStatistics
No statistics is collected for this module.
Definition: Module.h:84
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
Definition: Module.h:80
@ c_InternalSerializer
This module is an internal serializer/deserializer for parallel processing.
Definition: Module.h:82
@ c_Output
This module is an output module (writes data).
Definition: Module.h:79
@ c_TerminateInAllProcesses
When using parallel processing, call this module's terminate() function in all processes().
Definition: Module.h:83

Constructor & Destructor Documentation

◆ SVDPerformanceModule()

constructor

Definition at line 23 of file SVDPerformanceModule.cc.

23 : Module()
24 , m_nTracks(0), m_Pvalue(), m_mom(0), m_nSVDhits(0)
25{
26
27 setDescription("This module check performances of SVD reconstruction of VXD TB data");
28
29 addParam("outputFileName", m_rootFileName, "Name of output root file.", std::string("SVDPerformance_output.root"));
30 addParam("SVDEventInfo", m_svdEventInfoName, "Defines the name of the EventInfo", string(""));
31
32 addParam("is2017TBanalysis", m_is2017TBanalysis, "True if analyzing 2017 TB data.", bool(false));
33 addParam("isSimulation", m_isSimulation, "True if analyzing simulated data.", bool(false));
34
35 addParam("debugLowTime", m_debugLowTime, "Cluster Time below this number will produce a printout.", float(0.));
36
37 addParam("ShaperDigitsName", m_ShaperDigitName, "Name of ShaperDigit Store Array.", std::string(""));
38 addParam("RecoDigitsName", m_RecoDigitName, "Name of RecoDigit Store Array.", std::string(""));
39 addParam("ClustersName", m_ClusterName, "Name of Cluster Store Array.", std::string(""));
40 addParam("TrackListName", m_TrackName, "Name of Track Store Array.", std::string(""));
41 addParam("TrackFitResultListName", m_TrackFitResultName, "Name of TracksFitResult Store Array.", std::string(""));
42}
void setDescription(const std::string &description)
Sets the description of the module.
Definition: Module.cc:214
Module()
Constructor.
Definition: Module.cc:30
std::string m_rootFileName
root file name
float m_debugLowTime
cluster Time below this number will produce a printout
std::string m_ShaperDigitName
ShaperDigits Store Array name.
std::string m_TrackName
Track StoreArray name.
std::string m_RecoDigitName
SVDRecoDigits Store Array name.
std::string m_svdEventInfoName
Name of the SVDEventInfo object.
bool m_isSimulation
true if we analyze Simulated data
std::string m_TrackFitResultName
TrackFitResult StoreArray name.
TH1F * m_nTracks
number of tracks
std::string m_ClusterName
SVDCluster StoreArray name.
bool m_is2017TBanalysis
true if we analyze 2017 TB data
void addParam(const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
Definition: Module.h:560

◆ ~SVDPerformanceModule()

virtual ~SVDPerformanceModule ( )
inlinevirtual

destructor

Definition at line 49 of file SVDPerformanceModule.h.

49{};

Member Function Documentation

◆ beginRun()

void beginRun ( void  )
overridevirtual

create histograms

Reimplemented from Module.

Definition at line 421 of file SVDPerformanceModule.cc.

422{
423 m_nEvents = 0;
424}

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 179 of file Module.cc.

180{
182 newModule->m_moduleParamList.setParameters(getParamList());
183 newModule->setName(getName());
184 newModule->m_package = m_package;
185 newModule->m_propertyFlags = m_propertyFlags;
186 newModule->m_logConfig = m_logConfig;
187 newModule->m_conditions = m_conditions;
188
189 return newModule;
190}
std::shared_ptr< Module > registerModule(const std::string &moduleName, std::string sharedLibPath="") noexcept(false)
Creates an instance of a module and registers it to the ModuleManager.
static ModuleManager & Instance()
Exception is thrown if the requested module could not be created by the ModuleManager.
const ModuleParamList & getParamList() const
Return module param list.
Definition: Module.h:363
const std::string & getName() const
Returns the name of the module.
Definition: Module.h:187
const std::string & getType() const
Returns the type of the module (i.e.
Definition: Module.cc:41
unsigned int m_propertyFlags
The properties of the module as bitwise or (with |) of EModulePropFlags.
Definition: Module.h:512
LogConfig m_logConfig
The log system configuration of the module.
Definition: Module.h:514
std::vector< ModuleCondition > m_conditions
Module condition, only non-null if set.
Definition: Module.h:521
std::string m_package
Package this module is found in (may be empty).
Definition: Module.h:510
std::shared_ptr< Module > ModulePtr
Defines a pointer to a module object as a boost shared pointer.
Definition: Module.h:43

◆ createHistogram1D()

TH1F * createHistogram1D ( const char *  name,
const char *  title,
Int_t  nbins,
Double_t  min,
Double_t  max,
const char *  xtitle,
TList *  histoList = nullptr 
)
private

Function returning a TH1F.

Definition at line 901 of file SVDPerformanceModule.cc.

904{
905
906 TH1F* h = new TH1F(name, title, nbins, min, max);
907
908 h->GetXaxis()->SetTitle(xtitle);
909
910 if (histoList)
911 histoList->Add(h);
912
913 return h;
914}

◆ createHistogram2D()

TH2F * createHistogram2D ( const char *  name,
const char *  title,
Int_t  nbinsX,
Double_t  minX,
Double_t  maxX,
const char *  titleX,
Int_t  nbinsY,
Double_t  minY,
Double_t  maxY,
const char *  titleY,
TList *  histoList = nullptr 
)
private

Function returning TH2F.

Definition at line 917 of file SVDPerformanceModule.cc.

922{
923
924 TH2F* h = new TH2F(name, title, nbinsX, minX, maxX, nbinsY, minY, maxY);
925
926 h->GetXaxis()->SetTitle(titleX);
927 h->GetYaxis()->SetTitle(titleY);
928
929 if (histoList)
930 histoList->Add(h);
931
932 return h;
933}

◆ def_beginRun()

virtual void def_beginRun ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 426 of file Module.h.

426{ beginRun(); }
virtual void beginRun()
Called when entering a new run.
Definition: Module.h:147

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 439 of file Module.h.

439{ endRun(); }
virtual void endRun()
This method is called if the current run ends.
Definition: Module.h:166

◆ def_event()

virtual void def_event ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 432 of file Module.h.

432{ event(); }
virtual void event()
This method is the core of the module.
Definition: Module.h:157

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 420 of file Module.h.

420{ initialize(); }
virtual void initialize()
Initialize the Module.
Definition: Module.h:109

◆ def_terminate()

virtual void def_terminate ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 445 of file Module.h.

445{ terminate(); }
virtual void terminate()
This method is called at the end of the event processing.
Definition: Module.h:176

◆ endRun()

void endRun ( void  )
overridevirtual

write histogrmas

Reimplemented from Module.

Definition at line 797 of file SVDPerformanceModule.cc.

798{
799
800 /*
801 B2RESULT(" number tracks = " << m_ntracks);
802 B2RESULT(" average number of cluster per layer:");
803 B2RESULT(" Layer 3, u = " << h_nCl_L3u->GetMean() << ", v = " << h_nCl_L3v->GetMean());
804 B2RESULT(" Layer 4, u = " << h_nCl_L4u->GetMean() << ", v = " << h_nCl_L4v->GetMean());
805 B2RESULT(" Layer 5, u = " << h_nCl_L5u->GetMean() << ", v = " << h_nCl_L5v->GetMean());
806 B2RESULT(" Layer 6, u = " << h_nCl_L6u->GetMean() << ", v = " << h_nCl_L6v->GetMean());
807 B2RESULT(" average cluster size per layer:");
808 B2RESULT(" Layer 3, u = " << h_clSize_L3u->GetMean() << ", v = " << h_clSize_L3v->GetMean());
809 B2RESULT(" Layer 4, u = " << h_clSize_L4u->GetMean() << ", v = " << h_clSize_L4v->GetMean());
810 */
811 if (m_rootFilePtr != nullptr) {
812 m_rootFilePtr->cd();
813
814 TDirectory* oldDir = gDirectory;
815 TObject* obj;
816
817 TDirectory* dir_track = oldDir->mkdir("tracks");
818 dir_track->cd();
819 TIter nextH_track(m_histoList_track);
820 while ((obj = nextH_track())) {
821 if (obj->InheritsFrom("TH1F"))((TH1F*)obj)->Scale(1. / m_nEvents);
822 obj->Write();
823 }
824
825
826 TDirectory* dir_shaper = oldDir->mkdir("shaper");
827 dir_shaper->cd();
828 for (int i = 0; i < m_nLayers; i++) {
829 TString layerName = "shaperL";
830 layerName += i + 3;
831 TDirectory* dir_layer = dir_shaper->mkdir(layerName.Data());
832 dir_layer->cd();
833 TIter nextH_shaper(m_histoList_shaper[i]);
834 while ((obj = nextH_shaper())) {
835 if (obj->InheritsFrom("TH1F"))((TH1F*)obj)->Scale(1. / m_nEvents);
836 obj->Write();
837 }
838 }
839
840
841 TDirectory* dir_reco = oldDir->mkdir("reco");
842 dir_reco->cd();
843 for (int i = 0; i < m_nLayers; i++) {
844 TString layerName = "recoL";
845 layerName += i + 3;
846 TDirectory* dir_layer = dir_reco->mkdir(layerName.Data());
847 dir_layer->cd();
848 TIter nextH_reco(m_histoList_reco[i]);
849 while ((obj = nextH_reco())) {
850 if (obj->InheritsFrom("TH1F"))((TH1F*)obj)->Scale(1. / m_nEvents);
851 obj->Write();
852 }
853 }
854
855 TDirectory* dir_cluster = oldDir->mkdir("clusters");
856 dir_cluster->cd();
857 for (int i = 0; i < m_nLayers; i++) {
858 TString layerName = "clusterL";
859 layerName += i + 3;
860 TDirectory* dir_layer = dir_cluster->mkdir(layerName.Data());
861 dir_layer->cd();
862 TIter nextH_cluster(m_histoList_cluster[i]);
863 while ((obj = nextH_cluster())) {
864 if (obj->InheritsFrom("TH1F"))((TH1F*)obj)->Scale(1. / m_nEvents);
865 obj->Write();
866 }
867 }
868
869 TDirectory* dir_clTRK = oldDir->mkdir("clustersTrk");
870 dir_clTRK->cd();
871 for (int i = 0; i < m_nLayers; i++) {
872 TString layerName = "clstrkL";
873 layerName += i + 3;
874 TDirectory* dir_layer = dir_clTRK->mkdir(layerName.Data());
875 dir_layer->cd();
876 TIter nextH_clTRK(m_histoList_clTRK[i]);
877 while ((obj = nextH_clTRK())) {
878 if (obj->InheritsFrom("TH1F"))((TH1F*)obj)->Scale(1. / m_nEvents);
879 obj->Write();
880 }
881 }
882
883 oldDir->cd();
884 TIter nextH_corr(m_histoList_corr);
885 while ((obj = nextH_corr())) {
886 if (obj->InheritsFrom("TH1F"))
887 ((TH1F*)obj)->Scale(1. / m_nEvents);
888 obj->Write();
889 }
890
891 m_rootFilePtr->Close();
892
893
894 }
895
896
897
898}
TList * m_histoList_reco[m_nLayers]
histo list reco digits
TList * m_histoList_corr
histo list correlations
static const int m_nLayers
max number of layers
TList * m_histoList_track
histo list tracks
TList * m_histoList_clTRK[m_nLayers]
histo list clusters related to tracks
TList * m_histoList_shaper[m_nLayers]
histo list shaper digits
TFile * m_rootFilePtr
pointer at root file used for storing histograms
TList * m_histoList_cluster[m_nLayers]
histo list clusters

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 96 of file Module.cc.

97{
98 if (m_conditions.empty()) return false;
99
100 //okay, a condition was set for this Module...
101 if (!m_hasReturnValue) {
102 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
103 }
104
105 for (const auto& condition : m_conditions) {
106 if (condition.evaluate(m_returnValue)) {
107 return true;
108 }
109 }
110 return false;
111}
int m_returnValue
The return value.
Definition: Module.h:519
bool m_hasReturnValue
True, if the return value is set.
Definition: Module.h:518

◆ event()

void event ( void  )
overridevirtual

fill histograms

Reimplemented from Module.

Definition at line 426 of file SVDPerformanceModule.cc.

427{
428
429 SVDModeByte modeByte = m_storeSVDEvtInfo->getModeByte();
430
431 m_nEvents++;
432 float c_eTOkeV = 3.6 / 1000; //keV = e * c_eTOkeV
433
434 // StoreObjPtr<EventMetaData> eventMetaDataPtr;
435
436 //ShaperDigits
437 int nShaperDigi[m_nLayers][m_nSensors][m_nSides];
438
439 //RecoDigits
440 int nRecoDigi[m_nLayers][m_nSensors][m_nSides];
441
442 // SVD clusters
443 int nCl[m_nLayers][m_nSensors][m_nSides];
444 int nCl345[m_nLayers][m_nSensors][m_nSides];
445 int nCltrk[m_nLayers][m_nSensors][m_nSides];
446
447 for (int i = 0; i < m_nLayers; i ++) //loop on Layers
448 for (int j = 0; j < m_nSensors; j ++) //loop on Sensors
449 for (int k = 0; k < m_nSides; k ++) { //loop on Sides
450 nShaperDigi[i][j][k] = 0;
451 nRecoDigi[i][j][k] = 0;
452 nCl[i][j][k] = 0;
453 nCl345[i][j][k] = 0;
454 nCltrk[i][j][k] = 0;
455 }
456
457 //tracks
458 if (m_Tracks) {
459 m_nTracks->Fill(m_Tracks.getEntries());
460 m_ntracks += m_Tracks.getEntries();
461 }
462
463 BOOST_FOREACH(Track & track, m_Tracks) {
464
465 const TrackFitResult* tfr = nullptr;
467 tfr = track.getTrackFitResultWithClosestMass(Const::electron);
468 else
469 tfr = track.getTrackFitResultWithClosestMass(Const::pion);
470 if (tfr) {
471 m_Pvalue->Fill(tfr->getPValue());
472 m_mom->Fill(tfr->getMomentum().R());
473 m_nSVDhits->Fill((tfr->getHitPatternVXD()).getNSVDHits());
474
475 if (m_is2017TBanalysis) {
476 if ((tfr->getPValue() < 0.001) || (tfr->getMomentum().R() < 1))
477 continue;
478 }
479 }
480 RelationVector<RecoTrack> theRC = DataStore::getRelationsWithObj<RecoTrack>(&track);
481 RelationVector<SVDCluster> svdClustersTrack = DataStore::getRelationsWithObj<SVDCluster>(theRC[0]);
482
483
484 for (int cl = 0 ; cl < (int)svdClustersTrack.size(); cl++) {
485
486 float clCharge = svdClustersTrack[cl]->getCharge();
487 float clEnergy = svdClustersTrack[cl]->getCharge() * c_eTOkeV;
488 int clSize = svdClustersTrack[cl]->getSize();
489 float clSN = svdClustersTrack[cl]->getSNR();
490 float clTime = svdClustersTrack[cl]->getClsTime();
491 VxdID::baseType theVxdID = (VxdID::baseType)svdClustersTrack[cl]->getSensorID();
492 int layer = VxdID(theVxdID).getLayerNumber() - 3;
493 int sensor = getSensor(layer, VxdID(theVxdID).getSensorNumber(), m_is2017TBanalysis);
494 int side = svdClustersTrack[cl]->isUCluster();
495
496 nCltrk[layer][sensor][side]++;
497 h_cltrkCharge[layer][sensor][side]->Fill(clCharge);
498 h_cltrkEnergy[layer][sensor][side]->Fill(clEnergy);
499 h_cltrkSize[layer][sensor][side]->Fill(clSize);
500 h_cltrkSN[layer][sensor][side]->Fill(clSN);
501 h_cltrkTime[layer][sensor][side]->Fill(clTime);
502
503 SVDModeByte::baseType tb = modeByte.getTriggerBin();
504 if ((int) tb == 0) h_cltrkTime_TB1[layer][sensor][side]->Fill(clTime);
505 if ((int) tb == 1) h_cltrkTime_TB2[layer][sensor][side]->Fill(clTime);
506 if ((int) tb == 2) h_cltrkTime_TB3[layer][sensor][side]->Fill(clTime);
507 if ((int) tb == 3) h_cltrkTime_TB4[layer][sensor][side]->Fill(clTime);
508
509 h_cltrkChargeVSSize[layer][sensor][side]->Fill(clCharge, clSize);
510 h_cltrkSNVSSize[layer][sensor][side]->Fill(clSN, clSize);
511 h_cltrkTimeVSSize[layer][sensor][side]->Fill(clTime, clSize);
512
513 if (layer == 2) //layer5
514 for (int cll = 0 ; cll < cl; cll++) {
515 VxdID::baseType theVxdID2 = (VxdID::baseType)svdClustersTrack[cll]->getSensorID();
516 int side2 = svdClustersTrack[cll]->isUCluster();
517
518 if ((VxdID(theVxdID2).getLayerNumber() == 5) && (side2 != side)) { //L5uL5v
519 if (side)
520 h_cltrkTime_L5uL5v->Fill(svdClustersTrack[cl]->getClsTime(), svdClustersTrack[cll]->getClsTime());
521 else
522 h_cltrkTime_L5uL5v->Fill(svdClustersTrack[cll]->getClsTime(), svdClustersTrack[cl]->getClsTime());
523 }
524
525 if (VxdID(theVxdID2).getLayerNumber() == 4) { //L4
526
527 if (side2 && side2 == side) //L4uL5u
528 h_cltrkTime_L4uL5u->Fill(svdClustersTrack[cl]->getClsTime(), svdClustersTrack[cll]->getClsTime());
529
530 if (!side2 && side2 == side) //L4vL5v
531 h_cltrkTime_L4vL5v->Fill(svdClustersTrack[cl]->getClsTime(), svdClustersTrack[cll]->getClsTime());
532
533 }
534 }
535
536 //fill time difference
537 for (int cl2 = 0 ; cl2 < cl ; cl2++) {
538
539 int layerDist = abs(VxdID(theVxdID).getLayerNumber() - svdClustersTrack[cl2]->getSensorID().getLayerNumber());
540
541 int side2 = svdClustersTrack[cl2]->isUCluster();
542
543 if (layerDist == 0) {
544 if ((side == 0) && (side2 == 1))
545 h_cltrk_UV -> Fill(svdClustersTrack[cl2]->getClsTime() - svdClustersTrack[cl]->getClsTime());
546
547 if ((side == 1) && (side2 == 0))
548 h_cltrk_UV -> Fill(svdClustersTrack[cl]->getClsTime() - svdClustersTrack[cl2]->getClsTime());
549 } else if (layerDist == 1) {
550 if ((side == 1) && (side2 == 1))
551 h_cltrk_UU -> Fill(svdClustersTrack[cl]->getClsTime() - svdClustersTrack[cl2]->getClsTime());
552
553 if ((side == 0) && (side2 == 0))
554 h_cltrk_VV -> Fill(svdClustersTrack[cl]->getClsTime() - svdClustersTrack[cl2]->getClsTime());
555 }
556
557
558
559 }
560
561 if (svdClustersTrack[cl]->getClsTime() < m_debugLowTime) {
562
563 B2DEBUG(10, "CLUSTER WITH A TIME BELOW " << m_debugLowTime << "ns");
564 B2DEBUG(10, "size = " << svdClustersTrack[cl]->getSize() << ", SNR = " << svdClustersTrack[cl]->getSNR() << " charge = " <<
565 svdClustersTrack[cl]->getCharge() << ", SeedCharge = " << svdClustersTrack[cl]->getSeedCharge() << ", time = " <<
566 svdClustersTrack[cl]->getClsTime());
567 }
568
569
570 if (m_isSimulation) {
571 RelationVector<SVDTrueHit> svdTrueHitsTrack = DataStore::getRelationsWithObj<SVDTrueHit>(svdClustersTrack[cl]);
572
573 for (int i = 0; i < (int)svdTrueHitsTrack.size(); i++) {
574 // if(svdTrueHitsTrack.size()>0){
575 h_cltrkTimeVSTrueTime[layer][sensor][side]->Fill(svdClustersTrack[cl]->getClsTime(), svdTrueHitsTrack[i]->getGlobalTime());
576 if (svdClustersTrack[cl]->getClsTime() < m_debugLowTime)
577 B2DEBUG(10, "True Hit Time = " << svdTrueHitsTrack[i]->getGlobalTime() << ", EnergyDep = " << svdTrueHitsTrack[i]->getEnergyDep() <<
578 ", size = " << svdTrueHitsTrack.size());
579 }
580
581
582 RelationVector<MCParticle> mcParticleTrack = DataStore::getRelationsWithObj<MCParticle>(svdClustersTrack[cl]);
583
584 if (svdClustersTrack[cl]->getClsTime() < m_debugLowTime)
585 if ((int)mcParticleTrack.size() > 0)
586 B2DEBUG(10, "MCParticle PDG = " << mcParticleTrack[0]->getPDG() << ", energy = " << mcParticleTrack[0]->getEnergy() << ", size = "
587 << mcParticleTrack.size());
588
589
590 }
591
592 if (clSize == 1) {
593 h_1cltrkCharge[layer][sensor][side]->Fill(clCharge);
594 h_1cltrkSN[layer][sensor][side]->Fill(svdClustersTrack[cl]->getSNR());
595 }
596
597 if (clSize == 2) {
598 h_2cltrkCharge[layer][sensor][side]->Fill(clCharge);
599 h_2cltrkSN[layer][sensor][side]->Fill(svdClustersTrack[cl]->getSNR());
600 }
601 }
602
603 }
604
605 if (m_Tracks)
606 B2DEBUG(1, "%%%%%%%% NEW EVENT, number of Tracks = " << m_Tracks.getEntries());
607
608 //shaper digits
609 for (int digi = 0 ; digi < m_svdShapers.getEntries(); digi++) {
610
611
612 VxdID::baseType theVxdID = (VxdID::baseType)m_svdShapers[digi]->getSensorID();
613 int layer = VxdID(theVxdID).getLayerNumber() - 3;
614 int sensor = getSensor(layer, VxdID(theVxdID).getSensorNumber(), m_is2017TBanalysis);
615 int side = m_svdShapers[digi]->isUStrip();
616 nShaperDigi[layer][sensor][side]++;
617
618
619 if (!m_svdShapers[digi]->isUStrip()) {
620 if (((layer == 0) && (m_svdShapers[digi]->getCellID() > 767)) ||
621 ((layer != 0) && (m_svdShapers[digi]->getCellID() > 511)))
622 B2WARNING(" SVDShaperDigits: unexpected cellID for Layer " << layer << " Ladder " << VxdID(theVxdID).getLadderNumber() <<
623 " Sensor " << VxdID(theVxdID).getSensorNumber() << " V side, strip = " << m_svdShapers[digi]->getCellID());
624 } else {
625 if (m_svdShapers[digi]->getCellID() > 767)
626 B2WARNING(" SVDShaperDigits: unexpected cellID for Layer " << layer << " Ladder " << VxdID(theVxdID).getLadderNumber() <<
627 " Sensor " << VxdID(theVxdID).getSensorNumber() << " U side, strip = " << m_svdShapers[digi]->getCellID());
628 }
629
630 }
631
632 //reco digits
633 if (m_svdRecos.isValid()) {
634 for (int digi = 0 ; digi < m_svdRecos.getEntries(); digi++) {
635
636 VxdID::baseType theVxdID = (VxdID::baseType)m_svdRecos[digi]->getSensorID();
637 int layer = VxdID(theVxdID).getLayerNumber() - 3;
638 int sensor = getSensor(layer, VxdID(theVxdID).getSensorNumber(), m_is2017TBanalysis);
639 int side = m_svdRecos[digi]->isUStrip();
640 int cellID = m_svdRecos[digi]->getCellID();
641
642 float thisNoise = m_NoiseCal.getNoiseInElectrons(theVxdID, side, cellID);
643
644 h_stripNoise[layer][sensor][side]->Fill(thisNoise);
645 h_recoCharge[layer][sensor][side]->Fill(m_svdRecos[digi]->getCharge());
646 h_recoEnergy[layer][sensor][side]->Fill(m_svdRecos[digi]->getCharge()*c_eTOkeV);
647 h_recoTime[layer][sensor][side]->Fill(m_svdRecos[digi]->getTime());
648 nRecoDigi[layer][sensor][side]++;
649 }
650 }
651
652 //clusters NOT related to tracks
653 for (int cl = 0 ; cl < m_svdClusters.getEntries(); cl++) {
654
655 float clCharge = m_svdClusters[cl]->getCharge();
656 float clEnergy = m_svdClusters[cl]->getCharge() * c_eTOkeV;
657 float clCoor = m_svdClusters[cl]->getPosition();
658 int clSize = m_svdClusters[cl]->getSize();
659 float clTime = m_svdClusters[cl]->getClsTime();
660 float clSN = m_svdClusters[cl]->getSNR();
661 float seed_maxbin = -1;
662
663 RelationVector<RecoTrack> theRC = DataStore::getRelationsWithObj<RecoTrack>(m_svdClusters[cl]);
664
665 if ((int)theRC.size() > 0)
666 continue;
667
668 //look for the max bin of the seed
669 RelationVector<SVDRecoDigit> theRecoDigits = DataStore::getRelationsWithObj<SVDRecoDigit>(m_svdClusters[cl]);
670 int index_seed = 0;
671 float charge = 0;
672 for (int r = 0; r < (int)theRecoDigits.size(); r++)
673 if (theRecoDigits.weight(r) > charge) {
674 index_seed = r;
675 charge = theRecoDigits[r]->getCharge();
676 }
677
678 if (index_seed > -1) {
679 RelationVector<SVDShaperDigit> theSeedShaperDigits = DataStore::getRelationsWithObj<SVDShaperDigit>(theRecoDigits[index_seed]);
680
682 samples = theSeedShaperDigits[0]->getSamples();
683 float amplitude = 0;
684 const int nAPVSamples = 6;
685 for (int k = 0; k < nAPVSamples; k ++) {
686 if (samples[k] > amplitude) {
687 amplitude = samples[k];
688 seed_maxbin = k;
689 }
690 }
691 }
692
693 VxdID::baseType theVxdID = (VxdID::baseType)m_svdClusters[cl]->getSensorID();
694 int side = m_svdClusters[cl]->isUCluster();
695 int layer = VxdID(theVxdID).getLayerNumber() - 3;
696 int sensor = getSensor(layer, VxdID(theVxdID).getSensorNumber(), m_is2017TBanalysis);
697
698 for (int cl2 = 0 ; cl2 < cl; cl2++) {
699 if (clSize > 1)
700 break;
701
702 VxdID::baseType theVxdID2 = (VxdID::baseType)m_svdClusters[cl2]->getSensorID();
703 int side2 = m_svdClusters[cl2]->isUCluster();
704 int layer2 = VxdID(theVxdID2).getLayerNumber() - 3;
705 int sensor2 = getSensor(layer, VxdID(theVxdID2).getSensorNumber(), m_is2017TBanalysis);
706
707 float clCoor1 = m_svdClusters[cl]->getPosition();
708 float clCoor2 = m_svdClusters[cl2]->getPosition();
709 float clEnergy1 = m_svdClusters[cl]->getCharge() * c_eTOkeV;
710 float clEnergy2 = m_svdClusters[cl2]->getCharge() * c_eTOkeV;
711 if ((layer != layer2) || (sensor != sensor2))
712 continue;
713
714 if (seed_maxbin < 2 || seed_maxbin > 4)
715 continue;
716
717 int cellID1 = -1;
718 for (int r = 0; r < (int)theRecoDigits.size(); r++)
719 if (cellID1 < theRecoDigits[r]->getCellID())
720 cellID1 = theRecoDigits[r]->getCellID();
721
722 RelationVector<SVDRecoDigit> theRecoDigits2 = DataStore::getRelationsWithObj<SVDRecoDigit>(m_svdClusters[cl2]);
723 int dist = 768;
724 for (int r = 0; r < (int)theRecoDigits2.size(); r++)
725 if (cellID1 - theRecoDigits2[r]->getCellID() < dist)
726 dist = cellID1 - theRecoDigits2[r]->getCellID();
727
728 if (side == 1 && side2 == 1) {
729 h_clCoor1VSCoor2[layer][sensor][1]->Fill(clCoor1 - clCoor2); //
730 h_clCellID1VSCellID2[layer][sensor][1]->Fill(dist);
731 h_clEnergy12VSdelta[layer][sensor][1]->Fill(clEnergy1 + clEnergy2, dist); //
732 }
733 if (side == 0 && side2 == 0) {
734 h_clCoor1VSCoor2[layer][sensor][0]->Fill(clCoor1 - clCoor2); //
735 h_clCellID1VSCellID2[layer][sensor][0]->Fill(dist);
736 h_clEnergy12VSdelta[layer][sensor][0]->Fill(clEnergy1 + clEnergy2, dist); //
737 }
738
739 if (side == 1 && side2 == 0) {
740 h_clCoorUVSCoorV[layer][sensor]->Fill(clCoor2, clCoor1); //V, U
741 h_clEnergyUVSEnergyV[layer][sensor]->Fill(clEnergy2, clEnergy1); //V, U
742 }
743 if (side == 0 && side2 == 1) {
744 h_clCoorUVSCoorV[layer][sensor]->Fill(clCoor1, clCoor2);
745 h_clEnergyUVSEnergyV[layer][sensor]->Fill(clEnergy1, clEnergy2);
746 }
747 }
748
749 nCl[layer][sensor][side]++;
750
751
752 h_clCharge[layer][sensor][side]->Fill(clCharge);
753 h_clEnergy[layer][sensor][side]->Fill(clEnergy);
754 h_clSeedMaxbin[layer][sensor][side]->Fill(seed_maxbin);
755 h_clEnergyVSMaxbin[layer][sensor][side]->Fill(clEnergy, seed_maxbin);
756 if (seed_maxbin < 2)
757 h_clEnergyVSSize_mb12[layer][sensor][side]->Fill(clEnergy, clSize);
758 else if (seed_maxbin == 5)
759 h_clEnergyVSSize_mb6[layer][sensor][side]->Fill(clEnergy, clSize);
760 else {
761 h_clEnergyVSSize_mb345[layer][sensor][side]->Fill(clEnergy, clSize);
762 nCl345[layer][sensor][side]++;
763 if (m_svdClusters[cl]->isUCluster())
764 h_clEnergyVSCoorU[layer][sensor][side]->Fill(clEnergy, clCoor);
765 else
766 h_clEnergyVSCoorV[layer][sensor][side]->Fill(clEnergy, clCoor);
767 }
768 h_clSize[layer][sensor][side]->Fill(clSize);
769 h_clSN[layer][sensor][side]->Fill(clSN);
770 h_clTime[layer][sensor][side]->Fill(clTime);
771
772 h_clChargeVSSize[layer][sensor][side]->Fill(clCharge, clSize);
773 h_clSNVSSize[layer][sensor][side]->Fill(clSN, clSize);
774 h_clTimeVSSize[layer][sensor][side]->Fill(clTime, clSize);
775
776 if (m_isSimulation) {
777 RelationVector<SVDTrueHit> svdTrueHits = DataStore::getRelationsWithObj<SVDTrueHit>(m_svdClusters[cl]);
778 if (svdTrueHits.size() > 0)
779 h_clTimeVSTrueTime[layer][sensor][side]->Fill(m_svdClusters[cl]->getClsTime(), svdTrueHits[0]->getGlobalTime());
780 }
781
782 }
783
784 for (int i = 0; i < m_nLayers; i ++) //loop on Layers
785 for (int j = 0; j < (int)sensorsOnLayer[i]; j ++) //loop on Sensors
786 for (int k = 0; k < m_nSides; k ++) { //loop on Sides
787 h_nShaper[i][j][k]->Fill(nShaperDigi[i][j][k]);
788 h_nReco[i][j][k]->Fill(nRecoDigi[i][j][k]);
789 h_nCl[i][j][k]->Fill(nCl[i][j][k]);
790 h_clNuVSNv[i][j]->Fill(nCl345[i][j][0], nCl345[i][j][1]);
791 h_nCltrk[i][j][k]->Fill(nCltrk[i][j][k]);
792 }
793}
static const ChargedStable pion
charged pion particle
Definition: Const.h:661
static const ChargedStable electron
electron particle
Definition: Const.h:659
Class for type safe access to objects that are referred to in relations.
size_t size() const
Get number of relations.
float weight(int index) const
Get weight with index.
Class to store SVD mode information.
Definition: SVDModeByte.h:69
baseType getTriggerBin() const
Get the triggerBin id.
Definition: SVDModeByte.h:140
uint8_t baseType
The base integer type for SVDModeByte.
Definition: SVDModeByte.h:72
float getNoiseInElectrons(const VxdID &sensorID, const bool &isU, const unsigned short &strip) const
This method provides the correct noise conversion into electrons, taking into account that the noise ...
TH2F * h_cltrkTimeVSTrueTime[m_nLayers][m_nSensors][m_nSides]
time VS true time
TH1F * h_cltrk_UU
U time vs U time.
TH1F * h_recoTime[m_nLayers][m_nSensors][m_nSides]
time
TH2F * h_cltrkChargeVSSize[m_nLayers][m_nSensors][m_nSides]
charge VS size
TH2F * h_cltrkSNVSSize[m_nLayers][m_nSensors][m_nSides]
charge VS size
TH1F * h_clTime[m_nLayers][m_nSensors][m_nSides]
time
TH2F * h_clEnergyVSSize_mb6[m_nLayers][m_nSensors][m_nSides]
energy VS size, max bin == 6
TH1F * h_clCoor1VSCoor2[m_nLayers][m_nSensors][m_nSides]
coor1 VS coor2
TH2F * h_clEnergyUVSEnergyV[m_nLayers][m_nSensors]
energy VS position
TH1F * h_cltrkEnergy[m_nLayers][m_nSensors][m_nSides]
energy
TH2F * h_clNuVSNv[m_nLayers][m_nSensors]
N U culsters VS N V clusters.
TH2F * h_clEnergyVSCoorV[m_nLayers][m_nSensors][m_nSides]
energy VS position V
StoreArray< SVDCluster > m_svdClusters
SVDCluster store array.
TH1F * h_clCharge[m_nLayers][m_nSensors][m_nSides]
charge
unsigned int sensorsOnLayer[4]
sensors on layer i
TH2F * h_clEnergyVSMaxbin[m_nLayers][m_nSensors][m_nSides]
energy VS maxbin seed
TH1F * h_nCltrk[m_nLayers][m_nSensors][m_nSides]
number per event
TH1F * h_cltrk_VV
V time vs V time.
SVDNoiseCalibrations m_NoiseCal
SVDNoise calibration db object.
TH1F * h_cltrkCharge[m_nLayers][m_nSensors][m_nSides]
charge
TH1F * h_recoCharge[m_nLayers][m_nSensors][m_nSides]
charge
TH2F * h_cltrkTime_L4uL5u
L4U time VS L5U time.
TH1F * h_cltrkTime_TB3[m_nLayers][m_nSensors][m_nSides]
time
TH2F * h_cltrkTimeVSSize[m_nLayers][m_nSensors][m_nSides]
charge VS size
TH2F * h_clEnergyVSSize_mb12[m_nLayers][m_nSensors][m_nSides]
energy VS size, maxbin == 1,2
TH1F * h_2cltrkCharge[m_nLayers][m_nSensors][m_nSides]
charge
TH1F * h_nShaper[m_nLayers][m_nSensors][m_nSides]
number per event
static const int m_nSides
max number of sides
TH2F * h_cltrkTime_L5uL5v
L5U time VS L5V time.
TH1F * h_cltrkTime_TB4[m_nLayers][m_nSensors][m_nSides]
time
TH2F * h_clTimeVSTrueTime[m_nLayers][m_nSensors][m_nSides]
time VS true time
TH1F * h_1cltrkCharge[m_nLayers][m_nSensors][m_nSides]
charge
TH2F * h_clEnergyVSSize_mb345[m_nLayers][m_nSensors][m_nSides]
energy VS size, maxbin == 3,4,5
TH1F * h_nCl[m_nLayers][m_nSensors][m_nSides]
number per event
TH2F * h_clEnergyVSCoorU[m_nLayers][m_nSensors][m_nSides]
energy VS position U
TH1F * h_1cltrkSN[m_nLayers][m_nSensors][m_nSides]
signal over noise
TH1F * h_clCellID1VSCellID2[m_nLayers][m_nSensors][m_nSides]
coor1 VS coor2
TH1F * h_2cltrkSN[m_nLayers][m_nSensors][m_nSides]
signal over noise
TH1F * h_cltrkTime_TB2[m_nLayers][m_nSensors][m_nSides]
time
TH1F * h_cltrk_UV
U time vs V time.
TH2F * h_clEnergy12VSdelta[m_nLayers][m_nSensors][m_nSides]
coor1 VS coor2
TH2F * h_clCoorUVSCoorV[m_nLayers][m_nSensors]
energy VS position
TH1F * h_clEnergy[m_nLayers][m_nSensors][m_nSides]
energy
TH1F * h_clSN[m_nLayers][m_nSensors][m_nSides]
signal over noise
static const int m_nSensors
max number of sensors
TH2F * h_clChargeVSSize[m_nLayers][m_nSensors][m_nSides]
charge VS size
TH1F * h_cltrkSize[m_nLayers][m_nSensors][m_nSides]
size
TH1F * h_stripNoise[m_nLayers][m_nSensors][m_nSides]
strip noise
TH1F * h_clSeedMaxbin[m_nLayers][m_nSensors][m_nSides]
maxbin seed
TH1F * h_nReco[m_nLayers][m_nSensors][m_nSides]
number per event
StoreArray< SVDRecoDigit > m_svdRecos
SVDRecoDigits store array.
TH2F * h_clSNVSSize[m_nLayers][m_nSensors][m_nSides]
charge VS size
TH2F * h_clTimeVSSize[m_nLayers][m_nSensors][m_nSides]
charge VS size
StoreArray< Track > m_Tracks
Tracks store array.
TH1F * h_recoEnergy[m_nLayers][m_nSensors][m_nSides]
energy
StoreObjPtr< SVDEventInfo > m_storeSVDEvtInfo
Storage for SVDEventInfo object.
TH2F * h_cltrkTime_L4vL5v
L4V time VS L5V time.
int getSensor(int layer, int sensor, bool isTB)
get sensor number
TH1F * h_cltrkTime[m_nLayers][m_nSensors][m_nSides]
time
TH1F * h_clSize[m_nLayers][m_nSensors][m_nSides]
size
StoreArray< SVDShaperDigit > m_svdShapers
SVDShaperDigit store array.
TH1F * h_cltrkTime_TB1[m_nLayers][m_nSensors][m_nSides]
time
TH1F * h_cltrkSN[m_nLayers][m_nSensors][m_nSides]
signal over noise
std::array< APVFloatSampleType, c_nAPVSamples > APVFloatSamples
array of APVFloatSampleType objects
int getEntries() const
Get the number of objects in the array.
Definition: StoreArray.h:216
Values of the result of a track fit with a given particle hypothesis.
double getPValue() const
Getter for Chi2 Probability of the track fit.
ROOT::Math::XYZVector getMomentum() const
Getter for vector of momentum at closest approach of track in r/phi projection.
HitPatternVXD getHitPatternVXD() const
Getter for the hit pattern in the VXD;.
Class that bundles various TrackFitResults.
Definition: Track.h:25
Class to uniquely identify a any structure of the PXD and SVD.
Definition: VxdID.h:33
unsigned short baseType
The base integer type for VxdID.
Definition: VxdID.h:36
baseType getLayerNumber() const
Get the layer id.
Definition: VxdID.h:96
double charge(int pdgCode)
Returns electric charge of a particle with given pdg code.
Definition: EvtPDLUtil.cc:44
const std::size_t nAPVSamples
Number of APV samples.

