Source code for grafei.model.normalize_features
##########################################################################
# basf2 (Belle II Analysis Software Framework) #
# Author: The Belle II Collaboration #
# #
# See git log for contributors and copyright holders. #
# This file is licensed under LGPL-3.0, see LICENSE.md. #
##########################################################################
import numpy as np
from typing import Union
def _power(array: np.ndarray, power: Union[int, float]):
"""Preprocessing function to take power of given feature."""
return np.sign(array) * np.power(np.abs(array), power)
def _linear(array: np.ndarray, mu=0.0, sigma=1.0):
"""Preprocessing function to linear scale given feature."""
return (array - mu) / sigma
methods = {"power": _power, "linear": _linear}
[docs]
def normalize_features(
normalize={},
features=[],
x=[],
edge_features=[],
x_edges=[],
global_features=[],
x_global=[],
):
"""
Function to normalize input features.
``normalize`` should be a dictionary of the form ``{'power', [0.5], 'linear', [-0.5, 4.1]}``.
``power`` and ``linear`` are the only processes supported.
Args:
normalize (dict): Normalization processes and parameters.
features (list): List of node feature names.
x (numpy.ndarray): Array of node features.
edge_features (list): List of edge feature names.
x_edges (numpy.ndarray): Array of edge features.
global_features (list): List of global feature names.
x_global (numpy.ndarray): Array of global features.
"""
for feat, processes in normalize.items():
# Start with node features
feat_name = f"feat_{feat}"
if feat_name in features:
feat_idx = features.index(feat_name)
# Apply normalizations in order
for proc in processes:
args = proc[1:]
x[:, feat_idx] = methods[proc[0]](x[:, feat_idx], *args)
continue # assume no features of different type with same name
# Continue with edge features
feat_name = f"edge_{feat}"
if feat_name in edge_features:
feat_idx = edge_features.index(feat_name)
# Apply normalizations in order
for proc in processes:
args = proc[1:]
x_edges[:, feat_idx] = methods[proc[0]](x_edges[:, feat_idx], *args)
continue # assume no features of different type with same name
# Continue with global features
feat_name = f"glob_{feat}"
if feat_name in global_features:
feat_idx = global_features.index(feat_name)
# Apply normalizations in order
for proc in processes:
args = proc[1:]
x_global[:, feat_idx] = methods[proc[0]](x_global[:, feat_idx], *args)