Belle II Software development
ECLLOMModule Class Reference

This module simulates ECL Luminosity Online Monitor logic, i.e. More...

#include <eclLOMModule.h>

Inheritance diagram for ECLLOMModule:
Module PathElement

Public Types

enum  EModulePropFlags {
  c_Input = 1 ,
  c_Output = 2 ,
  c_ParallelProcessingCertified = 4 ,
  c_HistogramManager = 8 ,
  c_InternalSerializer = 16 ,
  c_TerminateInAllProcesses = 32 ,
  c_DontCollectStatistics = 64
}
 Each module can be tagged with property flags, which indicate certain features of the module. More...
 
typedef ModuleCondition::EAfterConditionPath EAfterConditionPath
 Forward the EAfterConditionPath definition from the ModuleCondition.
 

Public Member Functions

 ECLLOMModule ()
 Constructor.
 
virtual ~ECLLOMModule ()
 Destructor.
 
virtual void initialize () override
 Initialize variables.
 
virtual void beginRun () override
 begin run.
 
virtual void event () override
 event per event.
 
virtual void endRun () override
 end run.
 
virtual void terminate () override
 terminate.
 
virtual std::vector< std::string > getFileNames (bool outputFiles)
 Return a list of output filenames for this modules.
 
const std::string & getName () const
 Returns the name of the module.
 
const std::string & getType () const
 Returns the type of the module (i.e.
 
const std::string & getPackage () const
 Returns the package this module is in.
 
const std::string & getDescription () const
 Returns the description of the module.
 
void setName (const std::string &name)
 Set the name of the module.
 
void setPropertyFlags (unsigned int propertyFlags)
 Sets the flags for the module properties.
 
LogConfiggetLogConfig ()
 Returns the log system configuration.
 
void setLogConfig (const LogConfig &logConfig)
 Set the log system configuration.
 
void setLogLevel (int logLevel)
 Configure the log level.
 
void setDebugLevel (int debugLevel)
 Configure the debug messaging level.
 
void setAbortLevel (int abortLevel)
 Configure the abort log level.
 
void setLogInfo (int logLevel, unsigned int logInfo)
 Configure the printed log information for the given level.
 
void if_value (const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 Add a condition to the module.
 
void if_false (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to add a condition to the module.
 
void if_true (const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
 A simplified version to set the condition of the module.
 
bool hasCondition () const
 Returns true if at least one condition was set for the module.
 
const ModuleConditiongetCondition () const
 Return a pointer to the first condition (or nullptr, if none was set)
 
const std::vector< ModuleCondition > & getAllConditions () const
 Return all set conditions for this module.
 
bool evalCondition () const
 If at least one condition was set, it is evaluated and true returned if at least one condition returns true.
 
std::shared_ptr< PathgetConditionPath () const
 Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).
 
Module::EAfterConditionPath getAfterConditionPath () const
 What to do after the conditional path is finished.
 
std::vector< std::shared_ptr< Path > > getAllConditionPaths () const
 Return all condition paths currently set (no matter if the condition is true or not).
 
bool hasProperties (unsigned int propertyFlags) const
 Returns true if all specified property flags are available in this module.
 
bool hasUnsetForcedParams () const
 Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.
 
const ModuleParamListgetParamList () const
 Return module param list.
 
template<typename T >
ModuleParam< T > & getParam (const std::string &name) const
 Returns a reference to a parameter.
 
bool hasReturnValue () const
 Return true if this module has a valid return value set.
 
int getReturnValue () const
 Return the return value set by this module.
 
std::shared_ptr< PathElementclone () const override
 Create an independent copy of this module.
 
std::shared_ptr< boost::python::list > getParamInfoListPython () const
 Returns a python list of all parameters.
 

Static Public Member Functions

static void exposePythonAPI ()
 Exposes methods of the Module class to Python.
 

Protected Member Functions

virtual void def_initialize ()
 Wrappers to make the methods without "def_" prefix callable from Python.
 
virtual void def_beginRun ()
 Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.
 
virtual void def_event ()
 Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.
 
virtual void def_endRun ()
 This method can receive that the current run ends as a call from the Python side.
 
virtual void def_terminate ()
 Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.
 
void setDescription (const std::string &description)
 Sets the description of the module.
 
void setType (const std::string &type)
 Set the module type.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
 Adds a new parameter to the module.
 
template<typename T >
void addParam (const std::string &name, T &paramVariable, const std::string &description)
 Adds a new enforced parameter to the module.
 
void setReturnValue (int value)
 Sets the return value for this module as integer.
 
void setReturnValue (bool value)
 Sets the return value for this module as bool.
 
void setParamList (const ModuleParamList &params)
 Replace existing parameter list.
 

Private Member Functions

void get_MCparticles ()
 Get MC particles parameters.
 
void get_waveforms ()
 Get ECL waveforms comdined into sectors.
 
void calculate_discr_output ()
 Transforms waveforms into discriminators output.
 
void calculate_amplitudes ()
 Calculates amplitude [GeV] in an event for each sector.
 
bool calculate_BE_quality (int iSample)
 Return Quality (topology) flag at sample point, iSample, for Backward Endcap.
 
bool calculate_FE_quality (int iSample)
 Return Quality (topology) flag at sample point, iSample, for Forward Endcap.
 
void calculate_coincidence (int iSample)
 Calculates Coincidence Matrix at sample point, iSample.
 
void clear_lom_data ()
 Clear internal data.
 
std::list< ModulePtrgetModules () const override
 no submodules, return empty list
 
std::string getPathString () const override
 return the module name.
 
void setParamPython (const std::string &name, const boost::python::object &pyObj)
 Implements a method for setting boost::python objects.
 
void setParamPythonDict (const boost::python::dict &dictionary)
 Implements a method for reading the parameter values from a boost::python dictionary.
 

Private Attributes

std::string m_testFileName
 Name of file to save output.
 
double m_thresholdFE
 Threshold [GeV] on signal for Forward Endcap .
 
double m_thresholdBE
 Threshold [GeV] on signal for Backward Endcap .
 
double m_thresholdBkg
 Threshold [GeV] on signal when sector considered as lighted.
 
double m_discrTime
 Discriminator's signal duration in ns.
 
bool m_includeInnerFE
 Flag to include Inner part of the Forward Endcap.
 
bool m_saveSignal
 Flag to save signal wavefroms into file.
 
int m_evtNum
 Event number.
 
double m_BE_Waveform_100ns [16][64]
 Waveforms with 100ns sampling for Backward Endcap sectors.
 
double m_FE_Waveform_100ns [16][64]
 Waveforms with 100ns sampling for Forward Endcap sectors.
 
double m_mcen [2]
 Monte Carlo energy of the final state particles in main frame.
 
double m_mcth [2]
 Monte Carlo thetha of the final state particles in main frame.
 
double m_mcph [2]
 Monte Carlo phi of the final state particles in main frame.
 
double m_com_en [2]
 Monte Carlo energy of the final state particles in CMS frame.
 
double m_com_th [2]
 Monte Carlo thetha of the final state particles in CMS frame.
 
double m_com_ph [2]
 Monte Carlo phi of the final state particles in CMS frame.
 
StoreArray< MCParticlem_MCParticles
 MC particles.
 
StoreArray< TRGECLWaveformm_TrgEclWaveforms
 Trigger waveforms.
 
bool m_isBhabha
 Bha-bha signal for an event.
 
int m_BhNum
 Number of Bha-bha signals in an event.
 
double m_BE_Amplitude [16]
 Calculated amplitudes in sectors of Backward Endcap.
 
double m_FE_Amplitude [16]
 Calculated amplitudes in sectors of Forward Endcap.
 
double m_BESum_Amplitude [16]
 Calculated amplitudes in running sums of Backward Endcap.
 
double m_FESum_Amplitude [16]
 Calculated amplitudes in running sums of Forward Endcap.
 
double m_BE_Pedal [16]
 Calculated pedestal values for Backward Endcap.
 
double m_FE_Pedal [16]
 Calculated pedestal values for Forward Endcap.
 
double m_FESum_MaxAmp
 Maximum runing sum amplitude in an event for Forward endcap.
 
double m_BESum_MaxAmp
 Maximum runing sum amplitude in an event for Backward endcap.
 
int m_FESum_MaxId
 Id of a sector with maximum aplitude in Forward endcap.
 
int m_BESum_MaxId
 Id of a sector with maximum aplitude in Backward endcap.
 
TH2D * m_h2Coin
 Store number of coincedencies for i:j sectors (Forward:Backward) over all events.
 
TH2D * m_h2SumCoin
 Store number of coincedencies in running sums for i:j sectors (Forward:Backward) over all events.
 
TH2D * m_h2FEAmp
 Store sectors amplitudes for Forward endcap over all events.
 
TH2D * m_h2BEAmp
 Store sectors amplitudes for Backward endcap over all events.
 
TH1D * m_h1BEHits
 Store number of events when Backward sector i has signal exceeding Bha-Bha threshold over all events.
 
TH1D * m_h1FEHits
 Store number of events when Forward sector i has signal exceeding Bha-Bha threshold over all events.
 
TFile * m_testfile
 File to save output.
 
TTree * m_testtree
 Tree to store output.
 
int m_NSamples
 m_NSamples=631, number of samples for 10ns sampling.
 
double m_BE_Waveform_10ns [16][631]
 Waveforms with 10ns sampling for Backward Endcap sectors.
 
double m_FE_Waveform_10ns [16][631]
 Waveforms with 10ns sampling for Forward Endcap sectors.
 
double m_BESum_Waveform_10ns [16][631]
 Running sum's waveforms with 10ns sampling for Backward Endcap sectors.
 
double m_FESum_Waveform_10ns [16][631]
 Running sum's waveforms with 10ns sampling for Forward Endcap sectors.
 
bool m_FESum_Discr [16][631]
 Discriminators values for running sums of Forward Endcap.
 
bool m_BESum_Discr [16][631]
 Discriminators values for running sums of Backward Endcap.
 
bool m_FEQual_Discr [16][631]
 Discriminators values for Quality signal of Forward Endcap.
 
bool m_BEQual_Discr [16][631]
 Discriminators values for Quality signal of Backward Endcap.
 
bool m_isBhabhaPatternFE
 Quality signal for Forward endcap.
 
bool m_isBhabhaPatternBE
 Quality signal for Backward endcap.
 
int m_CoincidenceMatrix [16][16]
 Stores current coincidence duration [in samples] between waveforms exceeding threshold in i:j sectors (Forward:Backward).
 
int m_SumCoincidenceMatrix [16][16]
 Stores current coincidence duration [in samples] between runnig sums discriminators in i:j sectors (Forward:Backward).
 
int m_CoincidenceCounterMatrix [16][16]
 Stores number of concidences between waveforms exceeding threshold in i:j sectors (Forward:Backward).
 
int m_SumCoincidenceCounterMatrix [16][16]
 Stores number of concidences between runnig sums discriminators in i:j sectors (Forward:Backward).
 
std::string m_name
 The name of the module, saved as a string (user-modifiable)
 
std::string m_type
 The type of the module, saved as a string.
 
std::string m_package
 Package this module is found in (may be empty).
 
std::string m_description
 The description of the module.
 
unsigned int m_propertyFlags
 The properties of the module as bitwise or (with |) of EModulePropFlags.
 
LogConfig m_logConfig
 The log system configuration of the module.
 
ModuleParamList m_moduleParamList
 List storing and managing all parameter of the module.
 
bool m_hasReturnValue
 True, if the return value is set.
 
int m_returnValue
 The return value.
 
std::vector< ModuleConditionm_conditions
 Module condition, only non-null if set.
 

Detailed Description

This module simulates ECL Luminosity Online Monitor logic, i.e.

counts events with back-to-back energy depositions in the ECL endcaps utilizing coincedence scheme.

Definition at line 33 of file eclLOMModule.h.

Member Typedef Documentation

◆ EAfterConditionPath

Forward the EAfterConditionPath definition from the ModuleCondition.

Definition at line 88 of file Module.h.

Member Enumeration Documentation

◆ EModulePropFlags

enum EModulePropFlags
inherited

Each module can be tagged with property flags, which indicate certain features of the module.

Enumerator
c_Input 

This module is an input module (reads data).

c_Output 

This module is an output module (writes data).

c_ParallelProcessingCertified 

This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)

c_HistogramManager 

This module is used to manage histograms accumulated by other modules.

c_InternalSerializer 

This module is an internal serializer/deserializer for parallel processing.

c_TerminateInAllProcesses 

When using parallel processing, call this module's terminate() function in all processes().

This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.

c_DontCollectStatistics 

No statistics is collected for this module.

Definition at line 77 of file Module.h.

77 {
78 c_Input = 1,
79 c_Output = 2,
85 };
@ c_HistogramManager
This module is used to manage histograms accumulated by other modules.
Definition: Module.h:81
@ c_Input
This module is an input module (reads data).
Definition: Module.h:78
@ c_DontCollectStatistics
No statistics is collected for this module.
Definition: Module.h:84
@ c_ParallelProcessingCertified
This module can be run in parallel processing mode safely (All I/O must be done through the data stor...
Definition: Module.h:80
@ c_InternalSerializer
This module is an internal serializer/deserializer for parallel processing.
Definition: Module.h:82
@ c_Output
This module is an output module (writes data).
Definition: Module.h:79
@ c_TerminateInAllProcesses
When using parallel processing, call this module's terminate() function in all processes().
Definition: Module.h:83

Constructor & Destructor Documentation

◆ ECLLOMModule()

Constructor.

Definition at line 22 of file eclLOMModule.cc.

23{
24 setDescription("module to emulate Luminosity Online Monitor");
25 addParam("thresholdFE", m_thresholdFE, "Threshold for Forward Endcap [GeV]", 3.0);
26 addParam("thresholdBE", m_thresholdBE, "Threshold for Backward Endcap [GeV]", 1.0);
27 addParam("thresholdBkg", m_thresholdBkg, "Threshold when sector considered as lighted [GeV]", 0.5);
28 addParam("discrTime", m_discrTime, "Duration of '1' (positive) signal from discriminators [ns]", 1000.0);
29 addParam("includeInnerFE", m_includeInnerFE, "Flag to include/exclude Inner part of the Forward Endcap", false);
30 addParam("saveSignal", m_saveSignal, "Flag to store or not signals' waveforms", false);
31 addParam("testFileName", m_testFileName, "output file", std::string("lomtest.root"));
32
33 m_evtNum = 0;
34 for (int i = 0; i < 16; i++) {
35 for (int j = 0; j < 16; j++) {
38 }
39 }
40}
int m_evtNum
Event number.
Definition: eclLOMModule.h:108
int m_CoincidenceCounterMatrix[16][16]
Stores number of concidences between waveforms exceeding threshold in i:j sectors (Forward:Backward).
Definition: eclLOMModule.h:163
double m_thresholdBE
Threshold [GeV] on signal for Backward Endcap .
Definition: eclLOMModule.h:101
double m_thresholdFE
Threshold [GeV] on signal for Forward Endcap .
Definition: eclLOMModule.h:100
double m_discrTime
Discriminator's signal duration in ns.
Definition: eclLOMModule.h:103
int m_SumCoincidenceCounterMatrix[16][16]
Stores number of concidences between runnig sums discriminators in i:j sectors (Forward:Backward).
Definition: eclLOMModule.h:164
bool m_includeInnerFE
Flag to include Inner part of the Forward Endcap.
Definition: eclLOMModule.h:104
bool m_saveSignal
Flag to save signal wavefroms into file.
Definition: eclLOMModule.h:105
double m_thresholdBkg
Threshold [GeV] on signal when sector considered as lighted.
Definition: eclLOMModule.h:102
std::string m_testFileName
Name of file to save output.
Definition: eclLOMModule.h:99
void setDescription(const std::string &description)
Sets the description of the module.
Definition: Module.cc:214
void addParam(const std::string &name, T &paramVariable, const std::string &description, const T &defaultValue)
Adds a new parameter to the module.
Definition: Module.h:560

◆ ~ECLLOMModule()

~ECLLOMModule ( )
virtual

Destructor.

Definition at line 42 of file eclLOMModule.cc.

43{
44
45}

Member Function Documentation

◆ beginRun()

void beginRun ( void  )
overridevirtual

begin run.

Reimplemented from Module.

Definition at line 95 of file eclLOMModule.cc.

96{
97}

◆ calculate_amplitudes()

void calculate_amplitudes ( )
private

Calculates amplitude [GeV] in an event for each sector.

Definition at line 344 of file eclLOMModule.cc.

345{
346 for (int iSample = 0; iSample < m_NSamples; iSample++) {
347 for (int isector = 0; isector < 16; isector++) {
348 if (m_FE_Waveform_10ns[isector][iSample] > m_FE_Amplitude[isector]) m_FE_Amplitude[isector] = m_FE_Waveform_10ns[isector][iSample];
349 if (m_FESum_Waveform_10ns[isector][iSample] > m_FESum_Amplitude[isector]) m_FESum_Amplitude[isector] =
350 m_FESum_Waveform_10ns[isector][iSample];
351 if (m_BE_Waveform_10ns[isector][iSample] > m_BE_Amplitude[isector]) m_BE_Amplitude[isector] = m_BE_Waveform_10ns[isector][iSample];
352 if (m_BESum_Waveform_10ns[isector][iSample] > m_BESum_Amplitude[isector]) m_BESum_Amplitude[isector] =
353 m_BESum_Waveform_10ns[isector][iSample];
354 }
355 }
356 for (int i = 0; i < 16; i++) {
359 m_FESum_MaxId = i;
360 }
363 m_BESum_MaxId = i;
364 }
365 if (m_FE_Amplitude[i] > 0.5) m_h2FEAmp->Fill(i, m_FE_Amplitude[i]);
366 if (m_BE_Amplitude[i] > 0.5) m_h2BEAmp->Fill(i, m_BE_Amplitude[i]);
367
368 if (m_FE_Amplitude[i] > m_thresholdFE) m_h1FEHits->Fill(i);
369 if (m_BE_Amplitude[i] > m_thresholdBE) m_h1BEHits->Fill(i);
370 }
371}
double m_FESum_MaxAmp
Maximum runing sum amplitude in an event for Forward endcap.
Definition: eclLOMModule.h:134
int m_BESum_MaxId
Id of a sector with maximum aplitude in Backward endcap.
Definition: eclLOMModule.h:137
TH2D * m_h2BEAmp
Store sectors amplitudes for Backward endcap over all events.
Definition: eclLOMModule.h:143
TH2D * m_h2FEAmp
Store sectors amplitudes for Forward endcap over all events.
Definition: eclLOMModule.h:142
int m_NSamples
m_NSamples=631, number of samples for 10ns sampling.
Definition: eclLOMModule.h:150
double m_BESum_MaxAmp
Maximum runing sum amplitude in an event for Backward endcap.
Definition: eclLOMModule.h:135
int m_FESum_MaxId
Id of a sector with maximum aplitude in Forward endcap.
Definition: eclLOMModule.h:136
TH1D * m_h1BEHits
Store number of events when Backward sector i has signal exceeding Bha-Bha threshold over all events.
Definition: eclLOMModule.h:144
double m_BE_Waveform_10ns[16][631]
Waveforms with 10ns sampling for Backward Endcap sectors.
Definition: eclLOMModule.h:151
double m_FESum_Amplitude[16]
Calculated amplitudes in running sums of Forward Endcap.
Definition: eclLOMModule.h:131
TH1D * m_h1FEHits
Store number of events when Forward sector i has signal exceeding Bha-Bha threshold over all events.
Definition: eclLOMModule.h:145
double m_BESum_Amplitude[16]
Calculated amplitudes in running sums of Backward Endcap.
Definition: eclLOMModule.h:130
double m_FESum_Waveform_10ns[16][631]
Running sum's waveforms with 10ns sampling for Forward Endcap sectors.
Definition: eclLOMModule.h:154
double m_BESum_Waveform_10ns[16][631]
Running sum's waveforms with 10ns sampling for Backward Endcap sectors.
Definition: eclLOMModule.h:153
double m_FE_Amplitude[16]
Calculated amplitudes in sectors of Forward Endcap.
Definition: eclLOMModule.h:129
double m_BE_Amplitude[16]
Calculated amplitudes in sectors of Backward Endcap.
Definition: eclLOMModule.h:128
double m_FE_Waveform_10ns[16][631]
Waveforms with 10ns sampling for Forward Endcap sectors.
Definition: eclLOMModule.h:152

◆ calculate_BE_quality()

bool calculate_BE_quality ( int  iSample)
private

Return Quality (topology) flag at sample point, iSample, for Backward Endcap.

Definition at line 255 of file eclLOMModule.cc.

256{
257 int nhit = 0;
258 int First = 0;
259 // calculate quality signal for backward endcap
260 for (int iBESector = 0; iBESector < 16; iBESector++) {
261 if (m_BEQual_Discr[iBESector][iSample]) {
262 nhit++;
263 if (nhit == 1) First = iBESector;
264 if (nhit == 2 && !((iBESector + 1) % 16 == First || (First + 1) % 16 == iBESector)) return (false);
265 if (nhit >= 3) return (false);
266 }
267 }
268 return (true);
269}
bool m_BEQual_Discr[16][631]
Discriminators values for Quality signal of Backward Endcap.
Definition: eclLOMModule.h:158

◆ calculate_coincidence()

void calculate_coincidence ( int  iSample)
private

Calculates Coincidence Matrix at sample point, iSample.

Performs logical multiplication of disciminators signals for each sector (16x16 matrix). Should be called successively on iSample.

Definition at line 286 of file eclLOMModule.cc.

287{
288 for (int iFESector = 0; iFESector < 16; iFESector++) {
289 for (int iBESector = 0; iBESector < 16; iBESector++) {
290
291 if (m_FE_Waveform_10ns[iFESector][iSample] > m_thresholdFE && m_BE_Waveform_10ns[iBESector][iSample] > m_thresholdBE) {
292 if (m_CoincidenceMatrix[iFESector][iBESector] == 0) m_CoincidenceCounterMatrix[iFESector][iBESector]++;
293 m_CoincidenceMatrix[iFESector][iBESector]++;
294 } else {
295 m_CoincidenceMatrix[iFESector][iBESector] = 0;
296 }
297
298 if (m_FESum_Discr[iFESector][iSample] && m_BESum_Discr[iBESector][iSample]) {
299 if (m_SumCoincidenceMatrix[iFESector][iBESector] == 0) m_SumCoincidenceCounterMatrix[iFESector][iBESector]++;
300 m_SumCoincidenceMatrix[iFESector][iBESector]++;
301 }
302 m_SumCoincidenceMatrix[iFESector][iBESector] = 0;
303 }
304 }
305}
bool m_FESum_Discr[16][631]
Discriminators values for running sums of Forward Endcap.
Definition: eclLOMModule.h:155
int m_SumCoincidenceMatrix[16][16]
Stores current coincidence duration [in samples] between runnig sums discriminators in i:j sectors (F...
Definition: eclLOMModule.h:162
int m_CoincidenceMatrix[16][16]
Stores current coincidence duration [in samples] between waveforms exceeding threshold in i:j sectors...
Definition: eclLOMModule.h:161
bool m_BESum_Discr[16][631]
Discriminators values for running sums of Backward Endcap.
Definition: eclLOMModule.h:156

◆ calculate_discr_output()

void calculate_discr_output ( )
private

Transforms waveforms into discriminators output.

Calculates running sums (energy deposition in two consecutive sectors) for endcaps. Unit output is emmited for &DiscrTime [ns] when signal exceeds given threshold. Also calculates and substracts pedestals, and linearly interpolates waveforms from 100ns sampling interval to 10ns.

Definition at line 198 of file eclLOMModule.cc.

199{
200 for (int iSector = 0; iSector < 16; iSector++) { // Calculating pedestals
201 for (int iSample = 15; iSample < 36; iSample++) {
202 m_BE_Pedal[iSector] += m_BE_Waveform_100ns[iSector][iSample] / 20;
203 m_FE_Pedal[iSector] += m_FE_Waveform_100ns[iSector][iSample] / 20;
204 }
205 }
206 double dAdT; // convert 100 ns signal to 10 ns
207 for (int iSector = 0; iSector < 16; iSector++) { // Linear interpolation from 100ns to 10ns
208 for (int iSample = 0; iSample < 63; iSample++) {
209 // forward
210 dAdT = (m_FE_Waveform_100ns[iSector][iSample + 1] - m_FE_Waveform_100ns[iSector][iSample]) / 10.0;
211 m_FE_Waveform_100ns[iSector][iSample] -= m_FE_Pedal[iSector]; //remove pedestals
212 for (int j = 0; j < 10; j++) m_FE_Waveform_10ns[iSector][iSample * 10 + j] = m_FE_Waveform_100ns[iSector][iSample] + j * dAdT;
213 m_FE_Waveform_10ns[iSector][630] = m_FE_Waveform_100ns[iSector][63] - m_FE_Pedal[iSector];
214 //backward
215 dAdT = (m_BE_Waveform_100ns[iSector][iSample + 1] - m_BE_Waveform_100ns[iSector][iSample]) / 10.0;
216 m_BE_Waveform_100ns[iSector][iSample] -= m_BE_Pedal[iSector];
217 for (int j = 0; j < 10; j++) m_BE_Waveform_10ns[iSector][iSample * 10 + j] = m_BE_Waveform_100ns[iSector][iSample] + j * dAdT;
218 m_BE_Waveform_10ns[iSector][630] = m_BE_Waveform_100ns[iSector][63] - m_BE_Pedal[iSector];
219 }
220 }
221 // calculate running sums for 10ns signal
222 int TimeOfDiscr = int(m_discrTime / 10); //discriminator duration in samples
223 for (int iSector = 0; iSector < 16; iSector++) {
224 for (int iSample = 1; iSample < m_NSamples; iSample++) {
225 int iNextSector = (iSector + 1) % 16;
226 m_BESum_Waveform_10ns[iSector][iSample] = m_BE_Waveform_10ns[iSector][iSample] + m_BE_Waveform_10ns[iNextSector][iSample];
227 m_FESum_Waveform_10ns[iSector][iSample] = m_FE_Waveform_10ns[iSector][iSample] + m_FE_Waveform_10ns[iNextSector][iSample];
228
229 //filling Discriminators' signals
230 if (m_FESum_Waveform_10ns[iSector][iSample] > m_thresholdFE && m_FESum_Discr[iSector][iSample] == 0) {
231 for (int j = iSample; j < iSample + TimeOfDiscr; j++) {
232 if (j < m_NSamples) m_FESum_Discr[iSector][j] = 1;
233 }
234 }
235 if (m_BESum_Waveform_10ns[iSector][iSample] > m_thresholdBE && m_BESum_Discr[iSector][iSample] == 0) {
236 for (int j = iSample; j < iSample + TimeOfDiscr; j++) {
237 if (j < m_NSamples) m_BESum_Discr[iSector][j] = 1;
238 }
239 }
240 if (m_FE_Waveform_10ns[iSector][iSample] > m_thresholdBkg && m_FEQual_Discr[iSector][iSample] == 0) {
241 for (int j = iSample; j < iSample + TimeOfDiscr; j++) {
242 if (j < m_NSamples) m_FEQual_Discr[iSector][j] = 1;
243 }
244 }
245 if (m_BE_Waveform_10ns[iSector][iSample] > m_thresholdBkg && m_BEQual_Discr[iSector][iSample] == 0) {
246 for (int j = iSample; j < iSample + TimeOfDiscr; j++) {
247 if (j < m_NSamples) m_BEQual_Discr[iSector][j] = 1;
248 }
249 }
250 }
251 }
252}
double m_FE_Waveform_100ns[16][64]
Waveforms with 100ns sampling for Forward Endcap sectors.
Definition: eclLOMModule.h:110
bool m_FEQual_Discr[16][631]
Discriminators values for Quality signal of Forward Endcap.
Definition: eclLOMModule.h:157
double m_BE_Waveform_100ns[16][64]
Waveforms with 100ns sampling for Backward Endcap sectors.
Definition: eclLOMModule.h:109
double m_FE_Pedal[16]
Calculated pedestal values for Forward Endcap.
Definition: eclLOMModule.h:133
double m_BE_Pedal[16]
Calculated pedestal values for Backward Endcap.
Definition: eclLOMModule.h:132

◆ calculate_FE_quality()

bool calculate_FE_quality ( int  iSample)
private

Return Quality (topology) flag at sample point, iSample, for Forward Endcap.

Definition at line 271 of file eclLOMModule.cc.

272{
273 int nhit = 0;
274 int First = 0;
275 for (int iFESector = 0; iFESector < 16; iFESector++) {
276 if (m_FEQual_Discr[iFESector][iSample]) {
277 nhit++;
278 if (nhit == 1) First = iFESector;
279 if (nhit == 2 && !((iFESector + 1) % 16 == First || (First + 1) % 16 == iFESector)) return (false);
280 if (nhit >= 3) return (false);
281 }
282 }
283 return (true);
284}

◆ clear_lom_data()

void clear_lom_data ( )
private

Clear internal data.

Definition at line 308 of file eclLOMModule.cc.

309{
310 for (int isector = 0; isector < 16; isector++) {
311 for (int iSample = 0; iSample < 64; iSample++) {
312 m_BE_Waveform_100ns[isector][iSample] = 0;
313 m_FE_Waveform_100ns[isector][iSample] = 0;
314 }
315 for (int iSample = 0; iSample < m_NSamples; iSample++) {
316 m_BE_Waveform_10ns[isector][iSample] = 0;
317 m_FE_Waveform_10ns[isector][iSample] = 0;
318 m_BESum_Waveform_10ns[isector][iSample] = 0;
319 m_FESum_Waveform_10ns[isector][iSample] = 0;
320 m_FESum_Discr[isector][iSample] = 0;
321 m_BESum_Discr[isector][iSample] = 0;
322 m_FEQual_Discr[isector][iSample] = 0;
323 m_BEQual_Discr[isector][iSample] = 0;
324 }
325 m_BE_Pedal[isector] = 0;
326 m_FE_Pedal[isector] = 0;
327 m_BE_Amplitude[isector] = 0;
328 m_FE_Amplitude[isector] = 0;
329 m_BESum_Amplitude[isector] = 0;
330 m_FESum_Amplitude[isector] = 0;
331 for (int jsector = 0; jsector < 16; jsector++) {
332 m_CoincidenceMatrix[isector][jsector] = 0;
333 m_SumCoincidenceMatrix[isector][jsector] = 0;
334 }
335 }
336 m_isBhabha = 0;
337 m_BhNum = 0;
338 m_FESum_MaxAmp = 0;
339 m_BESum_MaxAmp = 0;
340 m_FESum_MaxId = -1;
341 m_BESum_MaxId = -1;
342}
int m_BhNum
Number of Bha-bha signals in an event.
Definition: eclLOMModule.h:127
bool m_isBhabha
Bha-bha signal for an event.
Definition: eclLOMModule.h:125

◆ clone()

std::shared_ptr< PathElement > clone ( ) const
overridevirtualinherited

Create an independent copy of this module.

Note that parameters are shared, so changing them on a cloned module will also affect the original module.

Implements PathElement.

Definition at line 179 of file Module.cc.

180{
182 newModule->m_moduleParamList.setParameters(getParamList());
183 newModule->setName(getName());
184 newModule->m_package = m_package;
185 newModule->m_propertyFlags = m_propertyFlags;
186 newModule->m_logConfig = m_logConfig;
187 newModule->m_conditions = m_conditions;
188
189 return newModule;
190}
std::shared_ptr< Module > registerModule(const std::string &moduleName, std::string sharedLibPath="") noexcept(false)
Creates an instance of a module and registers it to the ModuleManager.
static ModuleManager & Instance()
Exception is thrown if the requested module could not be created by the ModuleManager.
const ModuleParamList & getParamList() const
Return module param list.
Definition: Module.h:363
const std::string & getName() const
Returns the name of the module.
Definition: Module.h:187
const std::string & getType() const
Returns the type of the module (i.e.
Definition: Module.cc:41
unsigned int m_propertyFlags
The properties of the module as bitwise or (with |) of EModulePropFlags.
Definition: Module.h:512
LogConfig m_logConfig
The log system configuration of the module.
Definition: Module.h:514
std::vector< ModuleCondition > m_conditions
Module condition, only non-null if set.
Definition: Module.h:521
std::string m_package
Package this module is found in (may be empty).
Definition: Module.h:510
std::shared_ptr< Module > ModulePtr
Defines a pointer to a module object as a boost shared pointer.
Definition: Module.h:43

◆ def_beginRun()

virtual void def_beginRun ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function beginRun() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 426 of file Module.h.

426{ beginRun(); }
virtual void beginRun()
Called when entering a new run.
Definition: Module.h:147

◆ def_endRun()

virtual void def_endRun ( )
inlineprotectedvirtualinherited

This method can receive that the current run ends as a call from the Python side.

For regular C++-Modules that forwards the call to the regular endRun() method.

Reimplemented in PyModule.

Definition at line 439 of file Module.h.

439{ endRun(); }
virtual void endRun()
This method is called if the current run ends.
Definition: Module.h:166

◆ def_event()

virtual void def_event ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function event() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 432 of file Module.h.

432{ event(); }
virtual void event()
This method is the core of the module.
Definition: Module.h:157

◆ def_initialize()

virtual void def_initialize ( )
inlineprotectedvirtualinherited

Wrappers to make the methods without "def_" prefix callable from Python.

Overridden in PyModule. Wrapper method for the virtual function initialize() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 420 of file Module.h.

420{ initialize(); }
virtual void initialize()
Initialize the Module.
Definition: Module.h:109

◆ def_terminate()

virtual void def_terminate ( )
inlineprotectedvirtualinherited

Wrapper method for the virtual function terminate() that has the implementation to be used in a call from Python.

Reimplemented in PyModule.

Definition at line 445 of file Module.h.

445{ terminate(); }
virtual void terminate()
This method is called at the end of the event processing.
Definition: Module.h:176

◆ endRun()

void endRun ( void  )
overridevirtual

end run.

Reimplemented from Module.

Definition at line 126 of file eclLOMModule.cc.

127{
128}

◆ evalCondition()

bool evalCondition ( ) const
inherited

If at least one condition was set, it is evaluated and true returned if at least one condition returns true.

If no condition or result value was defined, the method returns false. Otherwise, the condition is evaluated and true returned, if at least one condition returns true. To speed up the evaluation, the condition strings were already parsed in the method if_value().

Returns
True if at least one condition and return value exists and at least one condition expression was evaluated to true.

Definition at line 96 of file Module.cc.

97{
98 if (m_conditions.empty()) return false;
99
100 //okay, a condition was set for this Module...
101 if (!m_hasReturnValue) {
102 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
103 }
104
105 for (const auto& condition : m_conditions) {
106 if (condition.evaluate(m_returnValue)) {
107 return true;
108 }
109 }
110 return false;
111}
int m_returnValue
The return value.
Definition: Module.h:519
bool m_hasReturnValue
True, if the return value is set.
Definition: Module.h:518

◆ event()

void event ( void  )
overridevirtual

event per event.

Reimplemented from Module.

Definition at line 99 of file eclLOMModule.cc.

100{
106 // LOM logic
107 for (int iSample = 300; iSample < 500; iSample++) { //300-500 window where BhaBha is expected
110 calculate_coincidence(iSample);
111 // generate bhabha signal
112 for (int iFESector = 0; iFESector < 16; iFESector++) {
113 // check opposite running sum:
114 int iBESector = (iFESector + 8) % 16;
115 if (m_SumCoincidenceMatrix[iFESector][iBESector] == 1 && m_isBhabhaPatternFE && m_isBhabhaPatternBE) {
116 //coinsidence at first tick
117 m_isBhabha = true;
118 m_BhNum++;
119 }
120 }
121 }
122 m_testtree->Fill();
123 m_evtNum++;
124}
bool m_isBhabhaPatternBE
Quality signal for Backward endcap.
Definition: eclLOMModule.h:160
void calculate_discr_output()
Transforms waveforms into discriminators output.
bool calculate_BE_quality(int iSample)
Return Quality (topology) flag at sample point, iSample, for Backward Endcap.
void get_MCparticles()
Get MC particles parameters.
void get_waveforms()
Get ECL waveforms comdined into sectors.
void clear_lom_data()
Clear internal data.
TTree * m_testtree
Tree to store output.
Definition: eclLOMModule.h:149
bool m_isBhabhaPatternFE
Quality signal for Forward endcap.
Definition: eclLOMModule.h:159
bool calculate_FE_quality(int iSample)
Return Quality (topology) flag at sample point, iSample, for Forward Endcap.
void calculate_coincidence(int iSample)
Calculates Coincidence Matrix at sample point, iSample.
void calculate_amplitudes()
Calculates amplitude [GeV] in an event for each sector.

◆ exposePythonAPI()

void exposePythonAPI ( )
staticinherited

Exposes methods of the Module class to Python.

Definition at line 325 of file Module.cc.

326{
327 // to avoid confusion between std::arg and boost::python::arg we want a shorthand namespace as well
328 namespace bp = boost::python;
329
330 docstring_options options(true, true, false); //userdef, py sigs, c++ sigs
331
332 void (Module::*setReturnValueInt)(int) = &Module::setReturnValue;
333
334 enum_<Module::EAfterConditionPath>("AfterConditionPath",
335 R"(Determines execution behaviour after a conditional path has been executed:
336
337.. attribute:: END
338
339 End processing of this path after the conditional path. (this is the default for if_value() etc.)
340
341.. attribute:: CONTINUE
342
343 After the conditional path, resume execution after this module.)")
344 .value("END", Module::EAfterConditionPath::c_End)
345 .value("CONTINUE", Module::EAfterConditionPath::c_Continue)
346 ;
347
348 /* Do not change the names of >, <, ... we use them to serialize conditional pathes */
349 enum_<Belle2::ModuleCondition::EConditionOperators>("ConditionOperator")
356 ;
357
358 enum_<Module::EModulePropFlags>("ModulePropFlags",
359 R"(Flags to indicate certain low-level features of modules, see :func:`Module.set_property_flags()`, :func:`Module.has_properties()`. Most useful flags are:
360
361.. attribute:: PARALLELPROCESSINGCERTIFIED
362
363 This module can be run in parallel processing mode safely (All I/O must be done through the data store, in particular, the module must not write any files.)
364
365.. attribute:: HISTOGRAMMANAGER
366
367 This module is used to manage histograms accumulated by other modules
368
369.. attribute:: TERMINATEINALLPROCESSES
370
371 When using parallel processing, call this module's terminate() function in all processes. This will also ensure that there is exactly one process (single-core if no parallel modules found) or at least one input, one main and one output process.
372)")
373 .value("INPUT", Module::EModulePropFlags::c_Input)
374 .value("OUTPUT", Module::EModulePropFlags::c_Output)
375 .value("PARALLELPROCESSINGCERTIFIED", Module::EModulePropFlags::c_ParallelProcessingCertified)
376 .value("HISTOGRAMMANAGER", Module::EModulePropFlags::c_HistogramManager)
377 .value("INTERNALSERIALIZER", Module::EModulePropFlags::c_InternalSerializer)
378 .value("TERMINATEINALLPROCESSES", Module::EModulePropFlags::c_TerminateInAllProcesses)
379 ;
380
381 //Python class definition
382 class_<Module, PyModule> module("Module", R"(
383Base class for Modules.
384
385A module is the smallest building block of the framework.
386A typical event processing chain consists of a Path containing
387modules. By inheriting from this base class, various types of
388modules can be created. To use a module, please refer to
389:func:`Path.add_module()`. A list of modules is available by running
390``basf2 -m`` or ``basf2 -m package``, detailed information on parameters is
391given by e.g. ``basf2 -m RootInput``.
392
393The 'Module Development' section in the manual provides detailed information
394on how to create modules, setting parameters, or using return values/conditions:
395https://confluence.desy.de/display/BI/Software+Basf2manual#Module_Development
396
397)");
398 module
399 .def("__str__", &Module::getPathString)
400 .def("name", &Module::getName, return_value_policy<copy_const_reference>(),
401 "Returns the name of the module. Can be changed via :func:`set_name() <Module.set_name()>`, use :func:`type() <Module.type()>` for identifying a particular module class.")
402 .def("type", &Module::getType, return_value_policy<copy_const_reference>(),
403 "Returns the type of the module (i.e. class name minus 'Module')")
404 .def("set_name", &Module::setName, args("name"), R"(
405Set custom name, e.g. to distinguish multiple modules of the same type.
406
407>>> path.add_module('EventInfoSetter')
408>>> ro = path.add_module('RootOutput', branchNames=['EventMetaData'])
409>>> ro.set_name('RootOutput_metadata_only')
410>>> print(path)
411[EventInfoSetter -> RootOutput_metadata_only]
412
413)")
414 .def("description", &Module::getDescription, return_value_policy<copy_const_reference>(),
415 "Returns the description of this module.")
416 .def("package", &Module::getPackage, return_value_policy<copy_const_reference>(),
417 "Returns the package this module belongs to.")
418 .def("available_params", &_getParamInfoListPython,
419 "Return list of all module parameters as `ModuleParamInfo` instances")
420 .def("has_properties", &Module::hasProperties, (bp::arg("properties")),
421 R"DOCSTRING(Allows to check if the module has the given properties out of `ModulePropFlags` set.
422
423>>> if module.has_properties(ModulePropFlags.PARALLELPROCESSINGCERTIFIED):
424>>> ...
425
426Parameters:
427 properties (int): bitmask of `ModulePropFlags` to check for.
428)DOCSTRING")
429 .def("set_property_flags", &Module::setPropertyFlags, args("property_mask"),
430 "Set module properties in the form of an OR combination of `ModulePropFlags`.");
431 {
432 // python signature is too crowded, make ourselves
433 docstring_options subOptions(true, false, false); //userdef, py sigs, c++ sigs
434 module
435 .def("if_value", &Module::if_value,
436 (bp::arg("expression"), bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
437 R"DOCSTRING(if_value(expression, condition_path, after_condition_path=AfterConditionPath.END)
438
439Sets a conditional sub path which will be executed after this
440module if the return value set in the module passes the given ``expression``.
441
442Modules can define a return value (int or bool) using ``setReturnValue()``,
443which can be used in the steering file to split the Path based on this value, for example
444
445>>> module_with_condition.if_value("<1", another_path)
446
447In case the return value of the ``module_with_condition`` for a given event is
448less than 1, the execution will be diverted into ``another_path`` for this event.
449
450You could for example set a special return value if an error occurs, and divert
451the execution into a path containing :b2:mod:`RootOutput` if it is found;
452saving only the data producing/produced by the error.
453
454After a conditional path has executed, basf2 will by default stop processing
455the path for this event. This behaviour can be changed by setting the
456``after_condition_path`` argument.
457
458Parameters:
459 expression (str): Expression to determine if the conditional path should be executed.
460 This should be one of the comparison operators ``<``, ``>``, ``<=``,
461 ``>=``, ``==``, or ``!=`` followed by a numerical value for the return value
462 condition_path (Path): path to execute in case the expression is fulfilled
463 after_condition_path (AfterConditionPath): What to do once the ``condition_path`` has been executed.
464)DOCSTRING")
465 .def("if_false", &Module::if_false,
466 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
467 R"DOC(if_false(condition_path, after_condition_path=AfterConditionPath.END)
468
469Sets a conditional sub path which will be executed after this module if
470the return value of the module evaluates to False. This is equivalent to
471calling `if_value` with ``expression=\"<1\"``)DOC")
472 .def("if_true", &Module::if_true,
473 (bp::arg("condition_path"), bp::arg("after_condition_path")= Module::EAfterConditionPath::c_End),
474 R"DOC(if_true(condition_path, after_condition_path=AfterConditionPath.END)
475
476Sets a conditional sub path which will be executed after this module if
477the return value of the module evaluates to True. It is equivalent to
478calling `if_value` with ``expression=\">=1\"``)DOC");
479 }
480 module
481 .def("has_condition", &Module::hasCondition,
482 "Return true if a conditional path has been set for this module "
483 "using `if_value`, `if_true` or `if_false`")
484 .def("get_all_condition_paths", &_getAllConditionPathsPython,
485 "Return a list of all conditional paths set for this module using "
486 "`if_value`, `if_true` or `if_false`")
487 .def("get_all_conditions", &_getAllConditionsPython,
488 "Return a list of all conditional path expressions set for this module using "
489 "`if_value`, `if_true` or `if_false`")
490 .add_property("logging", make_function(&Module::getLogConfig, return_value_policy<reference_existing_object>()),
@ c_GE
Greater or equal than: ">=".
@ c_SE
Smaller or equal than: "<=".
@ c_GT
Greater than: ">"
@ c_NE
Not equal: "!=".
@ c_EQ
Equal: "=" or "=="
@ c_ST
Smaller than: "<"
Base class for Modules.
Definition: Module.h:72
LogConfig & getLogConfig()
Returns the log system configuration.
Definition: Module.h:225
void if_value(const std::string &expression, const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
Add a condition to the module.
Definition: Module.cc:79
void setPropertyFlags(unsigned int propertyFlags)
Sets the flags for the module properties.
Definition: Module.cc:208
void if_true(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to set the condition of the module.
Definition: Module.cc:90
void setReturnValue(int value)
Sets the return value for this module as integer.
Definition: Module.cc:220
void setLogConfig(const LogConfig &logConfig)
Set the log system configuration.
Definition: Module.h:230
const std::string & getDescription() const
Returns the description of the module.
Definition: Module.h:202
void if_false(const std::shared_ptr< Path > &path, EAfterConditionPath afterConditionPath=EAfterConditionPath::c_End)
A simplified version to add a condition to the module.
Definition: Module.cc:85
bool hasCondition() const
Returns true if at least one condition was set for the module.
Definition: Module.h:311
const std::string & getPackage() const
Returns the package this module is in.
Definition: Module.h:197
void setName(const std::string &name)
Set the name of the module.
Definition: Module.h:214
bool hasProperties(unsigned int propertyFlags) const
Returns true if all specified property flags are available in this module.
Definition: Module.cc:160
std::string getPathString() const override
return the module name.
Definition: Module.cc:192

◆ get_MCparticles()

void get_MCparticles ( )
private

Get MC particles parameters.

Requires MCParticle to be stored.

Definition at line 146 of file eclLOMModule.cc.

147{
148 int nm_MCParticles = m_MCParticles.getEntries();
149 if (nm_MCParticles >= 4) {
150 for (int ind = 2; ind < 4; ind++) {
151 m_mcen[ind - 2] = m_MCParticles[ind]->getEnergy();
152 m_mcth[ind - 2] = m_MCParticles[ind]->getMomentum().Theta();
153 m_mcph[ind - 2] = m_MCParticles[ind]->getMomentum().Phi();
154 }
155
156 ROOT::Math::PxPyPzEVector SummP(m_MCParticles[0]->get4Vector() + m_MCParticles[1]->get4Vector());
157 ROOT::Math::XYZVector Boost_backV = SummP.BoostToCM();
158 ROOT::Math::PxPyPzEVector ComP[2];
159 ComP[0] = m_MCParticles[2]->get4Vector();
160 ComP[1] = m_MCParticles[3]->get4Vector();
161 ComP[0] = ROOT::Math::Boost(Boost_backV) * ComP[0];
162 ComP[1] = ROOT::Math::Boost(Boost_backV) * ComP[1];
163 for (int ind = 0; ind < 2; ind++) {
164 m_com_en[ind] = ComP[ind].E();
165 m_com_th[ind] = ComP[ind].Theta();
166 m_com_ph[ind] = ComP[ind].Phi();
167 }
168 }
169}
double m_mcph[2]
Monte Carlo phi of the final state particles in main frame.
Definition: eclLOMModule.h:113
double m_com_th[2]
Monte Carlo thetha of the final state particles in CMS frame.
Definition: eclLOMModule.h:115
double m_mcth[2]
Monte Carlo thetha of the final state particles in main frame.
Definition: eclLOMModule.h:112
double m_mcen[2]
Monte Carlo energy of the final state particles in main frame.
Definition: eclLOMModule.h:111
double m_com_en[2]
Monte Carlo energy of the final state particles in CMS frame.
Definition: eclLOMModule.h:114
StoreArray< MCParticle > m_MCParticles
MC particles.
Definition: eclLOMModule.h:119
double m_com_ph[2]
Monte Carlo phi of the final state particles in CMS frame.
Definition: eclLOMModule.h:116
int getEntries() const
Get the number of objects in the array.
Definition: StoreArray.h:216

◆ get_waveforms()

void get_waveforms ( )
private

Get ECL waveforms comdined into sectors.

For both endcaps there are 16 sectors. Requires TRGECLWaveform to be stored.

Definition at line 171 of file eclLOMModule.cc.

172{
173 //int n_trg_digi = TrgEclDigiArray.getEntries();
174 int n_trg_wf = m_TrgEclWaveforms.getEntries();
175 // calculate signals of endcap sectors for LOM input
176 // as sum of corresponding TC signals
177 for (int i = 0; i < n_trg_wf; i++) {
178 const TRGECLWaveform* TCWaveform = m_TrgEclWaveforms[i];
179 //int m_tcid = TCWaveform->getTCID();
180 int tc_theta_id = TCWaveform->getThetaID(); //FE:1,2,3 BE:16,17 Checked for rel 4 02 08
181 int tc_phi_id = TCWaveform->getPhiID(); // 1 - 32
182 double m_wf[64];
183 TCWaveform->fillWaveform(m_wf);
184
185 int iSectorIndex = (tc_phi_id - 1) / 2; // from 0 to 15
186 if (tc_theta_id == 1 && !m_includeInnerFE) continue;
187
188 for (int iSample = 0; iSample < 64; iSample++) {
189 if (tc_theta_id <= 3) { //Forward Endcap
190 m_FE_Waveform_100ns[iSectorIndex][iSample] += m_wf[iSample];
191 } else { // Backward Endcap
192 if (tc_theta_id == 16 || tc_theta_id == 17) m_BE_Waveform_100ns[iSectorIndex][iSample] += m_wf[iSample];
193 }
194 }
195 }
196}
StoreArray< TRGECLWaveform > m_TrgEclWaveforms
Trigger waveforms.
Definition: eclLOMModule.h:122
Digitize result.

◆ getAfterConditionPath()

Module::EAfterConditionPath getAfterConditionPath ( ) const
inherited

What to do after the conditional path is finished.

(defaults to c_End if no condition is set)

Definition at line 133 of file Module.cc.

134{
135 if (m_conditions.empty()) return EAfterConditionPath::c_End;
136
137 //okay, a condition was set for this Module...
138 if (!m_hasReturnValue) {
139 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
140 }
141
142 for (const auto& condition : m_conditions) {
143 if (condition.evaluate(m_returnValue)) {
144 return condition.getAfterConditionPath();
145 }
146 }
147
148 return EAfterConditionPath::c_End;
149}

◆ getAllConditionPaths()

std::vector< std::shared_ptr< Path > > getAllConditionPaths ( ) const
inherited

Return all condition paths currently set (no matter if the condition is true or not).

Definition at line 150 of file Module.cc.

151{
152 std::vector<std::shared_ptr<Path>> allConditionPaths;
153 for (const auto& condition : m_conditions) {
154 allConditionPaths.push_back(condition.getPath());
155 }
156
157 return allConditionPaths;
158}

◆ getAllConditions()

const std::vector< ModuleCondition > & getAllConditions ( ) const
inlineinherited

Return all set conditions for this module.

Definition at line 324 of file Module.h.

325 {
326 return m_conditions;
327 }

◆ getCondition()

const ModuleCondition * getCondition ( ) const
inlineinherited

Return a pointer to the first condition (or nullptr, if none was set)

Definition at line 314 of file Module.h.

315 {
316 if (m_conditions.empty()) {
317 return nullptr;
318 } else {
319 return &m_conditions.front();
320 }
321 }

◆ getConditionPath()

std::shared_ptr< Path > getConditionPath ( ) const
inherited

Returns the path of the last true condition (if there is at least one, else reaturn a null pointer).


Definition at line 113 of file Module.cc.

114{
115 PathPtr p;
116 if (m_conditions.empty()) return p;
117
118 //okay, a condition was set for this Module...
119 if (!m_hasReturnValue) {
120 B2FATAL("A condition was set for '" << getName() << "', but the module did not set a return value!");
121 }
122
123 for (const auto& condition : m_conditions) {
124 if (condition.evaluate(m_returnValue)) {
125 return condition.getPath();
126 }
127 }
128
129 // if none of the conditions were true, return a null pointer.
130 return p;
131}
std::shared_ptr< Path > PathPtr
Defines a pointer to a path object as a boost shared pointer.
Definition: Path.h:35

◆ getDescription()

const std::string & getDescription ( ) const
inlineinherited

Returns the description of the module.

Definition at line 202 of file Module.h.

202{return m_description;}
std::string m_description
The description of the module.
Definition: Module.h:511

◆ getFileNames()

virtual std::vector< std::string > getFileNames ( bool  outputFiles)
inlinevirtualinherited

Return a list of output filenames for this modules.

This will be called when basf2 is run with "--dry-run" if the module has set either the c_Input or c_Output properties.

If the parameter outputFiles is false (for modules with c_Input) the list of input filenames should be returned (if any). If outputFiles is true (for modules with c_Output) the list of output files should be returned (if any).

If a module has sat both properties this member is called twice, once for each property.

The module should return the actual list of requested input or produced output filenames (including handling of input/output overrides) so that the grid system can handle input/output files correctly.

This function should return the same value when called multiple times. This is especially important when taking the input/output overrides from Environment as they get consumed when obtained so the finalized list of output files should be stored for subsequent calls.

Reimplemented in RootInputModule, StorageRootOutputModule, and RootOutputModule.

Definition at line 134 of file Module.h.

135 {
136 return std::vector<std::string>();
137 }

◆ getLogConfig()

LogConfig & getLogConfig ( )
inlineinherited

Returns the log system configuration.

Definition at line 225 of file Module.h.

225{return m_logConfig;}

◆ getModules()

std::list< ModulePtr > getModules ( ) const
inlineoverrideprivatevirtualinherited

no submodules, return empty list

Implements PathElement.

Definition at line 506 of file Module.h.

506{ return std::list<ModulePtr>(); }

◆ getName()

const std::string & getName ( ) const
inlineinherited

Returns the name of the module.

This can be changed via e.g. set_name() in the steering file to give more useful names if there is more than one module of the same type.

For identifying the type of a module, using getType() (or type() in Python) is recommended.

Definition at line 187 of file Module.h.

187{return m_name;}
std::string m_name
The name of the module, saved as a string (user-modifiable)
Definition: Module.h:508

◆ getPackage()

const std::string & getPackage ( ) const
inlineinherited

Returns the package this module is in.

Definition at line 197 of file Module.h.

197{return m_package;}

◆ getParamInfoListPython()

std::shared_ptr< boost::python::list > getParamInfoListPython ( ) const
inherited

Returns a python list of all parameters.

Each item in the list consists of the name of the parameter, a string describing its type, a python list of all default values and the description of the parameter.

Returns
A python list containing the parameters of this parameter list.

Definition at line 279 of file Module.cc.

280{
282}
std::shared_ptr< boost::python::list > getParamInfoListPython() const
Returns a python list of all parameters.
ModuleParamList m_moduleParamList
List storing and managing all parameter of the module.
Definition: Module.h:516

◆ getParamList()

const ModuleParamList & getParamList ( ) const
inlineinherited

Return module param list.

Definition at line 363 of file Module.h.

363{ return m_moduleParamList; }

◆ getPathString()

std::string getPathString ( ) const
overrideprivatevirtualinherited

return the module name.

Implements PathElement.

Definition at line 192 of file Module.cc.

193{
194
195 std::string output = getName();
196
197 for (const auto& condition : m_conditions) {
198 output += condition.getString();
199 }
200
201 return output;
202}

◆ getReturnValue()

int getReturnValue ( ) const
inlineinherited

Return the return value set by this module.

This value is only meaningful if hasReturnValue() is true

Definition at line 381 of file Module.h.

381{ return m_returnValue; }

◆ getType()

const std::string & getType ( ) const
inherited

Returns the type of the module (i.e.

class name minus 'Module')

Definition at line 41 of file Module.cc.

42{
43 if (m_type.empty())
44 B2FATAL("Module type not set for " << getName());
45 return m_type;
46}
std::string m_type
The type of the module, saved as a string.
Definition: Module.h:509

◆ hasCondition()

bool hasCondition ( ) const
inlineinherited

Returns true if at least one condition was set for the module.

Definition at line 311 of file Module.h.

311{ return not m_conditions.empty(); };

◆ hasProperties()

bool hasProperties ( unsigned int  propertyFlags) const
inherited

Returns true if all specified property flags are available in this module.

Parameters
propertyFlagsOred EModulePropFlags which should be compared with the module flags.

Definition at line 160 of file Module.cc.

161{
162 return (propertyFlags & m_propertyFlags) == propertyFlags;
163}

◆ hasReturnValue()

bool hasReturnValue ( ) const
inlineinherited

Return true if this module has a valid return value set.

Definition at line 378 of file Module.h.

378{ return m_hasReturnValue; }

◆ hasUnsetForcedParams()

bool hasUnsetForcedParams ( ) const
inherited

Returns true and prints error message if the module has unset parameters which the user has to set in the steering file.

Definition at line 166 of file Module.cc.

167{
169 std::string allMissing = "";
170 for (const auto& s : missing)
171 allMissing += s + " ";
172 if (!missing.empty())
173 B2ERROR("The following required parameters of Module '" << getName() << "' were not specified: " << allMissing <<
174 "\nPlease add them to your steering file.");
175 return !missing.empty();
176}
std::vector< std::string > getUnsetForcedParams() const
Returns list of unset parameters (if they are required to have a value.

◆ if_false()

void if_false ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression "<1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is false.
afterConditionPathWhat to do after executing 'path'.

Definition at line 85 of file Module.cc.

86{
87 if_value("<1", path, afterConditionPath);
88}

◆ if_true()

void if_true ( const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

A simplified version to set the condition of the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

It is equivalent to the if_value() method, using the expression ">=1". This method is meant to be used together with the setReturnValue(bool value) method.

Parameters
pathShared pointer to the Path which will be executed if the return value is true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 90 of file Module.cc.

91{
92 if_value(">=1", path, afterConditionPath);
93}

◆ if_value()

void if_value ( const std::string &  expression,
const std::shared_ptr< Path > &  path,
EAfterConditionPath  afterConditionPath = EAfterConditionPath::c_End 
)
inherited

Add a condition to the module.

Please note that successive calls of this function will add more than one condition to the module. If more than one condition results in true, only the last of them will be used.

See https://confluence.desy.de/display/BI/Software+ModCondTut or ModuleCondition for a description of the syntax.

Please be careful: Avoid creating cyclic paths, e.g. by linking a condition to a path which is processed before the path where this module is located in.

Parameters
expressionThe expression of the condition.
pathShared pointer to the Path which will be executed if the condition is evaluated to true.
afterConditionPathWhat to do after executing 'path'.

Definition at line 79 of file Module.cc.

80{
81 m_conditions.emplace_back(expression, path, afterConditionPath);
82}

◆ initialize()

void initialize ( void  )
overridevirtual

Initialize variables.

Reimplemented from Module.

Definition at line 47 of file eclLOMModule.cc.

48{
49 if (!(m_MCParticles.isRequired() && m_TrgEclWaveforms.isRequired())) {
50 //Fatal is not neccessary here as the storeArrays should just look
51 //empty if not registered but let's make sure everything is present
52 B2FATAL("Not all collections found, exiting processing");
53 }
54
55 m_testfile = new TFile(m_testFileName.c_str(), "RECREATE");
56 m_testtree = new TTree("lom_tree", "");
57
58 m_testtree->Branch("ev", &m_evtNum);
59 m_testtree->Branch("BE_amp[16]", m_BE_Amplitude, "BE_amp[16]/D");
60 m_testtree->Branch("FE_amp[16]", m_FE_Amplitude, "FE_amp[16]/D");
61 m_testtree->Branch("FESum_MaxAmp", &m_FESum_MaxAmp);
62 m_testtree->Branch("BESum_MaxAmp", &m_BESum_MaxAmp);
63 m_testtree->Branch("FESum_MaxId", &m_FESum_MaxId);
64 m_testtree->Branch("BESum_MaxId", &m_BESum_MaxId);
65 m_testtree->Branch("BE_Pedal[16]", m_BE_Pedal, "BE_Pedal[16]/D");
66 m_testtree->Branch("FE_Pedal[16]", m_FE_Pedal, "FE_Pedal[16]/D");
67
68 m_testtree->Branch("Bhabha", &m_isBhabha);
69 m_testtree->Branch("BhNum", &m_BhNum);
70
71 m_testtree->Branch("mc_en[2]", m_mcen, "mc_en[2]/D");
72 m_testtree->Branch("mc_th[2]", m_mcth, "mc_th[2]/D");
73 m_testtree->Branch("mc_ph[2]", m_mcph, "mc_ph[2]/D");
74
75 m_testtree->Branch("com_en[2]", m_com_en, "com_en[2]/D");
76 m_testtree->Branch("com_th[2]", m_com_th, "com_th[2]/D");
77 m_testtree->Branch("com_ph[2]", m_com_ph, "com_ph[2]/D");
78
79 if (m_saveSignal) {
80 m_testtree->Branch("BE_wf[16][64]", m_BE_Waveform_100ns, "BE_wf[16][64]/D");
81 m_testtree->Branch("FE_wf[16][64]", m_FE_Waveform_100ns, "FE_wf[16][64]/D");
82 }
83
84 //additional histograms. Represent data over the whole dataset:
85 m_h2Coin = new TH2D("Coins", "Coincidence Matrix", 16, 0, 16, 16, 0, 16);
86 m_h2SumCoin = new TH2D("SumCoins", "Sum Coincidence Matrix", 16, 0, 16, 16, 0, 16);
87 m_h2FEAmp = new TH2D("FE_AmpId", "", 16, 0, 16, 100, 0, 8);
88 m_h2BEAmp = new TH2D("BE_AmpId", "", 16, 0, 16, 100, 0, 8);
89 m_h1BEHits = new TH1D("BE_Fired", "", 16, 0, 16);
90 m_h1FEHits = new TH1D("FE_Fired", "", 16, 0, 16);
91
92 m_NSamples = 631;
93}
TH2D * m_h2SumCoin
Store number of coincedencies in running sums for i:j sectors (Forward:Backward) over all events.
Definition: eclLOMModule.h:141
TFile * m_testfile
File to save output.
Definition: eclLOMModule.h:148
TH2D * m_h2Coin
Store number of coincedencies for i:j sectors (Forward:Backward) over all events.
Definition: eclLOMModule.h:140
bool isRequired(const std::string &name="")
Ensure this array/object has been registered previously.

◆ setAbortLevel()

void setAbortLevel ( int  abortLevel)
inherited

Configure the abort log level.

Definition at line 67 of file Module.cc.

68{
69 m_logConfig.setAbortLevel(static_cast<LogConfig::ELogLevel>(abortLevel));
70}
ELogLevel
Definition of the supported log levels.
Definition: LogConfig.h:26
void setAbortLevel(ELogLevel abortLevel)
Configure the abort level.
Definition: LogConfig.h:112

◆ setDebugLevel()

void setDebugLevel ( int  debugLevel)
inherited

Configure the debug messaging level.

Definition at line 61 of file Module.cc.

62{
63 m_logConfig.setDebugLevel(debugLevel);
64}
void setDebugLevel(int debugLevel)
Configure the debug messaging level.
Definition: LogConfig.h:98

◆ setDescription()

void setDescription ( const std::string &  description)
protectedinherited

Sets the description of the module.

Parameters
descriptionA description of the module.

Definition at line 214 of file Module.cc.

215{
216 m_description = description;
217}

◆ setLogConfig()

void setLogConfig ( const LogConfig logConfig)
inlineinherited

Set the log system configuration.

Definition at line 230 of file Module.h.

230{m_logConfig = logConfig;}

◆ setLogInfo()

void setLogInfo ( int  logLevel,
unsigned int  logInfo 
)
inherited

Configure the printed log information for the given level.

Parameters
logLevelThe log level (one of LogConfig::ELogLevel)
logInfoWhat kind of info should be printed? ORed combination of LogConfig::ELogInfo flags.

Definition at line 73 of file Module.cc.

74{
75 m_logConfig.setLogInfo(static_cast<LogConfig::ELogLevel>(logLevel), logInfo);
76}
void setLogInfo(ELogLevel logLevel, unsigned int logInfo)
Configure the printed log information for the given level.
Definition: LogConfig.h:127

◆ setLogLevel()

void setLogLevel ( int  logLevel)
inherited

Configure the log level.

Definition at line 55 of file Module.cc.

56{
57 m_logConfig.setLogLevel(static_cast<LogConfig::ELogLevel>(logLevel));
58}
void setLogLevel(ELogLevel logLevel)
Configure the log level.
Definition: LogConfig.cc:25

◆ setName()

void setName ( const std::string &  name)
inlineinherited

Set the name of the module.

Note
The module name is set when using the REG_MODULE macro, but the module can be renamed before calling process() using the set_name() function in your steering file.
Parameters
nameThe name of the module

Definition at line 214 of file Module.h.

214{ m_name = name; };

◆ setParamList()

void setParamList ( const ModuleParamList params)
inlineprotectedinherited

Replace existing parameter list.

Definition at line 501 of file Module.h.

501{ m_moduleParamList = params; }

◆ setParamPython()

void setParamPython ( const std::string &  name,
const boost::python::object &  pyObj 
)
privateinherited

Implements a method for setting boost::python objects.

The method supports the following types: list, dict, int, double, string, bool The conversion of the python object to the C++ type and the final storage of the parameter value is done in the ModuleParam class.

Parameters
nameThe unique name of the parameter.
pyObjThe object which should be converted and stored as the parameter value.

Definition at line 234 of file Module.cc.

235{
236 LogSystem& logSystem = LogSystem::Instance();
237 logSystem.updateModule(&(getLogConfig()), getName());
238 try {
240 } catch (std::runtime_error& e) {
241 throw std::runtime_error("Cannot set parameter '" + name + "' for module '"
242 + m_name + "': " + e.what());
243 }
244
245 logSystem.updateModule(nullptr);
246}
Class for logging debug, info and error messages.
Definition: LogSystem.h:46
void updateModule(const LogConfig *moduleLogConfig=nullptr, const std::string &moduleName="")
Sets the log configuration to the given module log configuration and sets the module name This method...
Definition: LogSystem.h:191
static LogSystem & Instance()
Static method to get a reference to the LogSystem instance.
Definition: LogSystem.cc:31
void setParamPython(const std::string &name, const PythonObject &pyObj)
Implements a method for setting boost::python objects.

◆ setParamPythonDict()

void setParamPythonDict ( const boost::python::dict &  dictionary)
privateinherited

Implements a method for reading the parameter values from a boost::python dictionary.

The key of the dictionary has to be the name of the parameter and the value has to be of one of the supported parameter types.

Parameters
dictionaryThe python dictionary from which the parameter values are read.

Definition at line 249 of file Module.cc.

250{
251
252 LogSystem& logSystem = LogSystem::Instance();
253 logSystem.updateModule(&(getLogConfig()), getName());
254
255 boost::python::list dictKeys = dictionary.keys();
256 int nKey = boost::python::len(dictKeys);
257
258 //Loop over all keys in the dictionary
259 for (int iKey = 0; iKey < nKey; ++iKey) {
260 boost::python::object currKey = dictKeys[iKey];
261 boost::python::extract<std::string> keyProxy(currKey);
262
263 if (keyProxy.check()) {
264 const boost::python::object& currValue = dictionary[currKey];
265 setParamPython(keyProxy, currValue);
266 } else {
267 B2ERROR("Setting the module parameters from a python dictionary: invalid key in dictionary!");
268 }
269 }
270
271 logSystem.updateModule(nullptr);
272}
void setParamPython(const std::string &name, const boost::python::object &pyObj)
Implements a method for setting boost::python objects.
Definition: Module.cc:234

◆ setPropertyFlags()

void setPropertyFlags ( unsigned int  propertyFlags)
inherited

Sets the flags for the module properties.

Parameters
propertyFlagsbitwise OR of EModulePropFlags

Definition at line 208 of file Module.cc.

209{
210 m_propertyFlags = propertyFlags;
211}

◆ setReturnValue() [1/2]

void setReturnValue ( bool  value)
protectedinherited

Sets the return value for this module as bool.

The bool value is saved as an integer with the convention 1 meaning true and 0 meaning false. The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 227 of file Module.cc.

228{
229 m_hasReturnValue = true;
230 m_returnValue = value;
231}

◆ setReturnValue() [2/2]

void setReturnValue ( int  value)
protectedinherited

Sets the return value for this module as integer.

The value can be used in the steering file to divide the analysis chain into several paths.

Parameters
valueThe value of the return value.

Definition at line 220 of file Module.cc.

221{
222 m_hasReturnValue = true;
223 m_returnValue = value;
224}

◆ setType()

void setType ( const std::string &  type)
protectedinherited

Set the module type.

Only for use by internal modules (which don't use the normal REG_MODULE mechanism).

Definition at line 48 of file Module.cc.

49{
50 if (!m_type.empty())
51 B2FATAL("Trying to change module type from " << m_type << " is not allowed, the value is assumed to be fixed.");
52 m_type = type;
53}

◆ terminate()

void terminate ( void  )
overridevirtual

terminate.

Reimplemented from Module.

Definition at line 130 of file eclLOMModule.cc.

131{
132
133 for (int i = 0; i < 16; i++) {
134 for (int j = 0; j < 16; j++) {
135 std::cout << m_CoincidenceCounterMatrix[i][j] << " ";
136 m_h2Coin->SetBinContent(i + 1, j + 1, m_CoincidenceCounterMatrix[i][j]);
137 m_h2SumCoin->SetBinContent(i + 1, j + 1, m_SumCoincidenceCounterMatrix[i][j]);
138 }
139 std::cout << std::endl;
140 }
141 m_testfile->Write();
142 m_testfile->Close();
143}

Member Data Documentation

◆ m_BE_Amplitude

double m_BE_Amplitude[16]
private

Calculated amplitudes in sectors of Backward Endcap.

Definition at line 128 of file eclLOMModule.h.

◆ m_BE_Pedal

double m_BE_Pedal[16]
private

Calculated pedestal values for Backward Endcap.

Definition at line 132 of file eclLOMModule.h.

◆ m_BE_Waveform_100ns

double m_BE_Waveform_100ns[16][64]
private

Waveforms with 100ns sampling for Backward Endcap sectors.

Definition at line 109 of file eclLOMModule.h.

◆ m_BE_Waveform_10ns

double m_BE_Waveform_10ns[16][631]
private

Waveforms with 10ns sampling for Backward Endcap sectors.

Definition at line 151 of file eclLOMModule.h.

◆ m_BEQual_Discr

bool m_BEQual_Discr[16][631]
private

Discriminators values for Quality signal of Backward Endcap.

Definition at line 158 of file eclLOMModule.h.

◆ m_BESum_Amplitude

double m_BESum_Amplitude[16]
private

Calculated amplitudes in running sums of Backward Endcap.

Definition at line 130 of file eclLOMModule.h.

◆ m_BESum_Discr

bool m_BESum_Discr[16][631]
private

Discriminators values for running sums of Backward Endcap.

Definition at line 156 of file eclLOMModule.h.

◆ m_BESum_MaxAmp

double m_BESum_MaxAmp
private

Maximum runing sum amplitude in an event for Backward endcap.

Definition at line 135 of file eclLOMModule.h.

◆ m_BESum_MaxId

int m_BESum_MaxId
private

Id of a sector with maximum aplitude in Backward endcap.

Definition at line 137 of file eclLOMModule.h.

◆ m_BESum_Waveform_10ns

double m_BESum_Waveform_10ns[16][631]
private

Running sum's waveforms with 10ns sampling for Backward Endcap sectors.

Definition at line 153 of file eclLOMModule.h.

◆ m_BhNum

int m_BhNum
private

Number of Bha-bha signals in an event.

Could be >1.

Definition at line 127 of file eclLOMModule.h.

◆ m_CoincidenceCounterMatrix

int m_CoincidenceCounterMatrix[16][16]
private

Stores number of concidences between waveforms exceeding threshold in i:j sectors (Forward:Backward).

Definition at line 163 of file eclLOMModule.h.

◆ m_CoincidenceMatrix

int m_CoincidenceMatrix[16][16]
private

Stores current coincidence duration [in samples] between waveforms exceeding threshold in i:j sectors (Forward:Backward).

Definition at line 161 of file eclLOMModule.h.

◆ m_com_en

double m_com_en[2]
private

Monte Carlo energy of the final state particles in CMS frame.

Definition at line 114 of file eclLOMModule.h.

◆ m_com_ph

double m_com_ph[2]
private

Monte Carlo phi of the final state particles in CMS frame.

Definition at line 116 of file eclLOMModule.h.

◆ m_com_th

double m_com_th[2]
private

Monte Carlo thetha of the final state particles in CMS frame.

Definition at line 115 of file eclLOMModule.h.

◆ m_conditions

std::vector<ModuleCondition> m_conditions
privateinherited

Module condition, only non-null if set.

Definition at line 521 of file Module.h.

◆ m_description

std::string m_description
privateinherited

The description of the module.

Definition at line 511 of file Module.h.

◆ m_discrTime

double m_discrTime
private

Discriminator's signal duration in ns.

Definition at line 103 of file eclLOMModule.h.

◆ m_evtNum

int m_evtNum
private

Event number.

Definition at line 108 of file eclLOMModule.h.

◆ m_FE_Amplitude

double m_FE_Amplitude[16]
private

Calculated amplitudes in sectors of Forward Endcap.

Definition at line 129 of file eclLOMModule.h.

◆ m_FE_Pedal

double m_FE_Pedal[16]
private

Calculated pedestal values for Forward Endcap.

Definition at line 133 of file eclLOMModule.h.

◆ m_FE_Waveform_100ns

double m_FE_Waveform_100ns[16][64]
private

Waveforms with 100ns sampling for Forward Endcap sectors.

Definition at line 110 of file eclLOMModule.h.

◆ m_FE_Waveform_10ns

double m_FE_Waveform_10ns[16][631]
private

Waveforms with 10ns sampling for Forward Endcap sectors.

Definition at line 152 of file eclLOMModule.h.

◆ m_FEQual_Discr

bool m_FEQual_Discr[16][631]
private

Discriminators values for Quality signal of Forward Endcap.

Definition at line 157 of file eclLOMModule.h.

◆ m_FESum_Amplitude

double m_FESum_Amplitude[16]
private

Calculated amplitudes in running sums of Forward Endcap.

Definition at line 131 of file eclLOMModule.h.

◆ m_FESum_Discr

bool m_FESum_Discr[16][631]
private

Discriminators values for running sums of Forward Endcap.

Definition at line 155 of file eclLOMModule.h.

◆ m_FESum_MaxAmp

double m_FESum_MaxAmp
private

Maximum runing sum amplitude in an event for Forward endcap.

Definition at line 134 of file eclLOMModule.h.

◆ m_FESum_MaxId

int m_FESum_MaxId
private

Id of a sector with maximum aplitude in Forward endcap.

Definition at line 136 of file eclLOMModule.h.

◆ m_FESum_Waveform_10ns

double m_FESum_Waveform_10ns[16][631]
private

Running sum's waveforms with 10ns sampling for Forward Endcap sectors.

Definition at line 154 of file eclLOMModule.h.

◆ m_h1BEHits

TH1D* m_h1BEHits
private

Store number of events when Backward sector i has signal exceeding Bha-Bha threshold over all events.

Definition at line 144 of file eclLOMModule.h.

◆ m_h1FEHits

TH1D* m_h1FEHits
private

Store number of events when Forward sector i has signal exceeding Bha-Bha threshold over all events.

Definition at line 145 of file eclLOMModule.h.

◆ m_h2BEAmp

TH2D* m_h2BEAmp
private

Store sectors amplitudes for Backward endcap over all events.

Definition at line 143 of file eclLOMModule.h.

◆ m_h2Coin

TH2D* m_h2Coin
private

Store number of coincedencies for i:j sectors (Forward:Backward) over all events.

Definition at line 140 of file eclLOMModule.h.

◆ m_h2FEAmp

TH2D* m_h2FEAmp
private

Store sectors amplitudes for Forward endcap over all events.

Definition at line 142 of file eclLOMModule.h.

◆ m_h2SumCoin

TH2D* m_h2SumCoin
private

Store number of coincedencies in running sums for i:j sectors (Forward:Backward) over all events.

Definition at line 141 of file eclLOMModule.h.

◆ m_hasReturnValue

bool m_hasReturnValue
privateinherited

True, if the return value is set.

Definition at line 518 of file Module.h.

◆ m_includeInnerFE

bool m_includeInnerFE
private

Flag to include Inner part of the Forward Endcap.

Definition at line 104 of file eclLOMModule.h.

◆ m_isBhabha

bool m_isBhabha
private

Bha-bha signal for an event.

Definition at line 125 of file eclLOMModule.h.

◆ m_isBhabhaPatternBE

bool m_isBhabhaPatternBE
private

Quality signal for Backward endcap.

Definition at line 160 of file eclLOMModule.h.

◆ m_isBhabhaPatternFE

bool m_isBhabhaPatternFE
private

Quality signal for Forward endcap.

Definition at line 159 of file eclLOMModule.h.

◆ m_logConfig

LogConfig m_logConfig
privateinherited

The log system configuration of the module.

Definition at line 514 of file Module.h.

◆ m_mcen

double m_mcen[2]
private

Monte Carlo energy of the final state particles in main frame.

Definition at line 111 of file eclLOMModule.h.

◆ m_MCParticles

StoreArray<MCParticle> m_MCParticles
private

MC particles.

Definition at line 119 of file eclLOMModule.h.

◆ m_mcph

double m_mcph[2]
private

Monte Carlo phi of the final state particles in main frame.

Definition at line 113 of file eclLOMModule.h.

◆ m_mcth

double m_mcth[2]
private

Monte Carlo thetha of the final state particles in main frame.

Definition at line 112 of file eclLOMModule.h.

◆ m_moduleParamList

ModuleParamList m_moduleParamList
privateinherited

List storing and managing all parameter of the module.

Definition at line 516 of file Module.h.

◆ m_name

std::string m_name
privateinherited

The name of the module, saved as a string (user-modifiable)

Definition at line 508 of file Module.h.

◆ m_NSamples

int m_NSamples
private

m_NSamples=631, number of samples for 10ns sampling.

Definition at line 150 of file eclLOMModule.h.

◆ m_package

std::string m_package
privateinherited

Package this module is found in (may be empty).

Definition at line 510 of file Module.h.

◆ m_propertyFlags

unsigned int m_propertyFlags
privateinherited

The properties of the module as bitwise or (with |) of EModulePropFlags.

Definition at line 512 of file Module.h.

◆ m_returnValue

int m_returnValue
privateinherited

The return value.

Definition at line 519 of file Module.h.

◆ m_saveSignal

bool m_saveSignal
private

Flag to save signal wavefroms into file.

Definition at line 105 of file eclLOMModule.h.

◆ m_SumCoincidenceCounterMatrix

int m_SumCoincidenceCounterMatrix[16][16]
private

Stores number of concidences between runnig sums discriminators in i:j sectors (Forward:Backward).

Definition at line 164 of file eclLOMModule.h.

◆ m_SumCoincidenceMatrix

int m_SumCoincidenceMatrix[16][16]
private

Stores current coincidence duration [in samples] between runnig sums discriminators in i:j sectors (Forward:Backward).

Definition at line 162 of file eclLOMModule.h.

◆ m_testfile

TFile* m_testfile
private

File to save output.

Definition at line 148 of file eclLOMModule.h.

◆ m_testFileName

std::string m_testFileName
private

Name of file to save output.

Definition at line 99 of file eclLOMModule.h.

◆ m_testtree

TTree* m_testtree
private

Tree to store output.

Definition at line 149 of file eclLOMModule.h.

◆ m_thresholdBE

double m_thresholdBE
private

Threshold [GeV] on signal for Backward Endcap .

Definition at line 101 of file eclLOMModule.h.

◆ m_thresholdBkg

double m_thresholdBkg
private

Threshold [GeV] on signal when sector considered as lighted.

For quality signal calculation.

Definition at line 102 of file eclLOMModule.h.

◆ m_thresholdFE

double m_thresholdFE
private

Threshold [GeV] on signal for Forward Endcap .

Definition at line 100 of file eclLOMModule.h.

◆ m_TrgEclWaveforms

StoreArray<TRGECLWaveform> m_TrgEclWaveforms
private

Trigger waveforms.

Definition at line 122 of file eclLOMModule.h.

◆ m_type

std::string m_type
privateinherited

The type of the module, saved as a string.

Definition at line 509 of file Module.h.


The documentation for this class was generated from the following files: