##########################################################################
# basf2 (Belle II Analysis Software Framework) #
# Author: The Belle II Collaboration #
# #
# See git log for contributors and copyright holders. #
# This file is licensed under LGPL-3.0, see LICENSE.md. #
##########################################################################
import basf2 as b2
import numpy as np
import copy
from itertools import combinations
from variables import variables as vm
[docs]
def get_object_list(pointerVec):
"""
Workaround to avoid memory problems in basf2.
Args:
pointerVec: Input particle list.
Returns:
list: Output python list.
"""
from ROOT import Belle2
objList = []
size = (
pointerVec.getListSize()
if isinstance(pointerVec, Belle2.ParticleList)
else len(pointerVec)
)
for i in range(size):
objList.append(pointerVec[i])
return objList
[docs]
def pdg_to_lca_converter(pdg):
"""
Converts PDG code to LCAS classes.
.. tip:: If you want to modify the LCAS classes, it's here.
Don't forget to update the number of edge classes accordingly in the yaml file.
Args:
pdg (int): PDG code to convert.
Returns:
int or None: Corresponding LCAS class, or None if PDG not present in ``pdg_lca_match``.
"""
# MC PDG code
pdg_lca_match = {
443: 1, # J/psi
111: 1, # pi^0
310: 2, # K_S^0
# 130: 2, #K_L^0
421: 3, # D^0
411: 3, # D^+
431: 3, # D_s^+
413: 4, # D^+*
423: 4, # D^0*
433: 4, # D_s^*+
521: 5, # B^+
511: 5, # B^0
300553: 6, # Upsilon(4S)
}
pdg = abs(pdg)
if pdg in pdg_lca_match:
return pdg_lca_match[pdg]
else:
return None
def _update_levels(levels, hist, pdg):
"""
Assigns LCAS level to each particle in the decay tree.
Arguments are automatically set.
"""
for i, n in enumerate(hist):
if n in levels.keys():
continue
lca = pdg_to_lca_converter(pdg[n])
if lca:
levels[n] = lca
else:
for j in range(i + 1):
lca = pdg_to_lca_converter(pdg[hist[i - j]])
if lca:
levels[n] = lca
break
return levels
[docs]
def write_hist(
particle,
leaf_hist={},
levels={},
hist=[],
pdg={},
leaf_pdg={},
semilep_flag=False,
):
"""
Recursive function to traverse down to the leaves saving the history.
Args:
particle: The current particle being inspected.
Other arguments are automatically set.
"""
neutrino_pdgs = [12, 14, 16, 18]
# Check if there's any neutrinos in the tree and set semileptonic flag
# Need to only include primary particle since they're what couns in the LCA
if (abs(particle.getPDG()) in neutrino_pdgs) and particle.isPrimaryParticle():
semilep_flag = True
# Need to create a true copy, no just a ref to the object
hist = copy.deepcopy(hist)
leaf_hist = copy.deepcopy(leaf_hist)
leaf_pdg = copy.deepcopy(leaf_pdg)
levels = copy.deepcopy(levels)
pdg = copy.deepcopy(pdg)
# Below is deciding what to save to the LCA matrix
# If primary or secondary with no daughters:
# save
# If primary with no primary daughters:
# save and continue down daughters
# else:
# continue down daughters
# Check if we're a primary particle with no primary daughters
prim_no_prim_daughters = (
len(
[d for d in get_object_list(particle.getDaughters()) if d.isPrimaryParticle()]
)
== 0
)
# If it's a leaf we save it
# Also check that it has no primary daughters
if (
# particle.isPrimaryParticle() and
(particle.getNDaughters() == 0)
or prim_no_prim_daughters # Even if saving secondaries we need to record primaries with no primary daughters
):
# Won't save neutrinos or very low energy photons to LCA
if abs(particle.getPDG()) not in neutrino_pdgs and not (
particle.getPDG() == 22 and particle.getEnergy() < 1e-4
):
# Leaves get their history added
leaf_hist[particle.getArrayIndex()] = hist
leaf_pdg[particle.getArrayIndex()] = particle.getPDG()
# And now that we have a full history down to the leaf
# we can update the levels
levels = _update_levels(levels, hist, pdg)
# Here is deciding whether to continue traversing down the decay tree
# Don't want to do this if all daughters are secondaries since we're not saving them
if (
particle.getNDaughters() != 0
) and not prim_no_prim_daughters: # Don't travers if all daughters are secondaries
# Only append primaries to history
if particle.isPrimaryParticle():
hist.append(particle.getArrayIndex())
# Save all PDG values of the in between primary particles
pdg[particle.getArrayIndex()] = particle.getPDG()
# Now iterate over daughters passing history down
daughters = get_object_list(particle.getDaughters())
for daughter in daughters:
(
leaf_hist,
levels,
pdg,
leaf_pdg,
semilep_flag,
) = write_hist(
daughter,
leaf_hist,
levels,
hist,
pdg,
leaf_pdg,
semilep_flag,
)
return (
leaf_hist,
levels,
pdg,
leaf_pdg,
semilep_flag,
)
[docs]
class LCASaverModule(b2.Module):
"""
Save Lowest Common Ancestor matrix of each MC Particle in the given list.
Args:
particle_lists (list): Name of particle lists to save features of.
features (list): List of features to save for each particle.
mcparticle_list (str): Name of particle list to build LCAs from (will use as root).
output_file (str): Path to output file to save.
"""
def __init__(
self,
particle_lists,
features,
mcparticle_list,
output_file,
):
"""
Initialization.
"""
super().__init__()
#: Input particle lists
self.particle_lists = particle_lists
#: Features to save
self.features = features
#: MC particle list (Upsilon, B0, B+)
self.mcparticle_list = mcparticle_list
#: Output file name
self.output_file = output_file
#: Max number of particles
# It doesn't actually matter what this is as long as it's bigger than
# the number of particles in any events we'll encounter. ROOT won't save all entries.
self.max_particles = 500
def initialize(self):
"""
Called once at the beginning.
"""
from ROOT import Belle2, TFile, TTree
#: Event info
self.eventinfo = Belle2.PyStoreObj("EventMetaData")
#: ROOT output file
self.root_outfile = TFile(self.output_file, "recreate")
#: ROOT tree
self.tree = TTree("Tree", "tree")
#: Event number
self.event_num = np.zeros(1, dtype=np.int32)
self.tree.Branch("event", self.event_num, "event/I")
#: bool containing information whether we reconstruct B or Upsilon
self.isB = np.zeros(1, dtype=bool)
self.tree.Branch("isB", self.isB, "isB/b")
#: Truth information
self.truth_dict = {}
# We assume at most two LCA matrices for event
for i in [1, 2]:
self.truth_dict[f"n_LCA_leaves_{i}"] = np.zeros(1, dtype=np.int32)
self.truth_dict[f"LCA_leaves_{i}"] = np.zeros(
self.max_particles, dtype=np.int32
)
self.tree.Branch(
f"n_LCA_leaves_{i}",
self.truth_dict[f"n_LCA_leaves_{i}"],
f"n_LCA_leaves_{i}/I",
)
self.tree.Branch(
f"LCA_leaves_{i}",
self.truth_dict[f"LCA_leaves_{i}"],
f"LCA_leaves_{i}[n_LCA_leaves_{i}]/I",
)
self.truth_dict[f"n_LCA_{i}"] = np.zeros(1, dtype=np.int32)
self.truth_dict[f"LCAS_{i}"] = np.zeros(
self.max_particles**2, dtype=np.uint8
)
self.tree.Branch(f"n_LCA_{i}", self.truth_dict[f"n_LCA_{i}"], f"n_LCA_{i}/I")
self.tree.Branch(
f"LCAS_{i}", self.truth_dict[f"LCAS_{i}"], f"LCAS_{i}[n_LCA_{i}]/b"
)
# Feature data
#: Number of particles
self.n_particles = np.zeros(1, dtype=np.int32)
self.tree.Branch("n_particles", self.n_particles, "n_particles/I")
#: Particle-is-primary flag
self.primary = np.zeros(self.max_particles, dtype=bool)
self.tree.Branch("primary", self.primary, "primary[n_particles]/O")
#: Leaves in event
self.leaves = np.zeros(self.max_particles, dtype=np.int32)
self.tree.Branch("leaves", self.leaves, "leaves[n_particles]/I")
#: B index
self.b_index = np.zeros(self.max_particles, dtype=np.int32)
self.tree.Branch("b_index", self.b_index, "b_index[n_particles]/I")
#: Features dictionary
self.feat_dict = {}
for feat in self.features:
self.feat_dict[feat] = np.zeros(self.max_particles, np.float32)
self.tree.Branch(
f"feat_{feat}", self.feat_dict[feat], f"feat_{feat}[n_particles]/F"
)
#: True MC PDG
self.mc_pdg = np.zeros(self.max_particles, np.float32)
self.tree.Branch("mcPDG", self.mc_pdg, "mcPDG[n_particles]/F")
def _reset_LCA(self):
"""
Resets the value of the LCA to 0.
"""
for p_index in [1, 2]:
self.truth_dict[f"LCAS_{p_index}"][: self.max_particles**2] *= 0
self.truth_dict[f"n_LCA_leaves_{p_index}"][0] *= 0
self.truth_dict[f"LCA_leaves_{p_index}"][: self.max_particles] *= 0
self.truth_dict[f"n_LCA_{p_index}"][0] *= 0
def event(self):
"""
Called for each event.
"""
from ROOT import Belle2 # noqa: make Belle2 namespace available
from ROOT.Belle2 import PyStoreObj
# Get the particle list (note this is a regular Particle list, not MCParticle)
p_list = PyStoreObj(self.mcparticle_list)
self.event_num[0] = self.eventinfo.getEvent()
# Is Upsilon flag
if self.mcparticle_list == "Upsilon(4S):MC":
self.isB[0] = 0
elif self.mcparticle_list == "B0:MC":
self.isB[0] = 1
elif self.mcparticle_list == "B+:MC":
self.isB[0] = 2
# Create the LCA
# IMPORTANT: The ArrayIndex is 0-based.
# mcplist contains the root particles we are to create LCAs from
# Reset the LCA list so if only one B is there it does not carry an older version over
self._reset_LCA()
if p_list.getListSize() > 0:
for part in p_list.obj():
# Get the corresponding MCParticle
mcp = part.getMCParticle()
# In this way the LCA variables in the ntuples will be labelled _1 and _2
# If we train on B decays these will correspond to the two B's
# while if we train on the Upsilon, _1 will correspond to it and _2 will remain empty
# because getArrayIndex() gives 0 for the Upsilon and 1, 2 for the B's
array_index = 1 if self.isB[0] == 0 else mcp.getArrayIndex()
# Call function to write history of leaves in the tree.
# It internally calls function update_levels to find and save the level of each particle in the tree.
# Necessary step to build the LCA.
(
lcas_leaf_hist,
lcas_levels,
_, _, _,
) = write_hist(
particle=mcp,
leaf_hist={},
levels={},
hist=[],
pdg={},
leaf_pdg={},
semilep_flag=False,
)
lcas = np.zeros([len(lcas_leaf_hist), len(lcas_leaf_hist)])
for x, y in combinations(enumerate(lcas_leaf_hist), 2):
lcas_intersection = [
i for i in lcas_leaf_hist[x[1]] if i in lcas_leaf_hist[y[1]]
]
lcas[x[0], y[0]] = lcas_levels[lcas_intersection[-1]]
lcas[y[0], x[0]] = lcas_levels[lcas_intersection[-1]]
self.truth_dict[f"LCAS_{array_index}"][: lcas.size] = lcas.flatten()
self.truth_dict[f"n_LCA_leaves_{array_index}"][0] = len(lcas_leaf_hist.keys())
self.truth_dict[f"LCA_leaves_{array_index}"][
: len(lcas_leaf_hist.keys())
] = list(lcas_leaf_hist.keys())
self.truth_dict[f"n_LCA_{array_index}"][0] = lcas.size
# ### Create the features
# Where we'll append features
evt_feats = {f: [] for f in self.features}
# Ideally this would be saved in evt_feat_dict but the -1 for unmatched
# particles messes that up
evt_leaf_dict = {
"leaves": [],
"primary": [],
"b_index": [],
"mc_pdg": [],
}
# IMPORTANT: The ArrayIndex is 0-based.
# mcplist contains the root particles we are to create LCAs from
for p_list_name in self.particle_lists:
# Get the particle list (note this is a regular Particle list, not MCParticle)
p_list = PyStoreObj(p_list_name)
for particle in p_list.obj():
# Get the B parent index, set to -1 if particle has no MC match
b_index = int(vm.evaluate("ancestorBIndex", particle))
# Need this to reorder LCA later, returns -1 if no MC match
if b_index >= 0:
p_index = particle.getMCParticle().getArrayIndex()
p_primary = particle.getMCParticle().isPrimaryParticle()
# Save particle's PDG code
mc_pdg = particle.getMCParticle().getPDG()
else:
p_index = -1
p_primary = False
mc_pdg = 0
evt_leaf_dict["primary"].append(p_primary)
evt_leaf_dict["leaves"].append(p_index)
evt_leaf_dict["b_index"].append(b_index)
evt_leaf_dict["mc_pdg"].append(mc_pdg)
for feat in self.features:
evt_feats[feat].append(vm.evaluate(feat, particle))
n_particles = len(evt_leaf_dict["primary"])
self.n_particles[0] = n_particles
self.primary[:n_particles] = evt_leaf_dict["primary"]
self.leaves[:n_particles] = evt_leaf_dict["leaves"]
self.b_index[:n_particles] = evt_leaf_dict["b_index"]
self.mc_pdg[:n_particles] = evt_leaf_dict["mc_pdg"]
for feat in self.features:
self.feat_dict[feat][:n_particles] = evt_feats[feat]
# Add number of final state particles
# Write everything to the TTree
self.tree.Fill()
def terminate(self):
"""
Called at the end.
"""
self.root_outfile.Write()
self.root_outfile.Close()