◆ exposePythonAPI()

void exposePythonAPI ( )
staticinherited

Exposes methods of the Module class to Python.

Definition at line 325 of file Module.cc.

326{
327 // to avoid confusion between std::arg and boost::python::arg we want a shorthand namespace as well
328 namespace bp = boost::python;
329
330 docstring_options options(true, true, false); //userdef, py sigs, c++ sigs
331
332 void (Module::*setReturnValueInt)(int) = &Module::setReturnValue;
333
334 enum_<Module::EAfterConditionPath>("AfterConditionPath",
335 R"(Determines execution behaviour after a conditional path has been executed:
336
337.. attribute:: END
338
339 End processing of this path after the conditional path. (this is the default for if_value() etc.)
340
341.. attribute:: CONTINUE
342
343 After the conditional path, resume execution after this module.)")
344 .value("END", Module::EAfterConditionPath::c_End)
345 .value("CONTINUE", Module::EAfterConditionPath::c_Continue)
346 ;
347
348 /* Do not change the names of >, <, ... we use them to serialize conditional pathes */
349 enum_<Belle2::ModuleCondition::EConditionOperators>("ConditionOperator")
356 ;
357
358 enum_<Module::EModulePropFlags>("ModulePropFlags",
359 R"(Flags to indicate certain low-level features of modules, see :func:`Module.set_property_flags()`, :func:`Module.has_properties()`. Most useful flags are:
360
361.. attribute:: PARALLELPROCESSINGCERTIFIED
362
363 This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)
364
365.. attribute:: HISTOGRAMMANAGER
366
367 This module is used to manage histograms accumulated by other modules
368
369.. attribute:: TERMINATEINALLPROCESSES
370
371 When using parallel processing, call this module's terminate() function in all processes. This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.
372)")
373 .value("INPUT", Module::EModulePropFlags::c_Input)
374 .value("OUTPUT", Module::EModulePropFlags::c_Output)
375 .value("PARALLELPROCESSINGCERTIFIED", Module::EModulePropFlags::c_ParallelProcessingCertified)
376 .value("HISTOGRAMMANAGER", Module::EModulePropFlags::c_HistogramManager)
377 .value("INTERNALSERIALIZER", Module::EModulePropFlags::c_InternalSerializer)
378 .value("TERMINATEINALLPROCESSES", Module::EModulePropFlags::c_TerminateInAllProcesses)
379 ;
380
381 //Python class definition
382 class_<Module, PyModule> module("Module", R"(
383Base class for Modules.
384
385A module is the smallest building block of the framework.
386A typical event processing chain consists of a Path containing
387modules. By inheriting from this base class, various types of
388modules can be created. To use a module, please refer to
389:func:`Path.add_module()`. A list of modules is available by running
390``basf2 -m`` or ``basf2 -m package``, detailed information on parameters is
391given by e.g. ``basf2 -m RootInput``.
392
393The 'Module Development' section in the manual provides detailed information
394on how to create modules, setting parameters, or using return values/conditions:
395https://confluence.desy.de/display/BI/Software+Basf2manual#Module_Development
396
397)");
398 module
399 .def("__str__", &Module::getPathString)
400 .def("name", &Module::getName, return_value_policy<copy_const_reference>(),
401 "Returns the name of the module. Can be changed via :func:`set_name() <Module.set_name()>`, use :func:`type() <Module.type()>` for identifying a particular module class.")
402 .def("type", &Module::getType, return_value_policy<copy_const_reference>(),
403 "Returns the type of the module (i.e. class name minus 'Module')")
404 .def("set_name", &Module::setName, args("name"), R"(
405Set custom name, e.g. to distinguish multiple modules of the same type.
406
407>>> path.add_module('EventInfoSetter')
408>>> ro = path.add_module('RootOutput', branchNames=['EventMetaData'])
409>>> ro.set_name('RootOutput_metadata_only')
410>>> print(path)
411[EventInfoSetter -> RootOutput_metadata_only]
412
413)")
414 .def("description", &Module::getDescription, return_value_policy<copy_const_reference>(),
415 "Returns the description of this module.")
416 .def("package", &Module::getPackage, return_value_policy<copy_const_reference>(),
417 "Returns the package this module belongs to.")
418 .def("available_params", &_getParamInfoListPython,
419 "Return list of all module parameters as `ModuleParamInfo` instances")
420 .def("has_properties", &Module::hasProperties, (bp::arg("properties")),
421 R"DOCSTRING(Allows to check if the module has the given properties out of `ModulePropFlags` set.
422
423>>> if module.has_properties(ModulePropFlags.PARALLELPROCESSINGCERTIFIED):
424>>> ...
425
426Parameters:
427 properties (int): bitmask of `ModulePropFlags` to check for.
428)DOCSTRING")
429 .def("set_property_flags", &Module::setPropertyFlags, args("property_mask"),
430 "Set module properties in the form of an OR combination of `ModulePropFlags`.");
431 {
432 // python signature is too crowded, make ourselves
433 docstring_options subOptions(true, false, false); //userdef, py sigs, c++ sigs
434 module
435 .def("if_value", &Module::if_value,
436 (bp::arg("expression"), bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
437 R"DOCSTRING(if_value(expression, condition_path, after_condition_path=AfterConditionPath.END)
438
439Sets a conditional sub path which will be executed after this
440module if the return value set in the module passes the given ``expression``.
441
442Modules can define a return value (int or bool) using ``setReturnValue()``,
443which can be used in the steering file to split the Path based on this value, for example
444
445>>> module_with_condition.if_value("<1", another_path)
446
447In case the return value of the ``module_with_condition`` for a given event is
448less than 1, the execution will be diverted into ``another_path`` for this event.
449
450You could for example set a special return value if an error occurs, and divert
451the execution into a path containing :b2:mod:`RootOutput` if it is found;
452saving only the data producing/produced by the error.
453
454After a conditional path has executed, basf2 will by default stop processing
455the path for this event. This behaviour can be changed by setting the
456``after_condition_path`` argument.
457
458Parameters:
459 expression (str): Expression to determine if the conditional path should be executed.
460 This should be one of the comparison operators ``<``, ``>``, ``<=``,
461 ``>=``, ``==``, or ``!=`` followed by a numerical value for the return value
462 condition_path (Path): path to execute in case the expression is fulfilled
463 after_condition_path (AfterConditionPath): What to do once the ``condition_path`` has been executed.
464)DOCSTRING")
465 .def("if_false", &Module::if_false,
466 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
467 R"DOC(if_false(condition_path, after_condition_path=AfterConditionPath.END)
468
469Sets a conditional sub path which will be executed after this module if
470the return value of the module evaluates to False. This is equivalent to
471calling `if_value` with ``expression=\"<1\"``)DOC")
472 .def("if_true", &Module::if_true,
473 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
474 R"DOC(if_true(condition_path, after_condition_path=AfterConditionPath.END)
475
476Sets a conditional sub path which will be executed after this module if
477the return value of the module evaluates to True. It is equivalent to
478calling `if_value` with ``expression=\">=1\"``)DOC");
479 }
480 module
481 .def("has_condition", &Module::hasCondition,
482 "Return true if a conditional path has been set for this module "
483 "using `if_value`, `if_true` or `if_false`")
484 .def("get_all_condition_paths", &_getAllConditionPathsPython,
485 "Return a list of all conditional paths set for this module using "
486 "`if_value`, `if_true` or `if_false`")
487 .def("get_all_conditions", &_getAllConditionsPython,
488 "Return a list of all conditional path expressions set for this module using "
489 "`if_value`, `if_true` or `if_false`")
490 .add_property("logging", make_function(&Module::getLogConfig, return_value_policy<reference_existing_object>()),
@ c_GE
Greater or equal than: ">=".
@ c_SE
Smaller or equal than: "<=".
@ c_GT
Greater than: ">"
@ c_NE
Not equal: "!=".
@ c_EQ
Equal: "=" or "=="
@ c_ST
Smaller than: "<"
Base class for Modules.
Definition: Module.h:72
LogConfig & getLogConfig()
Returns the log system configuration.
Definition: Module.h:225
void if_value(const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
Add a condition to the module.
Definition: Module.cc:79
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
Definition: Module.cc:208
void if_true(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to set the condition of the module.
Definition: Module.cc:90
void setReturnValue(int value)
Sets the return value for this module as integer.
Definition: Module.cc:220
void setLogConfig(const LogConfig &logConfig)
Set the log system configuration.
Definition: Module.h:230
const std::string & getDescription() const
Returns the description of the module.
Definition: Module.h:202
void if_false(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to add a condition to the module.
Definition: Module.cc:85
bool hasCondition() const
Returns true if at least one condition was set for the module.
Definition: Module.h:311
const std::string & getPackage() const
Returns the package this module is in.
Definition: Module.h:197
void setName(const std::string &name)
Set the name of the module.
Definition: Module.h:214
bool hasProperties(unsigned int propertyFlags) const
Returns true if all specified property flags are available in this module.
Definition: Module.cc:160
std::string getPathString() const override
return the module name.
Definition: Module.cc:192

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 133 of file Module.cc.

134{
135 if (m_conditions.empty()) return EAfterConditionPath::c_End;
136
137 //okay, a condition was set for this Module...
138 if (!m_hasReturnValue) {
139 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
140 }
141
142 for (const auto& condition : m_conditions) {
143 if (condition.evaluate(m_returnValue)) {
144 return condition.getAfterConditionPath();
145 }
146 }
147
148 return EAfterConditionPath::c_End;
149}

◆ getAllConditionPaths()

std::vector< std::shared_ptr< Path > > getAllConditionPaths ( ) const
inherited

Return all condition paths currently set (no matter if the condition is true or not).

Definition at line 150 of file Module.cc.

151{
152 std::vector<std::shared_ptr<Path>> allConditionPaths;
153 for (const auto& condition : m_conditions) {
154 allConditionPaths.push_back(condition.getPath());
155 }
156
157 return allConditionPaths;
158}

◆ getAllConditions()

const std::vector< ModuleCondition > & getAllConditions ( ) const
inlineinherited

Return all set conditions for this module.

Definition at line 324 of file Module.h.

325 {
326 return m_conditions;
327 }

◆ getCondition()

const ModuleCondition * getCondition ( ) const
inlineinherited

Return a pointer to the first condition (or nullptr, if none was set)

Definition at line 314 of file Module.h.

315 {
316 if (m_conditions.empty()) {
317 return nullptr;
318 } else {
319 return &m_conditions.front();
320 }
321 }

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 113 of file Module.cc.

114{
115 PathPtr p;
116 if (m_conditions.empty()) return p;
117
118 //okay, a condition was set for this Module...
119 if (!m_hasReturnValue) {
120 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
121 }
122
123 for (const auto& condition : m_conditions) {
124 if (condition.evaluate(m_returnValue)) {
125 return condition.getPath();
126 }
127 }
128
129 // if none of the conditions were true, return a null pointer.
130 return p;
131}
std::shared_ptr< Path > PathPtr
Defines a pointer to a path object as a boost shared pointer.
Definition: Path.h:35

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Returns the description of the module.

Definition at line 202 of file Module.h.

202{return m_description;}
std::string m_description
The description of the module.
Definition: Module.h:511

◆ getFileNames()

virtual std::vector< std::string > getFileNames ( bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Reimplemented in RootInputModule, StorageRootOutputModule, and RootOutputModule.

Definition at line 134 of file Module.h.

135 {
136 return std::vector<std::string>();
137 }

◆ getLogConfig()

LogConfig & getLogConfig ( )
inlineinherited

Returns the log system configuration.

Definition at line 225 of file Module.h.

225{return m_logConfig;}

◆ getModules()

std::list< ModulePtr > getModules ( ) const
inlineoverrideprivatevirtualinherited

no submodules, return empty list

Implements PathElement.

Definition at line 506 of file Module.h.

506{ return std::list<ModulePtr>(); }

◆ getName()

const std::string & getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 187 of file Module.h.

187{return m_name;}
std::string m_name
The name of the module, saved as a string (user-modifiable)
Definition: Module.h:508

◆ getPackage()

const std::string & getPackage ( ) const
inlineinherited

Returns the package this module is in.

Definition at line 197 of file Module.h.

197{return m_package;}

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 279 of file Module.cc.

280{
282}
std::shared_ptr< boost::python::list > getParamInfoListPython() const
Returns a python list of all parameters.
ModuleParamList m_moduleParamList
List storing and managing all parameter of the module.
Definition: Module.h:516

◆ getParamList()

const ModuleParamList & getParamList ( ) const
inlineinherited

Return module param list.

Definition at line 363 of file Module.h.

363{ return m_moduleParamList; }

◆ getPathString()

std::string getPathString ( ) const
overrideprivatevirtualinherited

return the module name.

Implements PathElement.

Definition at line 192 of file Module.cc.

193{
194
195 std::string output = getName();
196
197 for (const auto& condition : m_conditions) {
198 output += condition.getString();
199 }
200
201 return output;
202}

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 381 of file Module.h.

381{ return m_returnValue; }

◆ getSensor()

int getSensor ( int  layer,
int  sensor,
bool  isTB 
)
inlineprivate

get sensor number

Definition at line 183 of file SVDPerformanceModule.h.

184 {
185 int result = 0;
186 if (isTB) {
187 if (layer == 0)
188 result = sensor - 1;
189 else if (layer == 1 || layer == 2)
190 result = sensor - 2;
191 else if (layer == 3)
192 result = sensor - 3;
193 } else result = sensor - 1;
194
195 return result;
196 }

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 41 of file Module.cc.

42{
43 if (m_type.empty())
44 B2FATAL("Module type not set for " << getName());
45 return m_type;
46}
std::string m_type
The type of the module, saved as a string.
Definition: Module.h:509

◆ hasCondition()

bool hasCondition ( ) const
inlineinherited

Returns true if at least one condition was set for the module.

Definition at line 311 of file Module.h.

311{ return not m_conditions.empty(); };

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 160 of file Module.cc.

161{
162 return (propertyFlags & m_propertyFlags) == propertyFlags;
163}

◆ hasReturnValue()

bool hasReturnValue ( ) const
inlineinherited

Return true if this module has a valid return value set.

Definition at line 378 of file Module.h.

378{ return m_hasReturnValue; }

◆ hasUnsetForcedParams()

bool hasUnsetForcedParams ( ) const
inherited

Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.

Definition at line 166 of file Module.cc.

167{
169 std::string allMissing = "";
170 for (const auto& s : missing)
171 allMissing += s + " ";
172 if (!missing.empty())
173 B2ERROR("The following required parameters of Module '" << getName() << "' were not specified: " << allMissing <<
174 "\nPlease add them to your steering file.");
175 return !missing.empty();
176}
std::vector< std::string > getUnsetForcedParams() const
Returns list of unset parameters (if they are required to have a value.

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 85 of file Module.cc.

86{
87 if_value("<1", path, afterConditionPath);
88}

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 90 of file Module.cc.

91{
92 if_value(">=1", path, afterConditionPath);
93}

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://confluence.desy.de/display/BI/Software+ModCondTut or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 79 of file Module.cc.

80{
81 m_conditions.emplace_back(expression, path, afterConditionPath);
82}

◆ initialize()

void initialize ( void  )
overridevirtual

check StoreArrays & create rootfile

Reimplemented from Module.

Definition at line 45 of file SVDPerformanceModule.cc.

46{
47
49 m_svdRecos.isOptional(m_RecoDigitName);
51 // m_Tracks.isRequired(m_TrackName);
52 // m_recoTracks.isRequired();
53 // m_tfr.isRequired(m_TrackFitResultName);
54
55 if (!m_storeSVDEvtInfo.isOptional(m_svdEventInfoName)) m_svdEventInfoName = "SVDEventInfoSim";
57
58 B2INFO(" ShaperDigits: " << m_ShaperDigitName);
59 B2INFO(" RecoDigits: " << m_RecoDigitName);
60 B2INFO(" Clusters: " << m_ClusterName);
61 B2INFO(" Tracks: " << m_TrackName);
62 B2INFO(" TrackFitResults: " << m_TrackFitResultName);
63
64
65 //create list of histograms to be saved in the rootfile
66 m_histoList_track = new TList;
67 m_histoList_corr = new TList;
68
69 for (int i = 0; i < m_nLayers; i++) {
70 m_histoList_cluster[i] = new TList;
71 m_histoList_clTRK[i] = new TList;
72 m_histoList_reco[i] = new TList;
73 m_histoList_shaper[i] = new TList;
74 }
75
76 m_rootFilePtr = new TFile(m_rootFileName.c_str(), "RECREATE");
77
78 for (int s = 0; s < m_nLayers; s++)
80 sensorsOnLayer[s] = 2;
81 else
82 sensorsOnLayer[s] = s + 2;
83
84 //create histograms
85 for (int i = 0; i < m_nLayers; i ++) //loop on Layers
86 for (int j = 0; j < (int)sensorsOnLayer[i]; j ++) { //loop on Sensors
87
88 TString nameLayer = "";
89 nameLayer += i + 3;
90
91 TString nameSensor = "";
93 if (i == 0)
94 nameSensor += j + 1;
95 else if (i == 1 || i == 2)
96 nameSensor += j + 2;
97 else if (i == 3)
98 nameSensor += j + 3;
99 } else
100 nameSensor += j + 1;
101
102 for (int k = 0; k < m_nSides; k ++) { //loop on Sides
103
104
105 TString nameSide = "";
106 if (k == 1)
107 nameSide = "U";
108 else if (k == 0)
109 nameSide = "V";
110
111 //SHAPER DIGITS
112 TString NameOfHisto = "shaper_N_L" + nameLayer + "S" + nameSensor + "" + nameSide;
113 TString TitleOfHisto = "number of ShaperDigits (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
114 h_nShaper[i][j][k] = createHistogram1D(NameOfHisto, TitleOfHisto, 100, 0, 100, "n ShaperDigits", m_histoList_shaper[i]);
115
116
117 //RECO DIGITS
118 NameOfHisto = "reco_N_L" + nameLayer + "S" + nameSensor + "" + nameSide;
119 TitleOfHisto = "number of RecoDigits (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
120 h_nReco[i][j][k] = createHistogram1D(NameOfHisto, TitleOfHisto, 100, 0, 100, "n RecoDigits", m_histoList_reco[i]);
121
122 NameOfHisto = "reco_charge_L" + nameLayer + "S" + nameSensor + "" + nameSide;
123 TitleOfHisto = "charge of RecoDigits (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
124 h_recoCharge[i][j][k] = createHistogram1D(NameOfHisto, TitleOfHisto, 100, 0, 100000, "charge (e-)", m_histoList_reco[i]);
125
126 NameOfHisto = "reco_energy_L" + nameLayer + "S" + nameSensor + "" + nameSide;
127 TitleOfHisto = "energy collected by RecoDigits (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
128 h_recoEnergy[i][j][k] = createHistogram1D(NameOfHisto, TitleOfHisto, 100, 0, 360, "energy (keV)", m_histoList_reco[i]);
129
130 NameOfHisto = "reco_noise_L" + nameLayer + "S" + nameSensor + "" + nameSide;
131 TitleOfHisto = "strip noise (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
132 h_stripNoise[i][j][k] = createHistogram1D(NameOfHisto, TitleOfHisto, 200, 300, 1800, "strip noise", m_histoList_reco[i]);
133
134 NameOfHisto = "reco_time_L" + nameLayer + "S" + nameSensor + "" + nameSide;
135 TitleOfHisto = "strip time (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
136 h_recoTime[i][j][k] = createHistogram1D(NameOfHisto, TitleOfHisto, 200, -100, 100, "strip time", m_histoList_reco[i]);
137
138
139 //CLUSTERS RELATED TO TRACKS
140 NameOfHisto = "clTRK_N_L" + nameLayer + "S" + nameSensor + "" + nameSide;
141 TitleOfHisto = "number of clusters related to Tracks (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
142 h_nCltrk[i][j][k] = createHistogram1D(NameOfHisto, TitleOfHisto, 50, 0, 50, "n clusters", m_histoList_clTRK[i]);
143
144 NameOfHisto = "clTRK_size_L" + nameLayer + "S" + nameSensor + "" + nameSide;
145 TitleOfHisto = "cluster size (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
146 h_cltrkSize[i][j][k] = createHistogram1D(NameOfHisto, TitleOfHisto, 15, 0, 15, "cluster size", m_histoList_clTRK[i]);
147
148 NameOfHisto = "clTRK_charge_L" + nameLayer + "S" + nameSensor + "" + nameSide;
149 TitleOfHisto = "cluster Charge (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
150 h_cltrkCharge[i][j][k] = createHistogram1D(NameOfHisto, TitleOfHisto, 500, 0, 100000, "charge(e-)", m_histoList_clTRK[i]);
151
152 NameOfHisto = "clTRK_energy_L" + nameLayer + "S" + nameSensor + "" + nameSide;
153 TitleOfHisto = "cluster Energy (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
154 h_cltrkEnergy[i][j][k] = createHistogram1D(NameOfHisto, TitleOfHisto, 360, 0, 360, "energy (keV)", m_histoList_clTRK[i]);
155
156 NameOfHisto = "clTRK_SN_L" + nameLayer + "S" + nameSensor + "" + nameSide;
157 TitleOfHisto = "cluster S/N (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
158 h_cltrkSN[i][j][k] = createHistogram1D(NameOfHisto, TitleOfHisto, 150, 0, 150, "S/N", m_histoList_clTRK[i]);
159
160 NameOfHisto = "clTRK_chrgVSsize_L" + nameLayer + "S" + nameSensor + "" + nameSide;
161 TitleOfHisto = "cluster charge VS size (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
162 h_cltrkChargeVSSize[i][j][k] = createHistogram2D(NameOfHisto, TitleOfHisto, 500, 0, 100000, "charge (e-)", 15, 0, 15, "cl size",
164
165 NameOfHisto = "clTRK_SNVSsize_L" + nameLayer + "S" + nameSensor + "" + nameSide;
166 TitleOfHisto = "cluster SN ratio VS size (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
167 h_cltrkSNVSSize[i][j][k] = createHistogram2D(NameOfHisto, TitleOfHisto, 150, 0, 150, "S/N", 15, 0, 15, "cl size",
169
170 NameOfHisto = "clTRK_TimeVSsize_L" + nameLayer + "S" + nameSensor + "" + nameSide;
171 TitleOfHisto = "cluster time VS size (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
172 h_cltrkTimeVSSize[i][j][k] = createHistogram2D(NameOfHisto, TitleOfHisto, 200, -100, 100, "cluster time (ns)", 15, 0, 15, "cl size",
174
175 NameOfHisto = "clTRK_time_L" + nameLayer + "S" + nameSensor + "" + nameSide;
176 TitleOfHisto = "cluster time (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
177 h_cltrkTime[i][j][k] = createHistogram1D(NameOfHisto, TitleOfHisto, 200, -100, 100, "cluster time (ns)", m_histoList_clTRK[i]);
178
179 NameOfHisto = "clTRK_timeTB1_L" + nameLayer + "S" + nameSensor + "" + nameSide;
180 TitleOfHisto = "cluster time - TB = 1 (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
181 h_cltrkTime_TB1[i][j][k] = createHistogram1D(NameOfHisto, TitleOfHisto, 200, -100, 100, "cluster time (ns)", m_histoList_clTRK[i]);
182
183 NameOfHisto = "clTRK_timeTB2_L" + nameLayer + "S" + nameSensor + "" + nameSide;
184 TitleOfHisto = "cluster time - TB = 2 (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
185 h_cltrkTime_TB2[i][j][k] = createHistogram1D(NameOfHisto, TitleOfHisto, 200, -100, 100, "cluster time (ns)", m_histoList_clTRK[i]);
186
187 NameOfHisto = "clTRK_timeTB3_L" + nameLayer + "S" + nameSensor + "" + nameSide;
188 TitleOfHisto = "cluster time - TB = 3 (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
189 h_cltrkTime_TB3[i][j][k] = createHistogram1D(NameOfHisto, TitleOfHisto, 200, -100, 100, "cluster time (ns)", m_histoList_clTRK[i]);
190
191 NameOfHisto = "clTRK_timeTB4_L" + nameLayer + "S" + nameSensor + "" + nameSide;
192 TitleOfHisto = "cluster time - TB = 4 (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
193 h_cltrkTime_TB4[i][j][k] = createHistogram1D(NameOfHisto, TitleOfHisto, 200, -100, 100, "cluster time (ns)", m_histoList_clTRK[i]);
194
195 if (m_isSimulation) {
196 NameOfHisto = "clTRK_timeVStrueTime_L" + nameLayer + "S" + nameSensor + "" + nameSide;
197 TitleOfHisto = "cluster time VS true hit time (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
198 h_cltrkTimeVSTrueTime[i][j][k] = createHistogram2D(NameOfHisto, TitleOfHisto, 200, -100, 100, "cluster time", 60, -30, 30,
199 "true time", m_histoList_clTRK[i]);
200 }
201
202 //1 STRIP CLUSTERS RELATED TO TRACKS
203 NameOfHisto = "1clTRK_charge_L" + nameLayer + "S" + nameSensor + "" + nameSide;
204 TitleOfHisto = "1-strip cluster Charge (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
205 h_1cltrkCharge[i][j][k] = createHistogram1D(NameOfHisto, TitleOfHisto, 500, 0, 100000, "charge(e-)", m_histoList_clTRK[i]);
206
207
208 NameOfHisto = "1clTRK_SN_L" + nameLayer + "S" + nameSensor + "" + nameSide;
209 TitleOfHisto = "1-strip cluster S/N (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
210 h_1cltrkSN[i][j][k] = createHistogram1D(NameOfHisto, TitleOfHisto, 150, 0, 150, "S/N", m_histoList_clTRK[i]);
211
212 //2-STRIP CLUSTERS RELATED TO TRACKS
213 NameOfHisto = "2clTRK_charge_L" + nameLayer + "S" + nameSensor + "" + nameSide;
214 TitleOfHisto = "2-strip cluster Charge (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
215 h_2cltrkCharge[i][j][k] = createHistogram1D(NameOfHisto, TitleOfHisto, 500, 0, 100000, "charge(e-)", m_histoList_clTRK[i]);
216
217
218 NameOfHisto = "2clTRK_SN_L" + nameLayer + "S" + nameSensor + "" + nameSide;
219 TitleOfHisto = "2-strip cluster S/N (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
220 h_2cltrkSN[i][j][k] = createHistogram1D(NameOfHisto, TitleOfHisto, 150, 0, 150, "S/N", m_histoList_clTRK[i]);
221
222 //CLUSTERS NOT RELATED TO TRACKS
223 NameOfHisto = "clNOtrk_N_L" + nameLayer + "S" + nameSensor + "" + nameSide;
224 TitleOfHisto = "number of clusters NOT related to Tracks (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
225 h_nCl[i][j][k] = createHistogram1D(NameOfHisto, TitleOfHisto, 50, 0, 50, "n clusters", m_histoList_cluster[i]);
226
227 NameOfHisto = "clNOtrk_size_L" + nameLayer + "S" + nameSensor + "" + nameSide;
228 TitleOfHisto = "cluster size, NOT related to tracks (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
229 h_clSize[i][j][k] = createHistogram1D(NameOfHisto, TitleOfHisto, 15, 0, 15, "cluster size", m_histoList_cluster[i]);
230
231 NameOfHisto = "clNOtrk_charge_L" + nameLayer + "S" + nameSensor + "" + nameSide;
232 TitleOfHisto = "cluster Charge, NOT related to tracks (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
233 h_clCharge[i][j][k] = createHistogram1D(NameOfHisto, TitleOfHisto, 500, 0, 100000, "charge (e-)", m_histoList_cluster[i]);
234
235 NameOfHisto = "clNOtrk_energy_L" + nameLayer + "S" + nameSensor + "" + nameSide;
236 TitleOfHisto = "cluster Energy, NOT related to tracks (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
237 h_clEnergy[i][j][k] = createHistogram1D(NameOfHisto, TitleOfHisto, 360, 0, 360, "energy (keV)", m_histoList_cluster[i]);
238
239 NameOfHisto = "clNOtrk_maxbin_L" + nameLayer + "S" + nameSensor + "" + nameSide;
240 TitleOfHisto = "cluster Seed maxbin, NOT related to tracks (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
241 h_clSeedMaxbin[i][j][k] = createHistogram1D(NameOfHisto, TitleOfHisto, 6, 0, 6, "max bin", m_histoList_cluster[i]);
242
243 NameOfHisto = "clNOtrk_energyVSmaxbin_L" + nameLayer + "S" + nameSensor + "" + nameSide;
244 TitleOfHisto = "cluster Energy vs seed max bin U, NOT related to tracks (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide +
245 " side)";
246 h_clEnergyVSMaxbin[i][j][k] = createHistogram2D(NameOfHisto, TitleOfHisto, 360, 0, 360, "energy (keV)", 6, 0, 6, "seed max bin",
248
249
250 NameOfHisto = "clNOtrk_energyVSsizeMB12_L" + nameLayer + "S" + nameSensor + "" + nameSide;
251 TitleOfHisto = "cluster Energy vs Size, maxbin = 1,2 U, NOT related to tracks (L" + nameLayer + ", sensor" + nameSensor + "," +
252 nameSide +
253 " side)";
254 h_clEnergyVSSize_mb12[i][j][k] = createHistogram2D(NameOfHisto, TitleOfHisto, 360, 0, 360, "energy (keV)", 15, 0, 15, "cl size",
256
257 NameOfHisto = "clNOtrk_energyVSsizeMB345_L" + nameLayer + "S" + nameSensor + "" + nameSide;
258 TitleOfHisto = "cluster Energy vs Size, maxbin = 3,4,5 U, NOT related to tracks (L" + nameLayer + ", sensor" + nameSensor + "," +
259 nameSide +
260 " side)";
261 h_clEnergyVSSize_mb345[i][j][k] = createHistogram2D(NameOfHisto, TitleOfHisto, 360, 0, 360, "energy (keV)", 15, 0, 15, "cl size",
263
264 NameOfHisto = "clNOtrk_energyVSsizeMB6_L" + nameLayer + "S" + nameSensor + "" + nameSide;
265 TitleOfHisto = "cluster Energy vs Size, maxbin = 6 U, NOT related to tracks (L" + nameLayer + ", sensor" + nameSensor + "," +
266 nameSide +
267 " side)";
268 h_clEnergyVSSize_mb6[i][j][k] = createHistogram2D(NameOfHisto, TitleOfHisto, 360, 0, 360, "energy (keV)", 15, 0, 15, "cl size",
270
271 if (k == 1) {
272 NameOfHisto = "clNOtrk_energyVScoorU_L" + nameLayer + "S" + nameSensor + "" + nameSide;
273 TitleOfHisto = "cluster Energy vs coor U, TB=3,4,5 NOT related to tracks (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide
274 +
275 " side)";
276 h_clEnergyVSCoorU[i][j][1] = createHistogram2D(NameOfHisto, TitleOfHisto, 360, 0, 360, "energy (keV)", 200, -3, 3, "coor U (cm)",
278
279 NameOfHisto = "clNOtrk_coorU1VScoorU2_L" + nameLayer + "S" + nameSensor + "" + nameSide;
280 TitleOfHisto = "cluster coor1 U vs coor2 U, TB=3,4,5 NOT related to tracks (L" + nameLayer + ", sensor" + nameSensor + "," +
281 nameSide +
282 " side)";
283 h_clCoor1VSCoor2[i][j][1] = createHistogram1D(NameOfHisto, TitleOfHisto, 400, 0, 4, "delta U (cm)",
285
286 NameOfHisto = "clNOtrk_cellIDU1VScellIDU2_L" + nameLayer + "S" + nameSensor + "" + nameSide;
287 TitleOfHisto = "cluster cellID1 U vs cellID2 U, TB=3,4,5 NOT related to tracks (L" + nameLayer + ", sensor" + nameSensor + "," +
288 nameSide +
289 " side)";
290 h_clCellID1VSCellID2[i][j][1] = createHistogram1D(NameOfHisto, TitleOfHisto, 768, 0, 768, "delta U (# of cells)",
292
293 NameOfHisto = "clNOtrk_energy12VSdeltaU_L" + nameLayer + "S" + nameSensor + "" + nameSide;
294 TitleOfHisto = "cluster energy1+2 U vs delta U, TB=3,4,5 NOT related to tracks (L" + nameLayer + ", sensor" + nameSensor + "," +
295 nameSide +
296 " side)";
297 h_clEnergy12VSdelta[i][j][1] = createHistogram2D(NameOfHisto, TitleOfHisto, 360, 0, 360, "energy (keV)", 768, 0, 768,
298 "delta U (# of cells)",
300
301 } else {
302 NameOfHisto = "clNOtrk_energyVScoorV_L" + nameLayer + "S" + nameSensor + "" + nameSide;
303 TitleOfHisto = "cluster Energy vs coor V, TB=3,4,5 NOT related to tracks (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide
304 +
305 " side)";
306 h_clEnergyVSCoorV[i][j][0] = createHistogram2D(NameOfHisto, TitleOfHisto, 360, 0, 360, "energy (keV)", 200, -6.5, 6.5,
307 "coor V (cm)", m_histoList_cluster[i]);
308
309 NameOfHisto = "clNOtrk_coorV1VScoorV2_L" + nameLayer + "S" + nameSensor + "" + nameSide;
310 TitleOfHisto = "cluster coor1 V vs coor2 V, TB=3,4,5 NOT related to tracks (L" + nameLayer + ", sensor" + nameSensor + "," +
311 nameSide +
312 " side)";
313 h_clCoor1VSCoor2[i][j][0] = createHistogram1D(NameOfHisto, TitleOfHisto, 400, 0, 6, "delta V (cm)",
315 NameOfHisto = "clNOtrk_cellIDV1VScellIDV2_L" + nameLayer + "S" + nameSensor + "" + nameSide;
316 TitleOfHisto = "cluster cellID1 V vs cellID2 V, TB=3,4,5 NOT related to tracks (L" + nameLayer + ", sensor" + nameSensor + "," +
317 nameSide +
318 " side)";
319 h_clCellID1VSCellID2[i][j][0] = createHistogram1D(NameOfHisto, TitleOfHisto, 768, 0, 768, "delta V (# of cells)",
321
322 NameOfHisto = "clNOtrk_energy12VSdeltaV_L" + nameLayer + "S" + nameSensor + "" + nameSide;
323 TitleOfHisto = "cluster energy1+2 V vs delta V, TB=3,4,5 NOT related to tracks (L" + nameLayer + ", sensor" + nameSensor + "," +
324 nameSide +
325 " side)";
326 h_clEnergy12VSdelta[i][j][0] = createHistogram2D(NameOfHisto, TitleOfHisto, 360, 0, 360, "energy (keV)", 768, 0, 768,
327 "delta V (# of cells)",
329
330 }
331
332 NameOfHisto = "clNOtrk_SN_L" + nameLayer + "S" + nameSensor + "" + nameSide;
333 TitleOfHisto = "cluster S/N, NOT related to tracks (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
334 h_clSN[i][j][k] = createHistogram1D(NameOfHisto, TitleOfHisto, 150, 0, 150, "S/N", m_histoList_cluster[i]);
335
336 NameOfHisto = "clNOtrk_chrgVSsize_L" + nameLayer + "S" + nameSensor + "" + nameSide;
337 TitleOfHisto = "cluster charge VS size, NOT related to tracks (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
338 h_clChargeVSSize[i][j][k] = createHistogram2D(NameOfHisto, TitleOfHisto, 500, 0, 100000, "charge (e-)", 15, 0, 15, "cl size",
340 NameOfHisto = "clNOtrk_SNVSsize_L" + nameLayer + "S" + nameSensor + "" + nameSide;
341 TitleOfHisto = "cluster S/N ratio VS size, NOT related to tracks (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide +
342 " side)";
343 h_clSNVSSize[i][j][k] = createHistogram2D(NameOfHisto, TitleOfHisto, 150, 0, 150, "S/N", 15, 0, 15, "cl size",
345
346 NameOfHisto = "clNOtrk_TimeVSsize_L" + nameLayer + "S" + nameSensor + "" + nameSide;
347 TitleOfHisto = "cluster time VS size, NOT related to tracks (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
348 h_clTimeVSSize[i][j][k] = createHistogram2D(NameOfHisto, TitleOfHisto, 200, -100, 100, "cluster time (ns)", 15, 0, 15, "cl size",
350
351 NameOfHisto = "clNOtrk_time_L" + nameLayer + "S" + nameSensor + "" + nameSide;
352 TitleOfHisto = "cluster time (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
353 h_clTime[i][j][k] = createHistogram1D(NameOfHisto, TitleOfHisto, 200, -100, 100, "cluster time", m_histoList_cluster[i]);
354
355
356 if (m_isSimulation) {
357 NameOfHisto = "clNOtrk_timeVStrueTime_L" + nameLayer + "S" + nameSensor + "" + nameSide;
358 TitleOfHisto = "cluster time VS true hit time (L" + nameLayer + ", sensor" + nameSensor + "," + nameSide + " side)";
359 h_clTimeVSTrueTime[i][j][k] = createHistogram2D(NameOfHisto, TitleOfHisto, 200, -100, 100, "cluster time", 60, -30, 30, "true time",
361 }
362
363 }
364 TString NameOfHisto = "clNOtrk_nUVSnV_L" + nameLayer + "S" + nameSensor;
365 TString TitleOfHisto = "Number of U clusters VS number of V cluster, TB=3,4,5 (L" + nameLayer + ", sensor" + nameSensor + ")";
366 h_clNuVSNv[i][j] = createHistogram2D(NameOfHisto, TitleOfHisto, 50, 0, 50, "# V cluster", 50, 0, 50, "# U clusters",
368
369 NameOfHisto = "clNOtrk_coorUVScoorV_L" + nameLayer + "S" + nameSensor;
370 TitleOfHisto = "cluster coor U VS cluster coor V, TB=3,4,5 (L" + nameLayer + ", sensor" + nameSensor + ")";
371 h_clCoorUVSCoorV[i][j] = createHistogram2D(NameOfHisto, TitleOfHisto, 200, -6.5, 6.5, "coor V", 200, -3, 3, "coor U",
373
374 NameOfHisto = "clNOtrk_energyUVSenergyV_L" + nameLayer + "S" + nameSensor;
375 TitleOfHisto = "cluster energy U VS cluster energy V, TB=3,4,5 (L" + nameLayer + ", sensor" + nameSensor + ")";
376 h_clEnergyUVSEnergyV[i][j] = createHistogram2D(NameOfHisto, TitleOfHisto, 360, 0, 360, "energy V(keV)", 360, 0, 360,
377 "energy U (keV)",
379 //QUI
380 }
381
382 //correlations
383 h_cltrk_UU = createHistogram1D("clTRK_dt_UU", "track-related U-U clusters time difference", 200, -100, 100, "time difference (ns)",
385 h_cltrk_VV = createHistogram1D("clTRK_dt_VV", "track-related V-V clusters time difference", 200, -100, 100, "time difference (ns)",
387 h_cltrk_UV = createHistogram1D("clTRK_dt_UV", "track-related U-V clusters time difference", 200, -100, 100, "time difference (ns)",
389
390 h_cltrkTime_L4uL5u = createHistogram2D("clTRK_time_L4uL5u", "track-related cluster times on L4 and L5 U sides", 200, -100, 100,
391 "L4u cluster time", 200, -100, 100, "L5u cluster time",
393
394 h_cltrkTime_L4vL5v = createHistogram2D("clTRK_time_L4vL5v", "track-related cluster times on L4 and L5 V sides", 200, -100, 100,
395 "L4v cluster time", 200, -100, 100, "L5v cluster time",
397
398 h_cltrkTime_L5uL5v = createHistogram2D("clTRK_time_L5uL5v", "track-related cluster times on L5 U vs V sides", 200, -100, 100,
399 "L5u cluster time", 200, -100, 100, "L5v cluster time",
401
402
403
404 // //correlations
405 // h_cl_UU = createHistogram1D("clNOTRK_dt_UU", "track-related U-U clusters time difference", 200, -100, 100, "time difference (ns)",
406 // m_histoList_corr);
407 // h_cl_VV = createHistogram1D("clNOTRK_dt_VV", "track-related V-V clusters time difference", 200, -100, 100, "time difference (ns)",
408 // m_histoList_corr);
409 // h_cl_UV = createHistogram1D("clNOTRK_dt_UV", "track-related U-V clusters time difference", 200, -100, 100, "time difference (ns)",
410 // m_histoList_corr);
411
412 //tracks
413 m_nTracks = createHistogram1D("h1nTracks", "number of Tracks per event", 50, 0, 50, "n Tracks", m_histoList_track);
414 m_Pvalue = createHistogram1D("h1pValue", "Tracks p value", 100, 0, 1, "p value", m_histoList_track);
415 m_mom = createHistogram1D("h1momentum", " Tracks Momentum", 200, 0, 10, "p (GeV/c)", m_histoList_track);
416 m_nSVDhits = createHistogram1D("h1nSVDhits", "# SVD hits per track", 20, 0, 20, "# SVD hits", m_histoList_track);
417
418 m_ntracks = 0;
419}
TH1F * createHistogram1D(const char *name, const char *title, Int_t nbins, Double_t min, Double_t max, const char *xtitle, TList *histoList=nullptr)
Function returning a TH1F.
TH2F * createHistogram2D(const char *name, const char *title, Int_t nbinsX, Double_t minX, Double_t maxX, const char *titleX, Int_t nbinsY, Double_t minY, Double_t maxY, const char *titleY, TList *histoList=nullptr)
Function returning TH2F.
bool isRequired(const std::string &name="")
Ensure this array/object has been registered previously.

◆ setAbortLevel()

void setAbortLevel ( int  abortLevel)
inherited

Configure the abort log level.

Definition at line 67 of file Module.cc.

68{
69 m_logConfig.setAbortLevel(static_cast<LogConfig::ELogLevel>(abortLevel));
70}
ELogLevel
Definition of the supported log levels.
Definition: LogConfig.h:26
void setAbortLevel(ELogLevel abortLevel)
Configure the abort level.
Definition: LogConfig.h:112

◆ setDebugLevel()

void setDebugLevel ( int  debugLevel)
inherited

Configure the debug messaging level.

Definition at line 61 of file Module.cc.

62{
63 m_logConfig.setDebugLevel(debugLevel);
64}
void setDebugLevel(int debugLevel)
Configure the debug messaging level.
Definition: LogConfig.h:98

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 214 of file Module.cc.

215{
216 m_description = description;
217}

◆ setLogConfig()

void setLogConfig ( const LogConfig logConfig)
inlineinherited

Set the log system configuration.

Definition at line 230 of file Module.h.

230{m_logConfig = logConfig;}

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 73 of file Module.cc.

74{
75 m_logConfig.setLogInfo(static_cast<LogConfig::ELogLevel>(logLevel), logInfo);
76}
void setLogInfo(ELogLevel logLevel, unsigned int logInfo)
Configure the printed log information for the given level.
Definition: LogConfig.h:127

◆ setLogLevel()

void setLogLevel ( int  logLevel)
inherited

Configure the log level.

Definition at line 55 of file Module.cc.

56{
57 m_logConfig.setLogLevel(static_cast<LogConfig::ELogLevel>(logLevel));
58}
void setLogLevel(ELogLevel logLevel)
Configure the log level.
Definition: LogConfig.cc:25

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 214 of file Module.h.

214{ m_name = name; };

◆ setParamList()

void setParamList ( const ModuleParamList params)
inlineprotectedinherited

Replace existing parameter list.

Definition at line 501 of file Module.h.

501{ m_moduleParamList = params; }

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 234 of file Module.cc.

235{
236 LogSystem& logSystem = LogSystem::Instance();
237 logSystem.updateModule(&(getLogConfig()), getName());
238 try {
240 } catch (std::runtime_error& e) {
241 throw std::runtime_error("Cannot set parameter '" + name + "' for module '"
242 + m_name + "': " + e.what());
243 }
244
245 logSystem.updateModule(nullptr);
246}
Class for logging debug, info and error messages.
Definition: LogSystem.h:46
void updateModule(const LogConfig *moduleLogConfig=nullptr, const std::string &moduleName="")
Sets the log configuration to the given module log configuration and sets the module name This method...
Definition: LogSystem.h:191
static LogSystem & Instance()
Static method to get a reference to the LogSystem instance.
Definition: LogSystem.cc:31
void setParamPython(const std::string &name, const PythonObject &pyObj)
Implements a method for setting boost::python objects.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 249 of file Module.cc.

250{
251
252 LogSystem& logSystem = LogSystem::Instance();
253 logSystem.updateModule(&(getLogConfig()), getName());
254
255 boost::python::list dictKeys = dictionary.keys();
256 int nKey = boost::python::len(dictKeys);
257
258 //Loop over all keys in the dictionary
259 for (int iKey = 0; iKey < nKey; ++iKey) {
260 boost::python::object currKey = dictKeys[iKey];
261 boost::python::extract<std::string> keyProxy(currKey);
262
263 if (keyProxy.check()) {
264 const boost::python::object& currValue = dictionary[currKey];
265 setParamPython(keyProxy, currValue);
266 } else {
267 B2ERROR("Setting the module parameters from a python dictionary: invalid key in dictionary!");
268 }
269 }
270
271 logSystem.updateModule(nullptr);
272}
void setParamPython(const std::string &name, const boost::python::object &pyObj)
Implements a method for setting boost::python objects.
Definition: Module.cc:234

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 208 of file Module.cc.

209{
210 m_propertyFlags = propertyFlags;
211}

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 227 of file Module.cc.

228{
229 m_hasReturnValue = true;
230 m_returnValue = value;
231}

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 220 of file Module.cc.

221{
222 m_hasReturnValue = true;
223 m_returnValue = value;
224}

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 48 of file Module.cc.

49{
50 if (!m_type.empty())
51 B2FATAL("Trying to change module type from " << m_type << " is not allowed, the value is assumed to be fixed.");
52 m_type = type;
53}

◆ terminate()

virtual void terminate ( void  )
inlinevirtualinherited

This method is called at the end of the event processing.

This method is called only once after the event processing finished. Use this method for cleaning up, closing files, etc.

This method can be implemented by subclasses.

Reimplemented in ARICHBackgroundModule, BeamabortModule, BgoModule, CaveModule, ClawModule, CLAWSModule, DosiModule, FANGSModule, He3tubeModule, MicrotpcModule, Ph1bpipeModule, Ph1sustrModule, PindiodeModule, PlumeModule, QcsmonitorModule, SrsensorModule, GetEventFromSocketModule, CalibrationCollectorModule, CosmicsAlignmentValidationModule, CurlTaggerModule, EventKinematicsModule, FlavorTaggerInfoFillerModule, LowEnergyPi0IdentificationExpertModule, LowEnergyPi0VetoExpertModule, ParticleKinematicFitterModule, ParticleLoaderModule, ParticleMassHypothesesUpdaterModule, ParticleMassUpdaterModule, ParticleMCDecayStringModule, ParticleMomentumUpdaterModule, ParticleStatsModule, ParticleWeightingLookUpCreatorModule, RemoveParticlesNotInListsModule, SkimFilterModule, TreeFitterModule, VariablesToEventBasedTreeModule, VariablesToHistogramModule, VariablesToNtupleModule, arichBtestModule, ARICHNtupleModule, arichToNtupleModule, B2BIIMCParticlesMonitorModule, B2BIIConvertMdstModule, B2BIIFixMdstModule, B2BIIMdstInputModule, BelleMCOutputModule, BeamBkgGeneratorModule, BeamBkgHitRateMonitorModule, BeamBkgMixerModule, BeamBkgTagSetterModule, BGOverlayInputModule, AnalysisPhase1StudyModule, NtuplePhase1_v6Module, ReprocessorModule, BeamabortStudyModule, BeamDigitizerModule, BgoDigitizerModule, BgoStudyModule, ClawDigitizerModule, ClawStudyModule, ClawsDigitizerModule, ClawsStudyModule, CsiDigitizer_v2Module, CsIDigitizerModule, CsiModule, CsiStudy_v2Module, CsIStudyModule, DosiDigitizerModule, DosiStudyModule, FANGSDigitizerModule, FANGSStudyModule, He3DigitizerModule, He3tubeStudyModule, MicrotpcStudyModule, TpcDigitizerModule, PinDigitizerModule, PindiodeStudyModule, PlumeDigitizerModule, QcsmonitorDigitizerModule, QcsmonitorStudyModule, CDCCosmicAnalysisModule, CDCCrossTalkAdderModule, CDCCRTestModule, CDCDigitizerModule, cdcDQM7Module, CDCDQMModule, ScanCDCGeoModule, CDCInitialT0DeterminationModule, CDCPackerModule, CDCRecoTrackFilterModule, CDCUnpackerModule, DAQPerfModule, RxSocketModule, TxSocketModule, DqmHistoManagerModule, MonitorDataModule, TrackAnaModule, Ds2SampleModule, ReceiveEventModule, HLTDQM2ZMQModule, HLTDs2ZMQModule, ElapsedTimeModule, DeSerializerModule, DeSerializerPXDModule, GenRawSendModule, Root2RawModule, SerializerModule, CertifyParallelModule, Ds2RawModule, Ds2RbufModule, EvReductionModule, FastRbuf2DsModule, Raw2DsModule, RawInputModule, Rbuf2DsModule, Rbuf2RbufModule, Ds2RawFileModule, PartialSeqRootReaderModule, SeqRootMergerModule, StorageDeserializerModule, StorageRootOutputModule, StorageSerializerModule, DisplayModule, PhysicsObjectsDQMModule, PhysicsObjectsMiraBelleBhabhaModule, PhysicsObjectsMiraBelleDst2Module, PhysicsObjectsMiraBelleDstModule, PhysicsObjectsMiraBelleHadronModule, PhysicsObjectsMiraBelleModule, ECLBackgroundModule, ECLChargedPIDModule, ECLChargedPIDDataAnalysisModule, ECLChargedPIDDataAnalysisValidationModule, ECLClusterPSDModule, ECLCompressBGOverlayModule, ECLCovarianceMatrixModule, ECLCRFinderModule, EclCovMatrixNtupleModule, ECLDataAnalysisModule, ECLDigiStudyModule, ECLDigitCalibratorModule, ECLDigitizerModule, ECLDigitizerPureCsIModule, EclDisplayModule, ECLDQMModule, ECLDQMEXTENDEDModule, ECLDQMOutOfTimeDigitsModule, ECLFillCellIdMappingModule, ECLFinalizerModule, ECLHitDebugModule, ECLLocalMaximumFinderModule, ECLLOMModule, ECLMatchingPerformanceExpertModule, ECLPackerModule, ECLShowerCorrectorModule, ECLShowerShapeModule, ECLSplitterN1Module, ECLSplitterN2Module, ECLTrackClusterMatchingModule, ECLTrackClusterMatchingParametrizationExpertModule, ECLTrackClusterMatchingPerformanceModule, ECLTRGInformationModule, ECLTrimShowersAndDigitsModule, ECLUnpackerModule, eclWaveformCalibCollectorModule, ECLWaveformFitModule, HistoModule, MergeDataStoreModule, SubEventModule, SwitchDataStoreModule, ProgressBarModule, RandomBarrierModule, HistoManagerModule, ProfileModule, RootInputModule, RootOutputModule, SeqRootInputModule, SeqRootOutputModule, AsyncWrapper, RxModule, TxModule, ZMQRxOutputModule, ZMQRxWorkerModule, ZMQTxInputModule, ZMQTxWorkerModule, AafhInputModule, BabayagaNLOInputModule, BBBremInputModule, BHWideInputModule, CRYInputModule, EvtGenDecayModule, FragmentationModule, HepMCInputModule, HepMCOutputModule, GeneratedVertexDisplacerModule, GeneratorPreselectionModule, HepevtOutputModule, OverrideGenerationFlagsModule, RemoveMCParticlesModule, KKGenInputModule, KoralWInputModule, PhokharaInputModule, TeeggInputModule, TrepsInputModule, GeometryModule, SoftwareTriggerModule, SoftwareTriggerResultPrinterModule, BKLMAnaModule, BKLMDigitAnalyzerModule, BKLMSimHistogrammerModule, BKLMTrackingModule, EKLMDataCheckerModule, KLMClusterEfficiencyModule, KLMClustersReconstructorModule, KLMDigitizerModule, KLMDQMModule, KLMDQM2Module, KLMPackerModule, KLMReconstructorModule, KLMScintillatorSimulatorModule, KLMUnpackerModule, MasterClassModule, MVAExpertModule, MVAMultipleExpertsModule, AWESOMEBasicModule, PXDBackgroundModule, PXDClustersFromTracksModule, PXDPerformanceModule, PXDSpacePointCreatorModule, CheckErrorEventModule, Convert2RawDetModule, Root2BinaryModule, CDCDedxCorrectionModule, CDCDedxDQMModule, CDCDedxPIDModule, CDCDedxScanModule, CDCDedxSkimModule, CDCDedxSkimCDSTModule, CDCDedxValidationModule, HitLevelInfoWriterModule, DataWriterModule, ECLExpertModule, KLMExpertModule, KlongValidationModule, KLMMuonIDDNNExpertModule, PIDNtupleModule, VXDDedxPIDModule, FullSimModule, FullSimTimingModule, SVDBackgroundModule, SVDChannelMappingModule, SVDHotStripFinderModule, SVDChargeSharingAnalysisModule, SVDClusterQualityEstimatorCalibrationModule, SVDClusterQualityEstimatorModule, SVDCrossTalkFinderModule, svdDumpModule, SVDPackerModule, SVDClusterEvaluationTrueInfoModule, SVDClusterFilterModule, SVDEventT0PerformanceTTreeModule, SVDMaxStripTTreeModule, SVDPerformanceTTreeModule, SVDShaperDigitsFromTracksModule, SVDCoGTimeEstimatorModule, SVDDataFormatCheckModule, SVD3SamplesEmulatorModule, SVDDigitizerModule, SVDTriggerQualityGeneratorModule, SVDSpacePointCreatorModule, SVDSpacePointQICalibrationModule, TOPAlignerModule, TOPBackgroundModule, TOPBunchFinderModule, TOPChannelT0CalibratorModule, TOPChannelT0MCModule, TOPCommonT0CalibratorModule, TOPCosmicT0FinderModule, TOPTriggerDigitizerModule, TOPDoublePulseGeneratorModule, TOPGainEfficiencyCalculatorModule, TOPLaserHitSelectorModule, TOPInterimFENtupleModule, TOPLaserCalibratorModule, TOPLLScannerModule, TOPMCTrackMakerModule, TOPModuleT0CalibratorModule, TOPNtupleModule, TOPPackerModule, TOPPDFCheckerModule, TOPRawDigitConverterModule, TOPRingPlotterModule, TOPTBCComparatorModule, TOPTimeBaseCalibratorModule, TOPUnpackerModule, TOPWaveformFeatureExtractorModule, TOPXTalkChargeShareSetterModule, ExtModule, GenfitVisModule, BeamSpotMonitorModule, KinkFinderModule, Chi2MCTrackMatcherModule, MCV0MatcherModule, MCTrackCandClassifierModule, MuidModule, ROIReadTestModule, SVDROIFinderAnalysisDataModule, SVDROIFinderAnalysisModule, SVDROIFinderModule, CurlingTrackCandSplitterModule, GFTC2SPTCConverterModule, PhaseSpaceAnalysisModule, RT2SPTCConverterModule, SpacePoint2TrueHitConnectorModule, SpacePointCreatorTestModule, SPTC2GFTCConverterModule, SPTCRefereeModule, TCConvertersTestModule, StandardTrackingPerformanceModule, TrackFilterModule, CollectorTestModule, StudyMaterialEffectsModule, EffPlotsModule, FillTrackFitNtupleModule, HitXPModule, TrackingPerformanceEvaluationModule, V0findingPerformanceEvaluationModule, TrackQETrainingDataCollectorModule, V0FinderModule, SecMapTrainerBaseModule, SecMapTrainerVXDTFModule, TrackFinderVXDAnalizerModule, VXDQETrainingDataCollectorModule, FastBDTClassifierAnalyzerModule, FastBDTClassifierTrainingModule, MLSegmentNetworkProducerModule, NoKickCutsEvalModule, SegmentNetworkAnalyzerModule, SPTC2RTConverterModule, VXDTFTrainingDataCollectorModule, FindletModule< AFindlet >, FindletModule< HitBasedT0Extractor >, FindletModule< CKFToSVDSeedFindlet >, FindletModule< CKFToSVDFindlet >, FindletModule< CosmicsTrackMergerFindlet >, FindletModule< DATCONFPGAFindlet >, FindletModule< MCVXDCDCTrackMergerFindlet >, FindletModule< vxdHoughTracking::SVDHoughTracking >, FindletModule< CKFToCDCFindlet >, FindletModule< CKFToCDCFromEclFindlet >, FindletModule< CKFToPXDFindlet >, FindletModule< AsicBackgroundLibraryCreator >, FindletModule< CDCTrackingEventLevelMdstInfoFillerFindlet >, FindletModule< AxialSegmentPairCreator >, FindletModule< AxialStraightTrackFinder >, FindletModule< AxialTrackCreatorMCTruth >, FindletModule< AxialTrackCreatorSegmentHough >, FindletModule< AxialTrackFinderHough >, FindletModule< AxialTrackFinderLegendre >, FindletModule< ClusterBackgroundDetector >, FindletModule< ClusterPreparer >, FindletModule< ClusterRefiner< BridgingWireHitRelationFilter > >, FindletModule< FacetCreator >, FindletModule< HitReclaimer >, FindletModule< MonopoleAxialTrackFinderLegendre >, FindletModule< MonopoleStereoHitFinder >, FindletModule< MonopoleStereoHitFinderQuadratic >, FindletModule< SegmentCreatorFacetAutomaton >, FindletModule< SegmentCreatorMCTruth >, FindletModule< SegmentFinderFacetAutomaton >, FindletModule< SegmentFitter >, FindletModule< SegmentLinker >, FindletModule< SegmentOrienter >, FindletModule< SegmentPairCreator >, FindletModule< SegmentRejecter >, FindletModule< SegmentTrackCombiner >, FindletModule< SegmentTripleCreator >, FindletModule< StereoHitFinder >, FindletModule< SuperClusterCreator >, FindletModule< TrackCombiner >, FindletModule< TrackCreatorSegmentPairAutomaton >, FindletModule< TrackCreatorSegmentTripleAutomaton >, FindletModule< TrackCreatorSingleSegments >, FindletModule< TrackExporter >, FindletModule< TrackFinderAutomaton >, FindletModule< TrackFinderCosmics >, FindletModule< TrackFinder >, FindletModule< TrackFinderSegmentPairAutomaton >, FindletModule< TrackFinderSegmentTripleAutomaton >, FindletModule< TrackFlightTimeAdjuster >, FindletModule< TrackLinker >, FindletModule< TrackOrienter >, FindletModule< TrackQualityAsserter >, FindletModule< TrackQualityEstimator >, FindletModule< TrackRejecter >, FindletModule< WireHitBackgroundDetector >, FindletModule< WireHitCreator >, FindletModule< WireHitPreparer >, CDCTriggerNeuroDQMModule, CDCTriggerNeuroDQMOnlineModule, CDCTriggerHoughETFModule, CDCTrigger2DFinderModule, CDCTriggerNDFinderModule, CDCTriggerNeuroDataModule, CDCTriggerNeuroIDHistModule, CDCTriggerTSFFirmwareModule, CDCTriggerTSFModule, TRGCDCModule, TRGCDCETFUnpackerModule, TRGCDCT2DDQMModule, TRGCDCT3DConverterModule, TRGCDCT3DDQMModule, TRGCDCT3DUnpackerModule, TRGCDCTSFDQMModule, TRGCDCTSFUnpackerModule, TRGCDCTSStreamModule, CDCTriggerUnpackerModule, MCMatcherTRGECLModule, TRGECLFAMModule, TRGECLModule, TRGECLBGTCHitModule, TRGECLDQMModule, TRGECLQAMModule, TRGECLRawdataAnalysisModule, TRGECLTimingCalModule, TRGECLUnpackerModule, TRGGDLModule, TRGGDLDQMModule, TRGGDLDSTModule, TRGGDLSummaryModule, TRGGDLUnpackerModule, TRGGRLMatchModule, TRGGRLModule, TRGGRLProjectsModule, TRGGRLDQMModule, GRLNeuroModule, GRLNeuroTrainerModule, TRGGRLUnpackerModule, KLMTriggerModule, TRGTOPDQMModule, TRGTOPTRD2TTSConverterModule, TRGTOPUnpackerModule, TRGTOPUnpackerWaveformModule, TRGTOPWaveformPlotterModule, TRGRAWDATAModule, VXDMisalignmentModule, DQMHistAnalysisARICHModule, DQMHistAnalysisARICHMonObjModule, DQMHistAnalysisCDCDedxModule, DQMHistAnalysisCDCEpicsModule, DQMHistAnalysisCDCMonObjModule, DQMHistAnalysisECLModule, DQMHistAnalysisECLConnectedRegionsModule, DQMHistAnalysisECLOutOfTimeDigitsModule, DQMHistAnalysisECLShapersModule, DQMHistAnalysisECLSummaryModule, DQMHistAnalysisEpicsExampleModule, DQMHistAnalysisEventT0EfficiencyModule, DQMHistAnalysisEventT0TriggerJitterModule, DQMHistAnalysisExampleModule, DQMHistAnalysisExampleFlagsModule, DQMHistAnalysisHLTModule, DQMHistAnalysisHLTMonObjModule, DQMHistAnalysisInput2Module, DQMHistAnalysisInputPVSrvModule, DQMHistAnalysisInputTestModule, DQMHistAnalysisKLMModule, DQMHistAnalysisMiraBelleModule, DQMHistAnalysisMonObjModule, DQMHistAnalysisOutputFileModule, DQMHistAnalysisOutputMonObjModule, DQMHistAnalysisOutputRelayMsgModule, DQMHistAnalysisPeakModule, DQMHistAnalysisPXDFitsModule, DQMHistAnalysisSVDEfficiencyModule, DQMHistAnalysisSVDGeneralModule, DQMHistAnalysisSVDOnMiraBelleModule, DQMHistAnalysisTOPModule, DQMHistAnalysisTrackingAbortModule, DQMHistAnalysisTRGECLModule, DQMHistAnalysisTRGGDLModule, DQMHistAutoCanvasModule, DQMHistComparitorModule, DQMHistDeltaHistoModule, DQMHistReferenceModule, DQMHistSnapshotsModule, PyModule, PXDBgTupleProducerModule, PXDMCBgTupleProducerModule, PXDDQMEfficiencyNtupleModule, PXDDQMEfficiencyNtupleSelftrackModule, PXDDQMTrackRawNtupleModule, PXDPackerErrModule, PXDPackerModule, PXDReadRawBonnDAQModule, PXDReadRawBonnDAQMatchedModule, PXDReadRawONSENModule, PXDUnpackerModule, PXDUnpackerOldModule, PXDUnpackerOTModule, SVDDQMClustersOnTrackModule, SVDDQMExpressRecoModule, PXDROIFinderAnalysisModule, ROISenderModule, DQMHistAnalysisDeltaEpicsMonObjExampleModule, DQMHistAnalysisDeltaTestModule, DQMHistAnalysisPhysicsModule, DQMHistAnalysisPXDChargeModule, DQMHistAnalysisPXDCMModule, DQMHistAnalysisPXDDAQModule, DQMHistAnalysisPXDEffModule, DQMHistAnalysisPXDERModule, DQMHistAnalysisPXDInjectionModule, DQMHistAnalysisPXDReductionModule, DQMHistAnalysisPXDTrackChargeModule, DQMHistAnalysisRooFitExampleModule, DQMHistAnalysisRunNrModule, DQMHistAnalysisTRGModule, DQMHistOutputToEPICSModule, and ROIDQMModule.

Definition at line 176 of file Module.h.

176{};

Member Data Documentation

◆ h_1cltrkCharge

TH1F* h_1cltrkCharge[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

charge

Definition at line 166 of file SVDPerformanceModule.h.

◆ h_1cltrkSN

TH1F* h_1cltrkSN[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

signal over noise

Definition at line 167 of file SVDPerformanceModule.h.

◆ h_2cltrkCharge

TH1F* h_2cltrkCharge[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

charge

Definition at line 170 of file SVDPerformanceModule.h.

◆ h_2cltrkSN

TH1F* h_2cltrkSN[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

signal over noise

Definition at line 171 of file SVDPerformanceModule.h.

◆ h_clCellID1VSCellID2

TH1F* h_clCellID1VSCellID2[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

coor1 VS coor2

Definition at line 137 of file SVDPerformanceModule.h.

◆ h_clCharge

TH1F* h_clCharge[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

charge

Definition at line 127 of file SVDPerformanceModule.h.

◆ h_clChargeVSSize

TH2F* h_clChargeVSSize[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

charge VS size

Definition at line 141 of file SVDPerformanceModule.h.

◆ h_clCoor1VSCoor2

TH1F* h_clCoor1VSCoor2[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

coor1 VS coor2

Definition at line 135 of file SVDPerformanceModule.h.

◆ h_clCoorUVSCoorV

TH2F* h_clCoorUVSCoorV[m_nLayers][m_nSensors] = {{nullptr}}
private

energy VS position

Definition at line 134 of file SVDPerformanceModule.h.

◆ h_clEnergy

TH1F* h_clEnergy[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

energy

Definition at line 128 of file SVDPerformanceModule.h.

◆ h_clEnergy12VSdelta

TH2F* h_clEnergy12VSdelta[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

coor1 VS coor2

Definition at line 136 of file SVDPerformanceModule.h.

◆ h_clEnergyUVSEnergyV

TH2F* h_clEnergyUVSEnergyV[m_nLayers][m_nSensors] = {{nullptr}}
private

energy VS position

Definition at line 138 of file SVDPerformanceModule.h.

◆ h_clEnergyVSCoorU

TH2F* h_clEnergyVSCoorU[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

energy VS position U

Definition at line 131 of file SVDPerformanceModule.h.

◆ h_clEnergyVSCoorV

TH2F* h_clEnergyVSCoorV[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

energy VS position V

Definition at line 132 of file SVDPerformanceModule.h.

◆ h_clEnergyVSMaxbin

TH2F* h_clEnergyVSMaxbin[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

energy VS maxbin seed

Definition at line 130 of file SVDPerformanceModule.h.

◆ h_clEnergyVSSize_mb12

TH2F* h_clEnergyVSSize_mb12[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

energy VS size, maxbin == 1,2

Definition at line 142 of file SVDPerformanceModule.h.

◆ h_clEnergyVSSize_mb345

TH2F* h_clEnergyVSSize_mb345[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

energy VS size, maxbin == 3,4,5

Definition at line 143 of file SVDPerformanceModule.h.

◆ h_clEnergyVSSize_mb6

TH2F* h_clEnergyVSSize_mb6[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

energy VS size, max bin == 6

Definition at line 144 of file SVDPerformanceModule.h.

◆ h_clNuVSNv

TH2F* h_clNuVSNv[m_nLayers][m_nSensors] = {{nullptr}}
private

N U culsters VS N V clusters.

Definition at line 133 of file SVDPerformanceModule.h.

◆ h_clSeedMaxbin

TH1F* h_clSeedMaxbin[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

maxbin seed

Definition at line 129 of file SVDPerformanceModule.h.

◆ h_clSize

TH1F* h_clSize[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

size

Definition at line 126 of file SVDPerformanceModule.h.

◆ h_clSN

TH1F* h_clSN[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

signal over noise

Definition at line 139 of file SVDPerformanceModule.h.

◆ h_clSNVSSize

TH2F* h_clSNVSSize[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

charge VS size

Definition at line 145 of file SVDPerformanceModule.h.

◆ h_clTime

TH1F* h_clTime[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

time

Definition at line 140 of file SVDPerformanceModule.h.

◆ h_clTimeVSSize

TH2F* h_clTimeVSSize[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

charge VS size

Definition at line 146 of file SVDPerformanceModule.h.

◆ h_clTimeVSTrueTime

TH2F* h_clTimeVSTrueTime[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

time VS true time

Definition at line 147 of file SVDPerformanceModule.h.

◆ h_cltrk_UU

TH1F* h_cltrk_UU = nullptr
private

U time vs U time.

Definition at line 174 of file SVDPerformanceModule.h.

◆ h_cltrk_UV

TH1F* h_cltrk_UV = nullptr
private

U time vs V time.

Definition at line 176 of file SVDPerformanceModule.h.

◆ h_cltrk_VV

TH1F* h_cltrk_VV = nullptr
private

V time vs V time.

Definition at line 175 of file SVDPerformanceModule.h.

◆ h_cltrkCharge

TH1F* h_cltrkCharge[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

charge

Definition at line 152 of file SVDPerformanceModule.h.

◆ h_cltrkChargeVSSize

TH2F* h_cltrkChargeVSSize[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

charge VS size

Definition at line 160 of file SVDPerformanceModule.h.

◆ h_cltrkEnergy

TH1F* h_cltrkEnergy[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

energy

Definition at line 153 of file SVDPerformanceModule.h.

◆ h_cltrkSize

TH1F* h_cltrkSize[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

size

Definition at line 151 of file SVDPerformanceModule.h.

◆ h_cltrkSN

TH1F* h_cltrkSN[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

signal over noise

Definition at line 154 of file SVDPerformanceModule.h.

◆ h_cltrkSNVSSize

TH2F* h_cltrkSNVSSize[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

charge VS size

Definition at line 161 of file SVDPerformanceModule.h.

◆ h_cltrkTime

TH1F* h_cltrkTime[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

time

Definition at line 155 of file SVDPerformanceModule.h.

◆ h_cltrkTime_L4uL5u

TH2F* h_cltrkTime_L4uL5u = nullptr
private

L4U time VS L5U time.

Definition at line 178 of file SVDPerformanceModule.h.

◆ h_cltrkTime_L4vL5v

TH2F* h_cltrkTime_L4vL5v = nullptr
private

L4V time VS L5V time.

Definition at line 179 of file SVDPerformanceModule.h.

◆ h_cltrkTime_L5uL5v

TH2F* h_cltrkTime_L5uL5v = nullptr
private

L5U time VS L5V time.

Definition at line 180 of file SVDPerformanceModule.h.

◆ h_cltrkTime_TB1

TH1F* h_cltrkTime_TB1[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

time

Definition at line 156 of file SVDPerformanceModule.h.

◆ h_cltrkTime_TB2

TH1F* h_cltrkTime_TB2[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

time

Definition at line 157 of file SVDPerformanceModule.h.

◆ h_cltrkTime_TB3

TH1F* h_cltrkTime_TB3[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

time

Definition at line 158 of file SVDPerformanceModule.h.

◆ h_cltrkTime_TB4

TH1F* h_cltrkTime_TB4[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

time

Definition at line 159 of file SVDPerformanceModule.h.

◆ h_cltrkTimeVSSize

TH2F* h_cltrkTimeVSSize[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

charge VS size

Definition at line 162 of file SVDPerformanceModule.h.

◆ h_cltrkTimeVSTrueTime

TH2F* h_cltrkTimeVSTrueTime[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

time VS true time

Definition at line 163 of file SVDPerformanceModule.h.

◆ h_nCl

TH1F* h_nCl[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

number per event

Definition at line 125 of file SVDPerformanceModule.h.

◆ h_nCltrk

TH1F* h_nCltrk[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

number per event

Definition at line 150 of file SVDPerformanceModule.h.

◆ h_nReco

TH1F* h_nReco[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

number per event

Definition at line 118 of file SVDPerformanceModule.h.

◆ h_nShaper

TH1F* h_nShaper[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

number per event

Definition at line 115 of file SVDPerformanceModule.h.

◆ h_recoCharge

TH1F* h_recoCharge[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

charge

Definition at line 119 of file SVDPerformanceModule.h.

◆ h_recoEnergy

TH1F* h_recoEnergy[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

energy

Definition at line 120 of file SVDPerformanceModule.h.

◆ h_recoTime

TH1F* h_recoTime[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

time

Definition at line 122 of file SVDPerformanceModule.h.

◆ h_stripNoise

TH1F* h_stripNoise[m_nLayers][m_nSensors][m_nSides] = {{{nullptr}}}
private

strip noise

Definition at line 121 of file SVDPerformanceModule.h.

◆ m_ClusterName

std::string m_ClusterName = "SVDClusters"

SVDCluster StoreArray name.

Definition at line 58 of file SVDPerformanceModule.h.

◆ m_conditions

std::vector<ModuleCondition> m_conditions
privateinherited

Module condition, only non-null if set.

Definition at line 521 of file Module.h.

◆ m_debugLowTime

float m_debugLowTime = - 100

cluster Time below this number will produce a printout

Definition at line 64 of file SVDPerformanceModule.h.

◆ m_description

std::string m_description
privateinherited

The description of the module.

Definition at line 511 of file Module.h.

◆ m_hasReturnValue

bool m_hasReturnValue
privateinherited

True, if the return value is set.

Definition at line 518 of file Module.h.

◆ m_histoList_clTRK

TList* m_histoList_clTRK[m_nLayers] = {nullptr}
private

histo list clusters related to tracks

Definition at line 103 of file SVDPerformanceModule.h.

◆ m_histoList_cluster

TList* m_histoList_cluster[m_nLayers] = {nullptr}
private

histo list clusters

Definition at line 104 of file SVDPerformanceModule.h.

◆ m_histoList_corr

TList* m_histoList_corr = nullptr
private

histo list correlations

Definition at line 102 of file SVDPerformanceModule.h.

◆ m_histoList_reco

TList* m_histoList_reco[m_nLayers] = {nullptr}
private

histo list reco digits

Definition at line 106 of file SVDPerformanceModule.h.

◆ m_histoList_shaper

TList* m_histoList_shaper[m_nLayers] = {nullptr}
private

histo list shaper digits

Definition at line 105 of file SVDPerformanceModule.h.

◆ m_histoList_track

TList* m_histoList_track = nullptr
private

histo list tracks

Definition at line 101 of file SVDPerformanceModule.h.

◆ m_is2017TBanalysis

bool m_is2017TBanalysis = false

true if we analyze 2017 TB data

Definition at line 61 of file SVDPerformanceModule.h.

◆ m_isSimulation

bool m_isSimulation = false

true if we analyze Simulated data

Definition at line 62 of file SVDPerformanceModule.h.

◆ m_logConfig

LogConfig m_logConfig
privateinherited

The log system configuration of the module.

Definition at line 514 of file Module.h.

◆ m_moduleParamList

ModuleParamList m_moduleParamList
privateinherited

List storing and managing all parameter of the module.

Definition at line 516 of file Module.h.

◆ m_mom

TH1F* m_mom = nullptr
private

track momentum

Definition at line 111 of file SVDPerformanceModule.h.

◆ m_name

std::string m_name
privateinherited

The name of the module, saved as a string (user-modifiable)

Definition at line 508 of file Module.h.

◆ m_nEvents

int m_nEvents = 0
private

number of events

Definition at line 75 of file SVDPerformanceModule.h.

◆ m_nLayers

const int m_nLayers = 4
staticprivate

max number of layers

Definition at line 95 of file SVDPerformanceModule.h.

◆ m_NoiseCal

SVDNoiseCalibrations m_NoiseCal
private

SVDNoise calibration db object.

Definition at line 77 of file SVDPerformanceModule.h.

◆ m_nSensors

const int m_nSensors = 5
staticprivate

max number of sensors

Definition at line 96 of file SVDPerformanceModule.h.

◆ m_nSides

const int m_nSides = 2
staticprivate

max number of sides

Definition at line 97 of file SVDPerformanceModule.h.

◆ m_nSVDhits

TH1F* m_nSVDhits = nullptr
private

track momentum

Definition at line 112 of file SVDPerformanceModule.h.

◆ m_ntracks

int m_ntracks = 0
private

numner of tracks

Definition at line 93 of file SVDPerformanceModule.h.

◆ m_nTracks

TH1F* m_nTracks = nullptr
private

number of tracks

Definition at line 109 of file SVDPerformanceModule.h.

◆ m_package

std::string m_package
privateinherited

Package this module is found in (may be empty).

Definition at line 510 of file Module.h.

◆ m_propertyFlags

unsigned int m_propertyFlags
privateinherited

The properties of the module as bitwise or (with |) of EModulePropFlags.

Definition at line 512 of file Module.h.

◆ m_PulseShapeCal

SVDPulseShapeCalibrations m_PulseShapeCal
private

SVDPulseShape calibration db object.

Definition at line 78 of file SVDPerformanceModule.h.

◆ m_Pvalue

TH1F* m_Pvalue = nullptr
private

track p value

Definition at line 110 of file SVDPerformanceModule.h.

◆ m_RecoDigitName

std::string m_RecoDigitName = "SVDRecoDigits"

SVDRecoDigits Store Array name.

Definition at line 57 of file SVDPerformanceModule.h.

◆ m_recoTracks

StoreArray<RecoTrack> m_recoTracks
private

RecoTracks store array.

Definition at line 83 of file SVDPerformanceModule.h.

◆ m_returnValue

int m_returnValue
privateinherited

The return value.

Definition at line 519 of file Module.h.

◆ m_rootFileName

std::string m_rootFileName = ""

root file name

Definition at line 68 of file SVDPerformanceModule.h.

◆ m_rootFilePtr

TFile* m_rootFilePtr = nullptr

pointer at root file used for storing histograms

Definition at line 71 of file SVDPerformanceModule.h.

◆ m_ShaperDigitName

std::string m_ShaperDigitName = "SVDShaperDigits"

ShaperDigits Store Array name.

Definition at line 56 of file SVDPerformanceModule.h.

◆ m_storeSVDEvtInfo

StoreObjPtr<SVDEventInfo> m_storeSVDEvtInfo
private

Storage for SVDEventInfo object.

Definition at line 88 of file SVDPerformanceModule.h.

◆ m_svdClusters

StoreArray<SVDCluster> m_svdClusters
private

SVDCluster store array.

Definition at line 82 of file SVDPerformanceModule.h.

◆ m_svdEventInfoName

std::string m_svdEventInfoName
private

Name of the SVDEventInfo object.

Definition at line 91 of file SVDPerformanceModule.h.

◆ m_svdRecos

StoreArray<SVDRecoDigit> m_svdRecos
private

SVDRecoDigits store array.

Definition at line 81 of file SVDPerformanceModule.h.

◆ m_svdShapers

StoreArray<SVDShaperDigit> m_svdShapers
private

SVDShaperDigit store array.

Definition at line 80 of file SVDPerformanceModule.h.

◆ m_tfr

StoreArray<TrackFitResult> m_tfr
private

TrackFitResult store array.

Definition at line 85 of file SVDPerformanceModule.h.

◆ m_TrackFitResultName

std::string m_TrackFitResultName = "TrackFitResults"

TrackFitResult StoreArray name.

Definition at line 59 of file SVDPerformanceModule.h.

◆ m_TrackName

std::string m_TrackName = "Tracks"

Track StoreArray name.

Definition at line 60 of file SVDPerformanceModule.h.

◆ m_Tracks

StoreArray<Track> m_Tracks
private

Tracks store array.

Definition at line 84 of file SVDPerformanceModule.h.

◆ m_type

std::string m_type
privateinherited

The type of the module, saved as a string.

Definition at line 509 of file Module.h.

◆ sensorsOnLayer

unsigned int sensorsOnLayer[4] = {0}
private

sensors on layer i

Definition at line 99 of file SVDPerformanceModule.h.


The documentation for this class was generated from the following files: